JP3677548B2 - X-ray generator - Google Patents

X-ray generator Download PDF

Info

Publication number
JP3677548B2
JP3677548B2 JP2002288426A JP2002288426A JP3677548B2 JP 3677548 B2 JP3677548 B2 JP 3677548B2 JP 2002288426 A JP2002288426 A JP 2002288426A JP 2002288426 A JP2002288426 A JP 2002288426A JP 3677548 B2 JP3677548 B2 JP 3677548B2
Authority
JP
Japan
Prior art keywords
target material
ray
shock wave
plasma
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002288426A
Other languages
Japanese (ja)
Other versions
JP2004127641A (en
Inventor
功 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002288426A priority Critical patent/JP3677548B2/en
Publication of JP2004127641A publication Critical patent/JP2004127641A/en
Application granted granted Critical
Publication of JP3677548B2 publication Critical patent/JP3677548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線露光装置、X線顕微鏡、X線分析装置等のX線装置のX線源として用いて好適なX線発生装置と、該X線発生装置を備えたX線装置に関する。
【0002】
【従来の技術】
標的物質にパルスレーザー光を集光して該標的物質をプラズマ化し、該プラズマより輻射されるX線を利用するX線発生装置、いわゆるレーザープラズマX線源は、高輝度でありながら小型であることから、巨大な電子蓄積リングを用いた放射光X線発生装置と異なり、X線露光装置、X線顕微鏡、X線分析装置等として生産現場や実験室サイズの検査分析用X線光源として注目されている。
【0003】
これらの利用目的においては、レーザー光が高効率でX線に変換された方が小型で実用性が高まるのは勿論のこと、輝度が高く、できるだけ点光源に近い方がX線発生装置の分解能や露光の一様性を向上させることができるため、高効率、高輝度で微小なスポットサイズの光源が求められている。この要請をレーザープラズマX線源で実現するためには標的物質の密度は高い方が良いところから、標的物質には固体が適している。
【0004】
【発明が解決しようとする課題】
しかしながら、パルスレーザー光を固体標的物質に集光照射してプラズマ化した場合、プラズマおよびその近傍の標的物質から放出される飛散粒子が問題となる。標的物質が固体であるため、プラズマからのイオン状、原子状の飛散粒子はX線を捕集、転送するために配置されたX線反射鏡や窓材等のX線用光学素子の表面に析出して反射率や透過率を著しく損なうものであり、またプラズマ化する温度まで加熱されなかった周辺部の標的物質は大きな飛散粒子となり、衝突によリX線用光学素子を破損する。
【0005】
この問題を回避するためには、標的物質をガス状、液状、微粒子状にすることが考えられる(例えば、特許文献1,特許文献2参照)が、ガスや微粒子は固体に比べると大幅に密度が低く、液体もX線用光学素子の表面に析出しない揮発性物質でない限りはX線用光学素子の劣化を防止できないため、水や液化ガス等ごく限られた物質にしか適用できず、高い効率で有用な波長のX線に変換する多くの金属材料を液状とすることは困難である。
本発明は、これら固体の金属材料を標的物質として用いた場合にもX線用光学素子が劣化することのないX線発生装置を提供することを目的とする。
【0006】
【特許文献1】
特開2001−023795号公報
【特許文献2】
特開2001−068296号公報
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、標的物質にパルスレーザー光を集光照射して標的物質をプラズマ化し、該プラズマより輻射されるX線を利用するX線発生装置において、衝撃波発生手段により固体標的材料中に発生した衝撃波が固体標的材料中を伝播し、真空もしくはガスの雰囲気中に解放される際に発生する固体標的材料物質の噴出現象を利用して、前記標的物質を供給するX線発生装置を提供する。
【0008】
また、本発明は、衝撃波発生の手段としてあらかじめ別のパルスレーザー光を固体標的材料に照射することにより発生するレーザープラズマ衝撃波を利用することを特徴とするX線発生装置を提供する。
さらに、本発明は、標的物質の噴出位置において、噴出方向をX線用光学素子の設置位置方向と異なった角度にすることにより、該X線用光学素子が噴出した標的物質の影響を受けない配置にしたことを特徴としたX線発生装置を提供する。
【0009】
【発明の実施の形態】
本発明の実施の形態を実施例に基づき図面を参照して説明する。
図1は本発明の実施例の概略構成図を示す。
図中、1は衝撃波発生用のパルスレーザー光、2は集光レンズ、3は固体標的材料、4は固体標的材料3から押し出され、噴出した標的物質、5はX線発生用パルスレーザー光、7はX線用光学素子、8は発生したX線、9は衝撃波発生用プラズマからの飛散粒子に対する障壁を表す。
【0010】
固体標的材料3は、公知のターゲット材と同じものでよく、例えば、金属,ガラス,シリコン等である。図1の構成は真空又は空気やヘリウムガスの雰囲気中に設置される。さらに、10はパルスレーザー光1によって生成された高温プラズマ、11は衝撃波、12は高温プラズマ10の飛散粒子、13は標的物質の飛散粒子、14は捕集されたX線を表す。
【0011】
衝撃波発生用のパルスレーザー光1を集光レンズ2を介して固体標的材料3の表面に集光照射する。このときの集光照射強度を10の13乗W/cm2程度の高強度とし、パルス幅を数nsとすることにより、固体標的材料3のパルスレーザー光1が照射された面側(表面側)からは固体標的材料3の高温プラズマ10が噴出し、その噴出の反作用により、固体標的材料3の内部に向かって衝撃波11が発生する。
【0012】
衝撃波11は固体標的材料内部を伝播し、衝撃波発生用のパルスレーザー光11を照射した面とは反対側(背面側)に到達する。このとき背面側からは固体標的材料3の物質が原子間相互の弾性結合から解放され、イオン状、原子状の標的物質4となって高密度で噴出する。この噴出した標的物質をX線発生用標的材料(ターゲット材)として使用する。
【0013】
図2は、X線発生用標的物質4が、衝撃発生用パルスレーザーにより発生した衝撃波によって固体標的材料3から噴出する状況を計算機で数値シミュレーションを行った結果の流線図を例示している。図の流線は材料物質の位置座標が時間とともに移動している状況を表している。衝撃波発生用の高強度パルスレーザー光1のパルス幅が27ns、固体標的材料が厚さ100μmのアルミニウム材料を使用した場合である。図の縦軸が固体標的材料3の厚さ(L)方向の空間を示し、横軸はレーザー光照射開始後の時間経過を示す。
【0014】
図2から、衝撃発生用パルスレーザー1の光照射後に衝撃波が固体標的材料3中を伝播し、背面から固体密度に近い高密度の物質が噴出することが分かる。図2の例では、レーザー光照射開始後30nsの時点で標的物質4は固体標的材料の背面から約26μm押し出されている。背面内でのこの噴出の空問領域は衝撃波が固体標的材料の表側に到達した領域に限られるので、衝撃波発生用のパルスレーザー光1の集光領域を制御することにより標的物質4の制御が可能である。この制御により、X線発生に必要な最適な量の粒子状物質をX線発生用標的物質として供給できる。
【0015】
また、余分な量の標的物質を無くすることにより、飛散粒子13の量を大幅に減少させることができる。一方で表面側では衝撃波を発生させるためのプラズマから大量の飛散粒子12が発生するが、これは図1中の障壁9で示すように物理的に障壁を設けることにより防ぐことができる。
【0016】
このようにして準備したX線発生用標的物質4に対して、X線発生用パルスレーザー光5を集光レンズ6を介して集光照射し、標的材料物質4をプラズマ化し、X線8を発生する。X線発生用パルスレーザー光5は必要最小限の体積しか持たない微小なX線発生用標的物質4をX線発生のために瞬聞的に高温に加熱できればよく、高パワー密度であってもパルスの時間幅が短ければエネルギーとしては小さいもので済ませることができる。
【0017】
衝撃波用パルスレーザー光1は固体標的材料3の表面に垂直に照射されているので、衝撃波は固体標的材料3の表面に垂直な方向11Aに進行する。噴出したX線発生用標的物質4は衝撃波11により加速されているため、固体標的材料3の背面と垂直な方向4Aで並進運動する。X線発生用標的物質4の飛散粒子13の移動方向はX線発生用パルスレーザー光5のエネルギーにより影響される。
【0018】
X線発生用パルスレーザー光5のエネルギーがこの並進運動の持つエネルギーに比べて大きくなければ、X線発生用標的物質4の飛散粒子13はX線発生用パルスレーザー光5のエネルギーによりレーザー光5の方向に少し偏向した方向13Aで並進運動を続ける。従って、ここで発生する飛散粒子13の大部分はこの並進運動の方向13Aで移動することになる。また、X線用パルスレーザー光5のエネルギー、衝撃波11のエネルギー、衝撃波11の方向11A、標的物質の噴出方向によって飛散粒子の方向13Aは制御される。
【0019】
図1に示したように、X線用光学素子7をこの並進運動が向かう方向13Aの空間範囲Zとは異なった位置に配置することにより、X線用光学素子7は飛散粒子の影響を免れることができる。つまり、標的物質の噴出位置において、その噴出方向をX線用光学素子7の設置位置方向と異なった角度にすることにより、該X線用光学素子が噴出した標的物質の影響を受けない配置にできる。X線用光学素子7によって捕集されたX線14は、本発明のX線発生装置の出力としてX線利用装置、X線照射装置等へ導かれる。
【0020】
なお、本実施例では、衝撃波発生手段はレーザープラズマ衝撃発生手段としたが、他の公知の衝撃波発生手段、爆薬,ガス圧銃,電磁力を利用したものを使用しても良い。又、レーザー光の集光にはレンズ2,6を用いたが、これらは反射鏡等、他の光学素子を用いても良く、またX線用光学素子7も図1に示した凹面鏡の形状に限定されるものではない。
【0021】
【発明の効果】
本発明によればX線発生装置としレーザープラズマX線源が本来有する小型、高効率、高輝度点光源といった特徴を損なうことなく、X線用光学素子に対する飛散粒子による悪影響を防止することができる。X線発生用標的材料をガスや液体、微粒子等に加工する必要はなく、X線発生用標的物質として通常固体である物質が使えるため、幅広い材料を選択肢に入れることができる。従って本発明によって、生産現場や実験室、検査室等で容易に使用できるX線発生装置を製作することが可能になった。
【図面の簡単な説明】
【図1】本発明の実施例のX線発生装置を示す概略構成図である。
【図2】本発明にかかるレーザープラズマ衝撃波により標的材料が噴出する状況を計算機で数値シミュレーションを行なって得られた結果の流線図である。
【符号の説明】
1 衝撃波発生用のパルスレーザー光
2 集光レンズ
3 固体標的材料
4 衝撃波噴出によって得られたX線発生用標的物質
5 X線発生用パルスレーザー光
6 集光レンズ
7 X線用光学素子
8 X線
9 衝撃波発生用プラズマからの飛散粒子に対する障壁
11 衝撃波
4A 標的材料物質の噴出方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray generator suitable for use as an X-ray source of an X-ray apparatus such as an X-ray exposure apparatus, an X-ray microscope, and an X-ray analyzer, and an X-ray apparatus including the X-ray generator.
[0002]
[Prior art]
A so-called laser plasma X-ray source, which is high in luminance and small in size, is an X-ray generator that uses X-rays emitted from the plasma by condensing pulsed laser light on the target material to convert the target material into plasma. Therefore, unlike synchrotron radiation X-ray generators using huge electron storage rings, X-ray exposure devices, X-ray microscopes, X-ray analyzers, etc. are attracting attention as X-ray light sources for production analysis and laboratory-size inspection analysis. Has been.
[0003]
For these purposes, the laser beam converted into X-rays with high efficiency is not only smaller and more practical, but also has higher brightness and is closer to the point light source as much as possible. In addition, since the uniformity of exposure can be improved, a light source with high efficiency, high brightness, and a small spot size is required. In order to realize this requirement with a laser plasma X-ray source, it is better that the density of the target substance is higher, so that a solid is suitable for the target substance.
[0004]
[Problems to be solved by the invention]
However, when the solid target substance is focused and irradiated with pulsed laser light to form plasma, scattered particles emitted from the plasma and the target substance in the vicinity thereof become a problem. Since the target substance is a solid, ionic and atomic scattering particles from the plasma are placed on the surface of an X-ray optical element such as an X-ray reflector or window material arranged to collect and transfer X-rays. The deposited target material significantly deteriorates the reflectivity and transmittance, and the target material in the peripheral portion that has not been heated to the temperature at which it is turned into plasma becomes large scattering particles, and damages the optical element for X-rays by collision.
[0005]
In order to avoid this problem, it is conceivable that the target substance is in the form of gas, liquid, or fine particles (see, for example, Patent Document 1 and Patent Document 2). As long as the liquid is not a volatile substance that does not precipitate on the surface of the optical element for X-rays, the deterioration of the optical element for X-rays cannot be prevented. Therefore, it can be applied only to very limited substances such as water and liquefied gas. It is difficult to liquefy many metal materials that convert X-rays with efficient and useful wavelengths.
An object of the present invention is to provide an X-ray generation apparatus in which the X-ray optical element does not deteriorate even when these solid metal materials are used as a target substance.
[0006]
[Patent Document 1]
JP 2001-023795 A [Patent Document 2]
JP 2001-068296 A
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a shock wave generating means in an X-ray generator that uses X-rays radiated from a plasma by condensing and irradiating a target material with a pulsed laser beam. A shock wave generated in the solid target material is propagated through the solid target material, and the target substance is supplied by utilizing the phenomenon of ejection of the solid target material substance that is generated when released into a vacuum or gas atmosphere. An X-ray generator is provided.
[0008]
The present invention also provides an X-ray generator characterized by using a laser plasma shock wave generated by irradiating a solid target material with another pulsed laser beam in advance as a means for generating a shock wave.
Furthermore, the present invention is not affected by the target material ejected by the X-ray optical element by setting the ejection direction to an angle different from the installation position direction of the X-ray optical element at the target material ejection position. Provided is an X-ray generator characterized by being arranged.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described based on examples with reference to the drawings.
FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention.
In the figure, 1 is a pulse laser beam for generating a shock wave, 2 is a condensing lens, 3 is a solid target material, 4 is a target material extruded from the solid target material 3, and 5 is a pulse laser beam for generating X-rays. 7 represents an optical element for X-rays, 8 represents generated X-rays, and 9 represents a barrier against scattered particles from the plasma for generating shock waves.
[0010]
The solid target material 3 may be the same as a known target material, for example, metal, glass, silicon, or the like. The configuration of FIG. 1 is installed in an atmosphere of vacuum or air or helium gas. Further, 10 represents high-temperature plasma generated by the pulsed laser beam 1, 11 represents a shock wave, 12 represents scattered particles of the high-temperature plasma 10, 13 represents scattered particles of the target substance, and 14 represents collected X-rays.
[0011]
A pulse laser beam 1 for generating a shock wave is condensed and irradiated onto the surface of the solid target material 3 through a condenser lens 2. The focused irradiation intensity at this time is set to a high intensity of about 10 13 W / cm 2 and the pulse width is set to several ns, so that the surface side (surface side) irradiated with the pulse laser beam 1 of the solid target material 3 is irradiated. From the high-temperature plasma 10 of the solid target material 3, and a shock wave 11 is generated toward the inside of the solid target material 3 due to the reaction of the jet.
[0012]
The shock wave 11 propagates inside the solid target material and reaches the side opposite to the surface irradiated with the pulse laser beam 11 for generating the shock wave (back side). At this time, the substance of the solid target material 3 is released from the mutual elastic bond between the atoms from the back side, and becomes an ionic or atomic target substance 4 and ejected at a high density. This ejected target substance is used as a target material (target material) for X-ray generation.
[0013]
FIG. 2 illustrates a streamline diagram as a result of a numerical simulation performed by a computer on the situation in which the target substance 4 for X-ray generation is ejected from the solid target material 3 by a shock wave generated by a pulse laser for generating an impact. The streamlines in the figure represent the situation where the position coordinates of the material substance are moving with time. This is a case in which an aluminum material having a pulse width of 27 ns and a solid target material of 100 μm in thickness is used for the high-intensity pulsed laser beam 1 for generating a shock wave. The vertical axis of the figure shows the space in the thickness (L) direction of the solid target material 3, and the horizontal axis shows the time elapsed after the start of laser light irradiation.
[0014]
From FIG. 2, it can be seen that the shock wave propagates through the solid target material 3 after irradiation of the pulse laser 1 for generating an impact, and a high-density substance close to the solid density is ejected from the back surface. In the example of FIG. 2, the target substance 4 is pushed out from the back surface of the solid target material by about 26 μm at 30 ns after the start of laser light irradiation. Since the empty region of the jet in the back surface is limited to the region where the shock wave reaches the front side of the solid target material, the target substance 4 can be controlled by controlling the condensing region of the pulse laser beam 1 for generating the shock wave. Is possible. By this control, an optimal amount of particulate matter necessary for X-ray generation can be supplied as a target material for X-ray generation.
[0015]
Moreover, the amount of the scattered particles 13 can be greatly reduced by eliminating the excessive amount of the target substance. On the other hand, a large amount of scattered particles 12 are generated from the plasma for generating a shock wave on the surface side, but this can be prevented by providing a physical barrier as shown by a barrier 9 in FIG.
[0016]
The X-ray generation target substance 4 prepared in this way is condensed and irradiated with an X-ray generation pulse laser beam 5 through a condenser lens 6 to convert the target material substance 4 into plasma, Occur. The pulsed laser beam 5 for X-ray generation only needs to be able to instantaneously heat a minute target material 4 for X-ray generation having only a necessary minimum volume to generate X-rays. If the time width of the pulse is short, the energy can be small.
[0017]
Since the shock wave pulse laser beam 1 is irradiated perpendicularly to the surface of the solid target material 3, the shock wave travels in a direction 11A perpendicular to the surface of the solid target material 3. Since the ejected target substance 4 for X-ray generation is accelerated by the shock wave 11, it translates in a direction 4 A perpendicular to the back surface of the solid target material 3. The moving direction of the scattered particles 13 of the target substance 4 for X-ray generation is affected by the energy of the pulse laser beam 5 for X-ray generation.
[0018]
If the energy of the X-ray generation pulse laser beam 5 is not larger than the energy of this translational movement, the scattered particles 13 of the X-ray generation target material 4 are converted into the laser beam 5 by the energy of the X-ray generation pulse laser beam 5. The translation is continued in the direction 13A slightly deflected in the direction of. Therefore, most of the scattered particles 13 generated here move in the translational movement direction 13A. Further, the direction 13A of scattered particles is controlled by the energy of the X-ray pulse laser beam 5, the energy of the shock wave 11, the direction 11A of the shock wave 11, and the ejection direction of the target substance.
[0019]
As shown in FIG. 1, by arranging the X-ray optical element 7 at a position different from the spatial range Z in the direction 13A in which the translational movement is directed, the X-ray optical element 7 is free from the influence of scattered particles. be able to. In other words, by setting the ejection direction of the target material at an angle different from the installation position direction of the X-ray optical element 7, the X-ray optical element is not affected by the target material ejected. it can. The X-rays 14 collected by the X-ray optical element 7 are guided to an X-ray utilization device, an X-ray irradiation device or the like as an output of the X-ray generator of the present invention.
[0020]
In this embodiment, the shock wave generating means is a laser plasma shock generating means. However, other known shock wave generating means, explosives, gas pressure guns, or those using electromagnetic force may be used. Further, although the lenses 2 and 6 are used for condensing the laser beam, these may use other optical elements such as a reflecting mirror, and the X-ray optical element 7 also has the shape of the concave mirror shown in FIG. It is not limited to.
[0021]
【The invention's effect】
According to the present invention, it is possible to prevent an adverse effect caused by scattered particles on an optical element for X-rays without impairing characteristics such as a small size, high efficiency, and a high-intensity point light source inherent in a laser plasma X-ray source as an X-ray generator. . There is no need to process the target material for X-ray generation into gas, liquid, fine particles, etc., and since a substance that is normally solid can be used as the target substance for X-ray generation, a wide range of materials can be selected. Therefore, according to the present invention, it has become possible to produce an X-ray generator that can be easily used in production sites, laboratories, inspection rooms, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an X-ray generator of an embodiment of the present invention.
FIG. 2 is a streamline diagram of the results obtained by performing a numerical simulation with a computer on the situation where a target material is ejected by a laser plasma shock wave according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pulsed laser beam for shock wave generation 2 Condensing lens 3 Solid target material 4 Target material for X-ray generation 5 obtained by shock wave ejection X-ray generation pulsed laser beam 6 Condensing lens 7 X-ray optical element 8 X-ray 9 Barrier against scattered particles from plasma for shock wave generation 11 Shock wave 4A Target material substance ejection direction

Claims (3)

標的物質にパルスレーザー光を集光照射して標的物質をプラズマ化し、該プラズマより輻射されるX線を出力するX線発生装置において、
前記標的物質が、衝撃波発生手段により固体標的材料中に発生させられた衝撃波が固体標的材料中を伝播し、固体標的材料と真空もしくはガスの雰囲気との界面に達したとき、該衝撃波が真空もしくはガス雰囲気中に解放されることにより噴出した固体標的材料の物質であることを特徴とするX線発生装置。
In an X-ray generator that collects and irradiates a target laser with pulsed laser light to turn the target material into plasma and outputs X-rays radiated from the plasma,
When the shock wave generated in the solid target material by the shock wave generating means propagates through the solid target material and reaches the interface between the solid target material and the vacuum or gas atmosphere, the shock wave is vacuum or An X-ray generator characterized by being a substance of a solid target material ejected by being released into a gas atmosphere.
衝撃波発生手段により発生させられる衝撃波が、別のパルスレーザー光を固体標的材料に照射して発生されるレーザープラズマ衝撃波であることを特徴とする請求項1記載のX線発生装置。2. The X-ray generator according to claim 1, wherein the shock wave generated by the shock wave generating means is a laser plasma shock wave generated by irradiating a solid target material with another pulse laser beam. 標的物質の噴出位置において、噴出方向をX線用光学素子の設置位置方向と異なった角度にすることにより、該X線用光学素子が噴出した標的物質の影響を受けない配置にしたことを特徴とする請求項1または請求項2のいずれか記載のX線発生装置。In the target material ejection position, the ejection direction is set to an angle different from that of the X-ray optical element installation position so that the X-ray optical element is not affected by the ejected target substance. The X-ray generator according to any one of claims 1 and 2.
JP2002288426A 2002-10-01 2002-10-01 X-ray generator Expired - Lifetime JP3677548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288426A JP3677548B2 (en) 2002-10-01 2002-10-01 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288426A JP3677548B2 (en) 2002-10-01 2002-10-01 X-ray generator

Publications (2)

Publication Number Publication Date
JP2004127641A JP2004127641A (en) 2004-04-22
JP3677548B2 true JP3677548B2 (en) 2005-08-03

Family

ID=32280923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288426A Expired - Lifetime JP3677548B2 (en) 2002-10-01 2002-10-01 X-ray generator

Country Status (1)

Country Link
JP (1) JP3677548B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085735B (en) * 2018-08-31 2024-04-09 中国工程物理研究院激光聚变研究中心 Explosive foil flying piece X-ray dynamic imaging system
CN114577822A (en) * 2022-01-20 2022-06-03 中国工程物理研究院激光聚变研究中心 Radiation impact target and method for generating radiation impact wave with speed of more than 100km/s in xenon

Also Published As

Publication number Publication date
JP2004127641A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI654906B (en) Method for reducing back reflection in an extreme ultraviolet (EUV) light system, method for generating extreme ultraviolet light, and extreme ultraviolet light source
US20080237498A1 (en) High-efficiency, low-debris short-wavelength light sources
JP4329177B2 (en) X-ray generator, projection exposure apparatus and exposure method provided with the same
US20050211910A1 (en) Morphology and Spectroscopy of Nanoscale Regions using X-Rays Generated by Laser Produced Plasma
EP0350874A2 (en) Surface analysis method and apparatus
NL2022769A (en) Spatial modulation of a light beam
JP2016517027A (en) Optical assembly for increasing etendue
US20060233309A1 (en) Laser x-ray source apparatus and target used therefore
US20060098781A1 (en) Method and apparatus for nanoscale surface analysis using soft X-rays
JP2000098098A (en) X-ray generator
JP2002289397A (en) Laser plasma generating method and system thereof
RU2249926C2 (en) Method for creating extreme ultraviolet irradiation and source of such irradiation used in lithography
JP2000299197A (en) X-ray generator
WO2004057625A1 (en) Method for generating high-speed particle and system for generating high-speed particle
JP3677548B2 (en) X-ray generator
JP3790814B2 (en) Method and apparatus for removing scattered matter in X-ray irradiation apparatus
US8101930B2 (en) Method of increasing the operation lifetime of a collector optics arranged in an irradiation device
JP2003518252A (en) X-ray microscope with soft X-ray X-ray source
JP3646588B2 (en) Laser plasma X-ray generator
JP2000098100A (en) Soft x-ray parallel flux forming device
Higashiguchi et al. Enhancement of conversion efficiency of extreme ultraviolet radiation from a liquid aqueous solution microjet target by use of dual laser pulses
JP5578483B2 (en) LPP EUV light source and generation method thereof
Nakamura et al. Ablation dynamics of tin micro-droplet irradiated by double pulse laser used for extreme ultraviolet lithography source
Wang et al. Water-window x-ray emission from laser-produced Au plasma under optimal target thickness and focus conditions
JP2002323598A (en) X-ray condensing method and device by laser induced plasma

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Ref document number: 3677548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term