JP3677516B2 - Fine bubble water generator - Google Patents

Fine bubble water generator Download PDF

Info

Publication number
JP3677516B2
JP3677516B2 JP2001060437A JP2001060437A JP3677516B2 JP 3677516 B2 JP3677516 B2 JP 3677516B2 JP 2001060437 A JP2001060437 A JP 2001060437A JP 2001060437 A JP2001060437 A JP 2001060437A JP 3677516 B2 JP3677516 B2 JP 3677516B2
Authority
JP
Japan
Prior art keywords
protrusions
cylindrical body
flow
hollow cylinder
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060437A
Other languages
Japanese (ja)
Other versions
JP2002263678A (en
Inventor
健 宮川
Original Assignee
健 宮川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 宮川 filed Critical 健 宮川
Priority to JP2001060437A priority Critical patent/JP3677516B2/en
Priority to KR1020010046331A priority patent/KR20020071432A/en
Publication of JP2002263678A publication Critical patent/JP2002263678A/en
Application granted granted Critical
Publication of JP3677516B2 publication Critical patent/JP3677516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
この発明は、工場排水等の汚れを浄化するため微細化気泡水を生成する気泡水生成装置に関する。
【0002】
【従来の技術】
河川や工場排水路が汚染された場合、その汚れを浄化するためにはその汚濁水に微生物を繁殖させて微生物に汚濁成分を消化させることにより処理する方法が最も一般的である。このような処理方法では、微生物を繁殖させるため汚濁水に曝気装置により微細な気泡を混合して微生物群の生存し易い環境を整えることが効果的である。この曝気装置としては、種々の形式のものが知られており、特にパイプ内に空気と水の流れを導き、内部で微細気泡水の流れを生じさせる形式のものはエアレータと呼ばれている。その代表的な例を図6、図7に示す。
【0003】
従来のエアレータAは、図示していないが浄化しようとする汚泥池、汚泥槽内の下底の適当な位置に設置されるものであり、その構成は図示のように、中空円筒状のパイプ1(1B、1a〜1f)に対してその下端2から上方へエアーを送り出す吹出管3を設け、排出されるエアーの流れで水に上昇流れを生じさせると共にエアーの気泡を混入し、パイプ部分1Bの内部に設けたガイド4によりその上昇流に旋回動を付与し、パイプ部分1Bの上に多段にパイプ部分1a〜1fを積層して形成されている。
【0004】
ガイド4はパイプ部分1B内で、2つの半月板を互いに逆向きの傾斜を以て取付け、上昇流に旋回動を付与する役目をする。多段に設けられたパイプ部分1a〜1fは、1つ置きに同一形状であり、それぞれのパイプ内周に60°ピッチで半径方向中心側へ突出する複数(図示の例では6つ)の突起5がパイプ部材と一体に形成されたものから成り、そのパイプ部分を1段毎に30°異なる突起配置となるように多段に積層されて成る。突起5・・・は丸棒の先端にボール5aが形成されており、ボール5a・・・の中心を通る曲線が所定半径円となる位置まで延びており、中心部分は中空スペースとなっている。
【0005】
パイプ部分1a〜1fのそれぞれは、図7に示すように、短いパイプの両端に四角形の鍔6が形成され、それぞれの鍔6の隅に設けた穴6aに締付ボルト7が挿通される。そして、パイプ部分1Bの上端に形成された鍔6と同じ形状の鍔(図示せず)に締付ボルト7を挿通しその下端をナットで締結してパイプ部分1a〜1fをパイプ部分1Bに取付ける。
【0006】
上記の構成のエアレータでは、吹排出管3から吐出されるエアーで上昇流が形成され、エアーと水が混合された上昇流がガイド4の作用で旋回流となり、上半部のパイプ部分1a〜1fを通過する際に多数の突起5・・・と衝突することにより上昇流に含まれるエアーの気泡が細かく砕かれて微細気泡となり、上端のパイプ部分1fからさらに上昇して汚泥池や汚泥槽内で旋回し、汚泥水内に生息する微生物に酸素を供給してこれら微生物を活性化する。活性化された微生物は汚泥中の各種物質を分解して汚染物質が除去されることとなる。
【0007】
【発明が解決しようとする課題】
上述したエアレータ方式の曝気装置は、他の形式のもの、例えば混合気泡をノズルから噴出するノズル形式、あるいは混合羽根をモータ等により回転させて攪拌する攪拌形式のものに比して種々の点で優れているとされる。一般に、上記エアレータ方式のものは、汚泥池や汚泥槽全域に対し均一に攪拌ができ、水への酸素溶解効率が大きく、微生物群の生息域を破壊しないなどの点で他の形式のものより優れている。又、目詰りが起き難く、間欠運転ができ、装置が頑強で耐用性があり、メンテナンスが容易で、運転コストが安いなどの利点もある。
【0008】
しかしながら、上記エアレータは中心側へ向う突起の中心部分は中空スペースとなっており、このため旋回流の大部分が中空スペース内を旋回しながら上昇する可能性があり、旋回流の外側部分は突起と衝突して水と気泡の混合流れが細かく砕かれるとしても、この外側部分の旋回流に占める割合が小さいため、気泡流れを微細気泡流れとなるように砕く作用には一定の限界がある。従って、さらに微細気泡流れを効率よく発生させることができるエアレータ方式が望まれている。
【0009】
この発明は、上記の種々の問題に留意して、旋回流を有効に突起と衝突させ気泡の微細化効率を改善し、微生物の生存環境をより溶存酸素の高い状態にし得る気泡水生成装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
この発明は、上記の課題を解決する手段として、所定径及び長さの中空円筒を立設し、その下端入口にエアーの吹出管を挿置し、中空円筒内には水流を螺旋状に案内するガイドベーンと、このガイドベーンで形成される旋回上昇流に作用してこの流れに含まれる気泡を微細化する気泡微細化手段とをこの順に設け、気泡微細化手段が中空円筒より小径の円柱体と、中空円筒と円柱体との間に設けた複数の突起とを備え、吹出管からのエアーによる旋回上昇流を突起に衝突させることにより気泡を微細化するようにして成る微細化気泡水生成装置としたのである。
【0011】
上記の構成とした微細化気泡水生成装置は、汚泥池又は汚泥槽などの水底に設置され、工場排水や、河川の汚れによる汚水を浄化するために使用される。この気泡水生成装置には、水底に別途配設される配管に外部からエアーポンプ等でエアーが送り込まれ、そのエアーが吹出管を介して吹出される。このため、エアーによって上昇流が生じ、この上昇流は中空円筒の下端開口から汚水を吸入し、これにエアーが吹出されると気泡となって混合される。
【0012】
上記気泡を含む汚水の上昇流は中空円筒内で上方へ押し上げられ、ガイドベーンを介して旋回上昇流となり気泡微細化手段の方へと進む。気泡微細化手段まで旋回上昇流が進むと、その流れは円柱体と中空円筒との間の環状スペース内で旋回しながら上昇するが、中心側に円柱体が存在するため、旋回上昇流内の圧力が中心側で大きく低下し、外側では圧力が高いというような大きな圧力勾配とならず、環状スペース内での圧力の分布が内、外で大きく変化しない。
【0013】
このような圧力分布状態で旋回上昇流が進み、多数の突起に激しく衝突すると、突起により気泡が砕かれて微細化されるため、微細化気泡が流れに均一に混合されて上方へと旋回移動し、中空円筒の上部開口から放出される。この旋回上昇流は、無数の微細化気泡を含んで槽内等に放出されるため、周辺の汚水に旋回しながら合流し、高い酸素溶存性の微細気泡水が混合されることにより、汚水中に好気性微生物が生存し易い環境を作る。このため、汚水池あるいは汚水槽の全体がかかる微生物の作用で浄化されることとなる。
【0014】
【実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。図1は実施形態の気泡水生成装置(エアレータ)の概略縦断面図、図2はその要部の主縦断面である。図示のように、気泡水生成装置10は、所定径、長さで上下端が開放された中空円筒11の下端12からエアーの吹出管13をその一部が円筒内に入るよう挿置して備えている。この吹出管13より少し上方位置にガイドベーン14が設けられ、さらにその上方には気泡微細化手段16が設けられている。ガイドベーン14は、上端が所定径に拡がり逆円錐体14cの外周に複数(図示の例では4つ)の垂直ガイド板14aと、このガイド板に接続され、かつ曲線状にねじられた形状の曲面ガイド板14bから成る。
【0015】
図示の逆円錐体14cはその垂直方向の中間で2つに分割したものを嵌合して一体に組立、分離自在な構成とされ、その下半部分に垂直ガイド板14aが、上半部分に曲面ガイド板14bがそれぞれの半部分と一体に成形されている。図示の垂直ガイド板14aは軸方向からの断面視では十字状に4つのガイド板14aがクロスするように半径方向に形成されている。この垂直ガイド板14aに接続するように上半部分の曲面ガイド板14bの下端の1部が垂直であり、その立上り部を過ぎるとガイド板14bは螺旋状に曲面を成して上方へ延び上端で終る。
【0016】
気泡微細化手段16は、多段(図示の例では6段)に嵌合、組立自在な短い円柱体部分16a〜16fを嵌合して1つの円柱体16’を形成し、それぞれの円柱体部分16a〜16fにはその外周に所定の角度ピッチで複数の突起15が円柱体16’の半径方向に外向きに突出するよう設けられている(図示の例では突起15は1つの円柱体部分に7つ)。
【0017】
突起15は、図示の例では断面が逆三角形状で、エッジ部分で鋭く気泡を微細化できるものとし、長さは中空円筒11の内面との隙間に相当する長さである。突起15の形状は、図示の例以外にも四角、五角・・・多角形、円形、楕円形など種々の断面形状のものを使用できる。円柱体部分16a〜16fはそれぞれ互いの嵌合のための突起と嵌合孔の配置のみ異なる(6種類)が、その他の形状は突起15を含んで同一に形成されている。
【0018】
前述したガイドベーン14の中心部の逆円錐体14cの上端は、上記円柱体16’の下端に同一径で接続されるように設定され、円柱体16’とガイドベーン14のそれぞれの中心には貫通孔が形成されており、その貫通孔にねじ棒17を挿通し、上端側をナットで締結することにより円柱体16’とガイドベーン14の両者は一体に組立てられる。最上段の円柱体部分16fとナットの間には取付フレーム17aが挟まれ、この取付フレーム17aは中空円筒11の上端に予め両端が溶接により固定されているため、このフレーム17aにもねじ棒17を挿通して締結することにより一体に組立てられた円柱体16’とガイドベーン14とが中空円筒11に取付けられる。
【0019】
取付フレーム17aは、中空円筒11の上端開口から上方へ流出する旋回上昇流れに大きな邪魔とならない程度の細いバーであればよく、又形状、取付方法もこの取付フレーム17a以外に、円柱体16’を中空円筒11に取付けることができる手段であればどんなものでもよい。
【0020】
上記複数段の円柱体部分16a〜16fを中空円筒11内に組立てて収納する場合、各円柱体部分の中心に設けたボス部18とその裏側に設けた凹部、及び円柱体部分の一端面に設けた小突起19(図3に示すように図示の例では60°ピッチで6つ)と、これに対応して他端面に設けた小孔(小突起19と同数)とにより嵌合、組立てできるように形成されている。複数段の円柱体部分16a〜16fを組立てる際には、互いに隣接する例えば円柱体部分16aのボス部18を16bの凹部に対応させ、かつ16aの小突起19を16bの小孔にその円周方向の配置ピッチを合せて押込み、圧入嵌合し、同様な嵌合を円柱体部分16bと16c、16cと16d、・・・というようにそれぞれ実施すると円柱体16’が形成される。
【0021】
こうして形成された円柱体16’を図1又は図2のように中空円筒11内に収納し、組立てると装置の主要部が形成される。円柱体16’を収納した中空円筒11の下端外側には予めリブ21、21が取付けられており、このリブ21、21を接続板22、22にボルト止めする。接続板22、22は吹出管13へエアーを送る配管部23に固定されており、これによりリブ21、21、接続板22、22を介して配管23に装置の主要部が取付けられている。
【0022】
前記複数の円柱体部分16a〜16fに形成されている複数の突起15、15・・・と互いの嵌合のための小突起19と小孔の配置については、複数の円柱体部分16a〜16fが全て同じである。例えば、小突起19、小孔と突起15を基準となる半径位置上の同一位置に置き、他の小突起19、小孔を60°ピッチで配置し、突起15については他の突起15を51.43°のピッチで同じ回転方向に配置されている。そして、このような形状で複数の円柱体部分16a〜16fの全てを同じ配置構成で形成したから、円柱体部分16a〜16fのそれぞれを互いに嵌合させ、組立てる際に、全ての円柱体部分の突起15を円柱体の軸方向に見たときに互いに同一位置に完全に重ならないように互いに必ず少しずつ角度位置がずれた位置に嵌合して組立てられる。このような角度位置関係とするためには、上記以外にも例えば突起15の数を11、13又は17のような素数とし、円柱体部分の分割数をその素数より1つ少ない数とすれば、突起15が重ならない配置構造とすることができる。
【0023】
上記のような複数の突起15を有する円柱体部分16a〜16fを互いに嵌合して組立てる場合、小突起19と小孔への嵌合位相位置を種々に選択すると、7のかい乗通りの組合せがあり得る。
【0024】
このような組合せのうち、図1に示すように、隣接する円柱体部分16aと16b、16bと16c・・・のそれぞれの突起15が互いに接近して軸方向にわずかにずれた(8.57°)位相位置となり、かつそれらの突起15、15・・・を連ねた曲線が円柱体16’の軸方向で下から上に見たときに左ねじの進む方向とするのが最も気泡の微細化効率が良い組合せとされる。但し、この場合、ガイドベーン14の曲面ガイド板14bが右ねじの進む方向の螺旋状であることが前提となる。つまりガイドベーン14のねじれの向きと突起15、15・・・のねじれの向きが互いに逆向きであればよい。従って、ガイドベーン14が左ねじの進む方向の螺旋状であれば突起15、15・・・は右ねじの進む方向の螺旋状となる。
【0025】
又、図示の円柱体16’は、突起15、小突起19、ガイドベーン14を含めて硬質の合成樹脂材で形成され、中空円筒11はステンレス製のパイプが使用されている。但し、合成樹脂材に代えてステンレス等の材料で円柱体等を形成してもよい。
【0026】
上記構成の気泡水生成装置を使用する場合、工場内等の汚泥池、あるいは汚泥槽内の水底に没入させて使用する。汚泥池あるいは汚泥槽の外に設置されたエアーポンプ(図示せず)からエアーを送り出し、配管部23を介して吹出管13からエアーを吹き出すと、そのエアーの圧力で中空円筒11内に水の流れが生じ、その水流が中空円筒11の下端12の開口から周辺の汚水を吸収(エゼクタ効果)して水流は上昇流れとなって上方へ流れる。
【0027】
上記上昇流れは、中空円筒11の開口から少し上方で吹出管13からのエアーの吹出しによりエアーが混合される際にある程度エアーが小さく砕かれてできる気泡を含んだ流れとして上昇する。この上昇流れは、ガイドベーン14の垂直ガイド板14aで複数列の流れに分割されて曲面ガイド板14bの位置へと進み、この曲面ガイド板14bとその中心部の逆円錐体14cの外周面とにより半径方向へ少しずつ拡がりながら螺旋状にねじられて上昇する。
【0028】
このとき、吹出管13からのエアーの吹出圧力が大きく、上昇流の流速が大きい場合は上昇流の直進性の影響が強いため、螺旋状の上昇流となってもそのねじれ率が小さく、例えば図1の符号L1 で示す螺線流れとなって上昇する。しかし、吹出圧力が小さくなると直進性の影響より曲面ガイド板14bによるねじれが大きくL2 の示すような螺線流れとなって上昇する。いずれの螺旋流れであっても、ガイドベーン14を過ぎると気泡微細化手段16の円柱体16’と中空円筒11との間の環状スペースS内を螺旋状に大きく回転(ねじれ)しながら上昇して中空円筒11の上端の開口から外へと流出する。
【0029】
上記螺旋流れは環状スペースS内を回転しながら上昇する際に円柱体16’の外周の多数の突起15・・・に衝突して、この水流に含まれる気泡がさらに微細に砕かれる。このとき、図示の例の突起15は断面が三角形であるため、そのエッジ部分が気泡に激しく衝突すると小さな気泡がさらに細かく微細になり、流れに混合されて上昇する。
【0030】
又、図示の例では、上記螺旋流れのねじれの方向は、中心軸を下から上方に向って見た時、右ねじの進む方向であるが、多段状の円柱体部分16a〜16fの互いに隣り合う部分の突起15、・・・のうち互いに接近して配置された突起15、15、・・・の先端を通るように想像線で結ぶと、その螺旋曲線が左ねじの進む方向となるようにそれらの突起が配置されているため、螺旋流れが多数の突起15、15・・・と衝突する確率が高く、微細気泡を効率よく流れに混合することができる。
【0031】
上記のように形成される上昇螺旋流れは、仮りに円柱体16’を設けずに生じさせたとすると回転上昇速度が大きくなるにつれて中心側の圧力が低く、外側の圧力が高くなるが、図示の例では中心側に円柱体16’が存在するため、上昇螺旋流れは軸と直角な断面で見ると環状の流れであり、円柱体16’の外周と中空円筒11の内径との間の環状スペースS内では圧力差が大きくないため、微細気泡は半径位置の内、外いずれでもより均一に流れに混合され、このため酸素溶存効率も高くなる。
【0032】
図5に多段状の円柱体部分16a〜16fを組立てる際に、突起15、15・・・の配列が種々の形態となり得る可能性を示している。(a)図は上下に隣り合う円柱体部分の突起15、15・・・が右ねじの進む方向に螺旋状をなすよう配列した組合せを示している。(b)図は上下に隣り合う円柱体部分の突起15、15・・・が右ねじの進む方向に中間位置まで進むとそこから左ねじの進む方向に変化した配列の組合せを示している。この他にも図示の例では突起15、15・・・は1つの円柱体部分につき7つ設けているから、その組合わせは7のかい乗通り、即ち5040通り存在する。いずれの組合わせであっても、軸方向に見た突起15の配列は隣接するもの同士が重ならないように組合わせることができる。
【0033】
上記実施形態では、複数の突起15、15・・・は円柱体16’の外周にその半径方向に突出するように設けたものを示したが、これらの突起15、15・・・は必ずしも円柱体16’に固定しなくてもよく、例えば中空円筒11の内周に上記実施形態と同様に固定するようにしてもよい。但し、その場合は、円柱体16’は複数の円柱体部分を嵌合して形成するのではなく、全体を一体に形成し、反対に中空円筒11を複数のパイプ部分に分割し、これらを小突起と小孔により嵌合して中空円筒11を形成するようにしてもよい。又、突起15、15・・・は円柱体16’の半径方向に固定しているが、必ずしも半径方向でなくても、例えば半径方向と少し斜めに形成してもよい。
【0034】
【発明の効果】
以上、詳細に説明したように、この発明の微細化気泡水生成装置は、中空円筒の下端に設けたエアーの吹出管と、中空円筒内に設けたガイドベーンと、半径方向に設けた複数の突起及び中空円筒より小径の円柱体を有する気泡微細化手段とを備えたから、ガイドベーンで生じる旋回上昇流が円柱体と中空円筒の間のスペースを進む間に多数の突起と衝突して気泡が微細化され、この微細化気泡が均一に旋回上昇流に混合されることにより高効率で高い酸素溶存性の旋回上昇流を生じさせることができ、微生物の生存環境を好適な条件下に改善できるという極めて顕著な効果を奏する。
【図面の簡単な説明】
【図1】実施形態の気泡水生成装置の全体概略構成図
【図2】同上の要部の主縦断面図
【図3】図1の矢視 IIIa− IIIa、 IIIb− IIIbから見た断面図
【図4】円柱体部分とガイドベーンの分解斜視図
【図5】円柱体部分の突起の組立変形例の説明図
【図6】従来例のエアレータの(a)主縦断面図、及び(b)(a)図の矢視B−Bからの断面図
【図7】従来例のエアレータのパイプ部分の外観斜視図
【符号の説明】
10 気泡水生成装置
11 中空円筒
12 下端
13 吹出管
14 ガイドベーン
15 突起
16 気泡微細化手段
16’ 円柱体
17 ねじ棒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bubbling water generating device that generates fine bubbling water to purify dirt such as factory waste water.
[0002]
[Prior art]
When a river or factory drainage channel is contaminated, the most common method for purifying the dirt is to propagate microorganisms in the polluted water and digest the pollutants with the microorganisms. In such a treatment method, in order to propagate microorganisms, it is effective to prepare an environment in which microbes can easily survive by mixing fine bubbles with contaminated water using an aeration apparatus. As this aeration apparatus, various types are known, and in particular, a type that guides the flow of air and water in a pipe and generates a flow of fine bubble water inside is called an aerator. Typical examples are shown in FIGS.
[0003]
Although the conventional aerator A is not shown in the drawing, it is installed at an appropriate position on the bottom of the sludge pond and sludge tank to be purified, and the structure thereof is a hollow cylindrical pipe 1 as shown in the figure. (1B, 1a to 1f) is provided with a blower pipe 3 for sending air upward from its lower end 2 to generate an upward flow in the water by the flow of discharged air, and air bubbles are mixed into the pipe portion 1B. The guide 4 provided in the interior is provided with a swirling motion to the upward flow, and the pipe portions 1a to 1f are stacked in multiple stages on the pipe portion 1B.
[0004]
The guide 4 attaches two meniscuses with inclinations opposite to each other in the pipe portion 1B, and serves to impart a swirling motion to the upward flow. The pipe portions 1a to 1f provided in multiple stages have the same shape every other one, and a plurality of (six in the illustrated example) projections 5 projecting toward the center in the radial direction at a 60 ° pitch on the inner circumference of each pipe. Is formed integrally with the pipe member, and the pipe portion is laminated in multiple stages so that the protrusions are arranged 30 ° different from each other. The protrusions 5... Have a ball 5 a formed at the tip of the round bar, and extend to a position where a curve passing through the center of the ball 5 a. .
[0005]
As shown in FIG. 7, each of the pipe portions 1 a to 1 f is formed with square flanges 6 at both ends of a short pipe, and the fastening bolts 7 are inserted into holes 6 a provided at the corners of the respective flanges 6. Then, the fastening bolt 7 is inserted into a flange (not shown) having the same shape as the flange 6 formed at the upper end of the pipe portion 1B, and the lower end thereof is fastened with a nut to attach the pipe portions 1a to 1f to the pipe portion 1B. .
[0006]
In the aerator having the above-described configuration, an upward flow is formed by the air discharged from the blow-out discharge pipe 3, and the upward flow in which air and water are mixed becomes a swirling flow by the action of the guide 4, and the upper half pipe portion 1a to The air bubbles contained in the upward flow are crushed into fine bubbles by colliding with a large number of projections 5 when passing through If, and further rising from the pipe portion 1f at the upper end to become a sludge pond or sludge tank It turns inside and supplies oxygen to microorganisms that live in the sludge water to activate these microorganisms. The activated microorganisms decompose various substances in the sludge and remove the pollutants.
[0007]
[Problems to be solved by the invention]
The aerator-type aeration apparatus described above has various points compared to other types, for example, a nozzle type that ejects mixed bubbles from a nozzle, or a stirring type that agitates by rotating a mixing blade by a motor or the like. It is said to be excellent. In general, the above-mentioned aerator type can be uniformly stirred over the entire sludge pond and sludge tank, has high oxygen dissolution efficiency in water, and does not destroy the habitat of microbial communities. Are better. In addition, clogging hardly occurs, intermittent operation is possible, the device is robust and durable, maintenance is easy, and operation costs are low.
[0008]
However, in the aerator described above, the central part of the protrusion toward the center is a hollow space, so that most of the swirling flow may rise while swirling in the hollow space, and the outer part of the swirling flow is a protrusion. Even if the mixed flow of water and bubbles is finely crushed due to collision, the ratio of the outer portion to the swirling flow is small, so there is a certain limit to the action of breaking the bubble flow into a fine bubble flow. Therefore, an aerator system capable of efficiently generating a fine bubble flow is desired.
[0009]
In consideration of the various problems described above, the present invention provides a bubbling water generator that can effectively make a swirling flow collide with protrusions to improve bubble refining efficiency and make the living environment of microorganisms higher in dissolved oxygen. The issue is to provide.
[0010]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention has a hollow cylinder with a predetermined diameter and length, and an air blowing pipe is inserted into the lower end inlet to guide the water flow in a spiral shape. A guide vane and a bubble refining means that acts on the swirling upward flow formed by the guide vane to refine the bubbles contained in the flow in this order, and the bubble refining means is a column whose diameter is smaller than that of the hollow cylinder. Body, and a plurality of protrusions provided between the hollow cylinder and the cylindrical body, and micronized bubble water configured to make bubbles finer by colliding the swirl upward flow caused by air from the blow-out pipe with the protrusions It was a generator.
[0011]
The refined bubble water generating apparatus configured as described above is installed on the bottom of a sludge pond or sludge tank, and is used to purify sewage caused by factory wastewater or river dirt. In this bubbly water generating apparatus, air is sent from the outside to a pipe separately provided on the bottom of the water by an air pump or the like, and the air is blown out through a blowing pipe. For this reason, an upward flow is generated by the air, and the upward flow sucks sewage from the lower end opening of the hollow cylinder, and when air is blown into this, it is mixed as bubbles.
[0012]
The upward flow of the sewage containing bubbles is pushed upward in the hollow cylinder, becomes a swirling upward flow through the guide vanes, and proceeds toward the bubble refining means. When the swirl upward flow advances to the bubble miniaturization means, the flow rises while swirling in the annular space between the columnar body and the hollow cylinder, but since the columnar body exists on the center side, There is no large pressure gradient such that the pressure is greatly reduced on the center side and the pressure is high on the outside, and the pressure distribution in the annular space does not change greatly on the inside and outside.
[0013]
When the swirl upward flow proceeds in such a pressure distribution state and collides violently with many projections, the bubbles are crushed and refined by the projections, so the refined bubbles are uniformly mixed with the flow and swirled upwards And discharged from the upper opening of the hollow cylinder. Since this swirling upward flow contains innumerable microbubbles and is released into the tank, etc., the swirl flows into the surrounding sewage while swirling and mixed with highly oxygen-dissolved microbubble water. Create an environment where aerobic microorganisms can easily survive. For this reason, the whole sewage pond or sewage tank is purified by the action of such microorganisms.
[0014]
Embodiment
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a bubbling water generator (aerator) according to an embodiment, and FIG. 2 is a main longitudinal section of a main part thereof. As shown in the figure, the bubbling water generator 10 has an air blowing pipe 13 inserted from a lower end 12 of a hollow cylinder 11 having a predetermined diameter and length and opened at the upper and lower ends so that a part thereof enters the cylinder. I have. A guide vane 14 is provided at a position slightly above the outlet pipe 13, and a bubble miniaturizing means 16 is further provided thereabove. The guide vane 14 has a shape in which the upper end is expanded to a predetermined diameter and a plurality of (four in the illustrated example) vertical guide plates 14a are connected to the outer periphery of the inverted conical body 14c, and are connected to the guide plates and twisted in a curved shape. It consists of a curved guide plate 14b.
[0015]
The inverted conical body 14c shown in the figure is configured so that it can be assembled and separated as a whole by fitting two parts divided in the middle in the vertical direction, and the vertical guide plate 14a is in the lower half part and the upper half part is in the lower half part. A curved guide plate 14b is formed integrally with each half portion. The illustrated vertical guide plate 14a is formed in the radial direction so that the four guide plates 14a cross in a cross shape in a cross-sectional view from the axial direction. A part of the lower end of the curved guide plate 14b in the upper half is vertical so as to connect to the vertical guide plate 14a, and after passing the rising portion, the guide plate 14b forms a curved surface spirally and extends upward. End with.
[0016]
The bubble refining means 16 is fitted in multiple stages (six stages in the example shown in the drawing), and is fitted with short cylindrical parts 16a to 16f that can be assembled to form one cylindrical body 16 '. 16a to 16f are provided with a plurality of protrusions 15 on the outer periphery at predetermined angular pitches so as to protrude outward in the radial direction of the cylindrical body 16 '(in the illustrated example, the protrusions 15 are formed on one cylindrical body portion. 7).
[0017]
In the example shown in the figure, the protrusion 15 has an inverted triangular cross-section, and can sharpen bubbles at the edge portion. The length of the protrusion 15 corresponds to the gap with the inner surface of the hollow cylinder 11. In addition to the example shown in the figure, the protrusion 15 may have various cross-sectional shapes such as a square, a pentagon, a polygon, a circle, and an ellipse. The cylindrical body portions 16 a to 16 f are different from each other only in the arrangement of the projections and fitting holes for fitting to each other (six types), but other shapes are the same including the projection 15.
[0018]
The upper end of the inverted conical body 14c at the center of the guide vane 14 described above is set to be connected to the lower end of the cylindrical body 16 ′ with the same diameter, and the center of the cylindrical body 16 ′ and the guide vane 14 is at the center. A through-hole is formed, and the screw rod 17 is inserted into the through-hole, and the upper end side is fastened with a nut, whereby both the cylindrical body 16 ′ and the guide vane 14 are assembled together. A mounting frame 17a is sandwiched between the uppermost columnar portion 16f and the nut, and both ends of the mounting frame 17a are fixed to the upper end of the hollow cylinder 11 in advance by welding. The cylindrical body 16 ′ and the guide vane 14 that are assembled together by being inserted and fastened are attached to the hollow cylinder 11.
[0019]
The mounting frame 17a may be a thin bar that does not hinder the swirling upward flow flowing upward from the upper end opening of the hollow cylinder 11, and the shape and mounting method are not limited to this mounting frame 17a, and the column body 16 ′. Any means can be used as long as it can be attached to the hollow cylinder 11.
[0020]
When assembling and storing the multi-stage cylindrical body parts 16a to 16f in the hollow cylinder 11, the boss part 18 provided at the center of each cylindrical body part, the recessed part provided on the back side thereof, and one end surface of the cylindrical body part are provided. Fitting and assembling with the provided small protrusions 19 (six in the example shown in FIG. 3 at a 60 ° pitch) and small holes (the same number as the small protrusions 19) provided on the other end surface corresponding thereto It is formed to be able to. When assembling the multi-stage cylindrical body portions 16a to 16f, for example, the boss portions 18 of the cylindrical body portions 16a adjacent to each other are made to correspond to the concave portions of the 16b, and the small protrusions 19 of the 16a are arranged around the small holes of the 16b. When the arrangement pitches in the direction are matched, press fitting is performed, and the same fitting is performed as cylindrical portions 16b and 16c, 16c and 16d,..., A cylindrical body 16 ′ is formed.
[0021]
When the cylindrical body 16 ′ thus formed is housed in the hollow cylinder 11 as shown in FIG. 1 or 2, and assembled, the main part of the apparatus is formed. Ribs 21 and 21 are previously attached to the outside of the lower end of the hollow cylinder 11 containing the columnar body 16 ′, and the ribs 21 and 21 are bolted to the connection plates 22 and 22. The connection plates 22 and 22 are fixed to a pipe portion 23 that sends air to the blow-out pipe 13, whereby the main part of the apparatus is attached to the pipe 23 via the ribs 21 and 21 and the connection plates 22 and 22.
[0022]
The plurality of projections 15, 15... Formed on the plurality of columnar portions 16a to 16f, and the small projections 19 and small holes for fitting with each other, the plurality of columnar portions 16a to 16f are arranged. Are all the same. For example, the small protrusion 19, the small hole and the protrusion 15 are placed at the same position on the reference radial position, and the other small protrusion 19 and the small hole are arranged at a 60 ° pitch. They are arranged in the same rotational direction at a pitch of .43 °. And since all the some cylindrical body parts 16a-16f were formed by the same arrangement configuration in such a shape, each of the cylindrical body parts 16a-16f is mutually fitted, and when assembling, When the projections 15 are viewed in the axial direction of the cylindrical body, the projections 15 are always fitted and assembled at positions where their angular positions are slightly shifted so as not to completely overlap each other. In order to achieve such an angular position relationship, in addition to the above, for example, if the number of protrusions 15 is a prime number such as 11, 13, or 17, and the number of divisions of the cylindrical body part is one less than that prime number, The arrangement structure can be such that the projections 15 do not overlap.
[0023]
When the cylindrical body portions 16a to 16f having the plurality of projections 15 are assembled to each other and assembled to each other, if the fitting phase positions to the small projections 19 and the small holes are variously selected, combinations of 7 squares are possible. There can be.
[0024]
In such a combination, as shown in FIG. 1, the projections 15 of the adjacent cylindrical body portions 16a and 16b, 16b and 16c... Approach each other and slightly shift in the axial direction (8.57). °) When the phase position and the curve connecting these protrusions 15, 15... Are viewed from the bottom to the top in the axial direction of the cylindrical body 16 ′, the direction in which the left screw advances is the finest of the bubbles. It is considered as a combination with good efficiency. However, in this case, it is assumed that the curved guide plate 14b of the guide vane 14 has a spiral shape in the direction in which the right screw advances. In other words, the twist direction of the guide vane 14 and the twist direction of the protrusions 15, 15. Therefore, if the guide vane 14 is spiral in the direction in which the left screw advances, the protrusions 15, 15...
[0025]
The illustrated cylindrical body 16 ′ is formed of a hard synthetic resin material including the protrusions 15, the small protrusions 19, and the guide vanes 14, and the hollow cylinder 11 is made of a stainless steel pipe. However, instead of the synthetic resin material, a cylindrical body or the like may be formed of a material such as stainless steel.
[0026]
When using the bubbly water generating apparatus having the above configuration, it is used by immersing it in a sludge pond in a factory or the like or a water bottom in a sludge tank. When air is sent out from an air pump (not shown) installed outside the sludge pond or sludge tank, and air is blown out from the blowing pipe 13 through the piping 23, water is put into the hollow cylinder 11 by the pressure of the air. A flow is generated, and the water flow absorbs the surrounding sewage from the opening of the lower end 12 of the hollow cylinder 11 (ejector effect), and the water flow flows upward as an upward flow.
[0027]
The ascending flow rises as a flow containing bubbles that are formed to be broken to some extent when air is mixed by blowing air from the blowing pipe 13 slightly above the opening of the hollow cylinder 11. This upward flow is divided into a plurality of rows by the vertical guide plate 14a of the guide vane 14 and proceeds to the position of the curved guide plate 14b, and the curved guide plate 14b and the outer peripheral surface of the inverted conical body 14c at the center thereof. As a result, it gradually rises in the radial direction while twisting spirally.
[0028]
At this time, when the pressure of the air blown from the blowing pipe 13 is large and the flow rate of the upward flow is large, the effect of the straight flow of the upward flow is strong, so even if it becomes a spiral upward flow, its twist rate is small. It rises as a spiral flow indicated by symbol L 1 in FIG. However, increases in a spiral flow as shown twisted by the curved guide plate 14b than the effect of the straightness is blowing pressure becomes smaller with increased L 2. In any spiral flow, after passing through the guide vane 14, it rises while rotating (twisting) in the annular space S between the cylindrical body 16 ′ of the bubble miniaturization means 16 and the hollow cylinder 11 in a spiral manner. And flows out from the opening at the upper end of the hollow cylinder 11.
[0029]
When the spiral flow ascends while rotating in the annular space S, it collides with a large number of protrusions 15 on the outer periphery of the cylindrical body 16 ', and bubbles contained in the water flow are further crushed. At this time, since the cross section of the protrusion 15 in the illustrated example has a triangular cross section, when the edge portion violently collides with the bubble, the small bubble becomes finer and finer and is mixed with the flow and rises.
[0030]
Further, in the illustrated example, the twist direction of the spiral flow is the direction in which the right-handed screw advances when the central axis is viewed from the bottom to the top, but it is adjacent to the multistage cylindrical body portions 16a to 16f. When the imaginary lines are connected so as to pass through the tips of the projections 15,... Of the fitting portions 15,... Since these protrusions are arranged on the surface, there is a high probability that the spiral flow collides with a large number of protrusions 15, 15..., And fine bubbles can be mixed into the flow efficiently.
[0031]
If the rising spiral flow formed as described above is generated without providing the cylindrical body 16 ′, the pressure on the center side becomes lower and the pressure on the outer side becomes higher as the rotation rising speed increases. In the example, since the cylindrical body 16 ′ is present on the center side, the rising spiral flow is an annular flow when viewed in a cross section perpendicular to the axis, and an annular space between the outer periphery of the cylindrical body 16 ′ and the inner diameter of the hollow cylinder 11. Since the pressure difference is not large in S, the fine bubbles are more uniformly mixed in the flow both inside and outside the radial position, and the oxygen dissolution efficiency is also increased.
[0032]
FIG. 5 shows the possibility that the arrangement of the protrusions 15, 15... Can take various forms when assembling the multistage cylindrical body portions 16 a to 16 f. (A) The figure has shown the combination arrange | positioned so that the processus | protrusion 15,15 ... of the cylindrical body part adjacent on the upper and lower sides may make spiral form in the direction which a right-handed screw advances. (B) The figure shows a combination of arrangements in which the protrusions 15, 15... Of the cylindrical body parts adjacent to each other in the upper and lower directions change in the direction in which the left-hand screw advances from the middle position in the direction in which the right-hand screw advances. In addition, in the example shown in the figure, since seven protrusions 15, 15... Are provided for one cylindrical body portion, there are 7 combinations, that is, 5040 combinations. In any combination, the arrangement of the protrusions 15 seen in the axial direction can be combined so that adjacent ones do not overlap.
[0033]
In the above embodiment, the plurality of protrusions 15, 15... Are provided on the outer periphery of the cylindrical body 16 ′ so as to protrude in the radial direction. However, these protrusions 15, 15. For example, it may be fixed to the inner periphery of the hollow cylinder 11 in the same manner as in the above embodiment. However, in that case, the cylindrical body 16 'is not formed by fitting a plurality of cylindrical body parts, but is formed integrally as a whole, and conversely, the hollow cylinder 11 is divided into a plurality of pipe parts, The hollow cylinder 11 may be formed by fitting with a small protrusion and a small hole. Further, the protrusions 15, 15... Are fixed in the radial direction of the cylindrical body 16 ′. However, the protrusions 15, 15.
[0034]
【The invention's effect】
As described above in detail, the micronized bubble water generator of the present invention includes an air blowing pipe provided at the lower end of the hollow cylinder, a guide vane provided in the hollow cylinder, and a plurality of radially provided pipes. And a bubble refining means having a cylindrical body having a diameter smaller than that of the projection and the hollow cylinder, so that the swirling upward flow generated by the guide vane collides with a large number of projections while traveling through the space between the cylindrical body and the hollow cylinder, and bubbles are generated. It is refined and this micronized bubble is uniformly mixed with the swirl upflow, so that a swirl upflow with high efficiency and high oxygen solubility can be generated, and the living environment of microorganisms can be improved under suitable conditions. There is an extremely remarkable effect.
[Brief description of the drawings]
FIG. 1 is an overall schematic configuration diagram of a bubbly water generator according to an embodiment. FIG. 2 is a main longitudinal sectional view of the main part of the same. FIG. 3 is a sectional view as seen from arrows IIIa-IIIa and IIIb-IIIb in FIG. FIG. 4 is an exploded perspective view of a cylindrical body portion and a guide vane. FIG. 5 is an explanatory view of an assembly modification of a projection of the cylindrical body portion. FIG. 6A is a main longitudinal sectional view of a conventional aerator, and FIG. ) (A) Cross-sectional view taken along line BB in the figure [Fig. 7] External perspective view of the pipe portion of the conventional aerator [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Bubble water production | generation apparatus 11 Hollow cylinder 12 Lower end 13 Outlet pipe 14 Guide vane 15 Protrusion 16 Bubble refinement means 16 'Cylindrical body 17 Screw rod

Claims (5)

所定径及び長さの中空円筒を立設し、その下端入口にエアーの吹出管を挿置し、中空円筒内には水流を螺旋状に案内するガイドベーンと、このガイドベーンで形成される旋回上昇流に作用してこの流れに含まれる気泡を微細化する気泡微細化手段とをこの順に設け、気泡微細化手段が中空円筒より小径の円柱体と、中空円筒と円柱体との間に設けた複数の突起とを備え、吹出管からのエアーによる旋回上昇流を突起に衝突させることにより気泡を微細化するようにして成る微細化気泡水生成装置。A hollow cylinder of a predetermined diameter and length is erected, an air blowing pipe is inserted at the lower end inlet, a guide vane that guides the water flow in a spiral shape, and a swirl formed by this guide vane A bubble refining means that acts on the upward flow to refine the bubbles contained in the flow is provided in this order, and the bubble refining means is provided between the hollow cylinder and the cylindrical body. And a plurality of protrusions, and a bubble water generation device that makes bubbles finer by colliding a swirling upward flow caused by air from an outlet pipe with the protrusions. 前記複数の突起を円柱体の軸方向に所定の間隔を置いた複数の円周上にそれぞれ所定角度配置でかつ、軸方向に見た複数の突起が互いに重ならないように配設したことを特徴とする請求項1に記載の微細化気泡水生成装置。The plurality of protrusions are disposed at a predetermined angle on a plurality of circumferences spaced at predetermined intervals in the axial direction of the cylindrical body, and the plurality of protrusions viewed in the axial direction are arranged so as not to overlap each other. The refined bubble water generator according to claim 1. 前記複数の突起を円柱体の下から上への軸方向で見て互いに隣接する円周上の隣接する突起間で右ねじ又は左ねじの進む方向に所定角度ずつ異なる位置に配設したことを特徴とする請求項1又は2に記載の微細化気泡水生成装置。The plurality of protrusions are disposed at different positions by a predetermined angle in the direction in which the right screw or the left screw advances between adjacent protrusions on the circumference adjacent to each other when viewed in the axial direction from the bottom to the top of the cylindrical body. The refined bubble water generator according to claim 1 or 2, characterized in that 前記複数の突起を中空円筒と円柱体の間のスペースに円柱体の半径方向にかつ円柱体に設けたことを特徴とする請求項1乃至3のいずれかに記載の微細化気泡水生成装置。4. The refined bubble water generating apparatus according to claim 1, wherein the plurality of protrusions are provided in a space between the hollow cylinder and the columnar body in a radial direction of the columnar body and on the columnar body. 前記ガイドベーンが、複数の垂直ガイド板とこれに接続される複数の曲面ガイド板とから成ることを特徴とする請求項1乃至4のいずれかに記載の微細化気泡水生成装置。5. The microbubble water generation apparatus according to claim 1, wherein the guide vane includes a plurality of vertical guide plates and a plurality of curved guide plates connected thereto.
JP2001060437A 2001-03-05 2001-03-05 Fine bubble water generator Expired - Fee Related JP3677516B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001060437A JP3677516B2 (en) 2001-03-05 2001-03-05 Fine bubble water generator
KR1020010046331A KR20020071432A (en) 2001-03-05 2001-07-31 Pulverized bubble water generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060437A JP3677516B2 (en) 2001-03-05 2001-03-05 Fine bubble water generator

Publications (2)

Publication Number Publication Date
JP2002263678A JP2002263678A (en) 2002-09-17
JP3677516B2 true JP3677516B2 (en) 2005-08-03

Family

ID=18919856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060437A Expired - Fee Related JP3677516B2 (en) 2001-03-05 2001-03-05 Fine bubble water generator

Country Status (2)

Country Link
JP (1) JP3677516B2 (en)
KR (1) KR20020071432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151171A1 (en) 2017-02-14 2018-08-23 株式会社アイエンス Bubble generating device for sewage purification
KR20200027710A (en) * 2018-09-05 2020-03-13 안형일 Full Discharge Type Agitator Using In-Line Mixer Improving Assembly
KR20200027700A (en) * 2018-09-05 2020-03-13 안형일 In-Line Mixer Improving Assembly
KR102087032B1 (en) * 2018-09-05 2020-04-23 안형일 Apparatus for improvement of drinking water for Livestock Using In-Line Mixer Improving Assembly

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520757B2 (en) * 2004-02-03 2010-08-11 株式会社アネモス Air diffuser
JP4544017B2 (en) * 2005-03-31 2010-09-15 株式会社アネモス Air diffuser
KR100658165B1 (en) 2005-08-02 2006-12-15 (주)원이기공 Whirlpool reactor and a high-efficient ozone dissolved device using it
WO2007043134A1 (en) * 2005-10-04 2007-04-19 International Environment And Engineering Co., Ltd. Palm oil production wastewater treatment system and method of treating palm oil production wastewater
JP4907258B2 (en) * 2006-03-27 2012-03-28 泰彦 増田 Gas-liquid mixing device
JP2008086868A (en) * 2006-09-29 2008-04-17 Kawamoto Pump Mfg Co Ltd Microbubble generator
KR100845785B1 (en) * 2007-05-29 2008-07-11 (주)지앤지코리아 Apparatus and method for generating micro bubbles
KR100915782B1 (en) * 2007-08-22 2009-09-04 박종후 Compacked Nanobubble Generating Apparatus
JP2009279502A (en) * 2008-05-21 2009-12-03 Yasunaga Corp Particulate atomizer
KR101036227B1 (en) 2009-05-18 2011-05-20 오우라코리아 주식회사 Micro bubble generator
KR101137050B1 (en) * 2009-09-16 2012-04-19 오종환 Micro Bubble Generator
KR100970874B1 (en) * 2010-03-25 2010-07-16 주식회사 뉴젠 Enema nozzle for bidet
WO2012008805A2 (en) * 2010-07-15 2012-01-19 한국기계연구원 Micro bubble generation device based on rotating unit
WO2013012069A1 (en) * 2011-07-21 2013-01-24 株式会社シバタ Bubble generating mechanism and showerhead with bubble generating mechanism
KR101166389B1 (en) * 2012-06-08 2012-07-23 안병하 Ultra micro-bubble generating Apparatus
KR101305426B1 (en) * 2012-08-16 2013-09-06 오우라코리아 주식회사 Low power diffuser
KR101376974B1 (en) * 2012-11-20 2014-03-25 주식회사 칼라카나 Bubble feeding tube and bubble cutting tube of ballast water treatment apparatus
KR101235663B1 (en) 2013-01-21 2013-02-21 신 한 Apparatus for nano-bubble forming
KR101379239B1 (en) * 2013-09-23 2014-03-28 주식회사 에스엠티솔루션 Nano bubble generating system
CN103601288A (en) * 2013-11-30 2014-02-26 山东美陵中联环境工程有限公司 High-efficiency energy-saving aeration apparatus and aeration method
JP6077627B1 (en) * 2015-10-30 2017-02-08 昭義 毛利 Ultra fine bubble generation tool
KR101835986B1 (en) * 2016-07-25 2018-03-07 시오 컴퍼니 리미티드 Fluid Supply Pipe
SG11201906099RA (en) * 2017-01-17 2019-08-27 Akiyoshi Mori Ultrafine bubble generator
KR101829734B1 (en) * 2017-04-04 2018-02-20 신창기 Serve nano micro bubble generator
CN107857360A (en) * 2017-12-25 2018-03-30 湖州富优得膜分离科技有限公司 A kind of submersible aerator with feeding water filtering device
KR102174852B1 (en) * 2018-07-19 2020-11-05 서준현 Apparatus and method for manufacturing spray of cosmetic liquid containing hydrogen
CN109516552A (en) * 2018-12-21 2019-03-26 浙江卓锦环保科技股份有限公司 A kind of dedicated aerator of sludge organism leaching
KR102325839B1 (en) * 2018-12-31 2021-11-12 한국건설기술연구원 Water Quality Puriyfing device using ozone gas
JP6780179B1 (en) * 2019-02-14 2020-11-04 株式会社塩 Fluid supply device and internal structure
CN112919656A (en) * 2021-04-14 2021-06-08 尚川(北京)水务有限公司 Oxygenation type water distribution device
KR102484788B1 (en) * 2021-05-13 2023-01-06 화우나노텍 주식회사 Pipe inserts for nanobubble generation
JP2022185790A (en) 2021-06-03 2022-12-15 リンナイ株式会社 Fine air bubble generator
JP2022186233A (en) 2021-06-04 2022-12-15 リンナイ株式会社 Fine air bubble generation device
JP2022187343A (en) 2021-06-07 2022-12-19 リンナイ株式会社 Fine air bubble generation device
KR102481710B1 (en) * 2021-08-09 2022-12-30 플러스웰주식회사 Unit for generating micro or nano bubbles
JP7251748B1 (en) 2022-04-05 2023-04-04 株式会社アルベール・インターナショナル Microbubble generation system and microbubble generation kit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151171A1 (en) 2017-02-14 2018-08-23 株式会社アイエンス Bubble generating device for sewage purification
KR20200027710A (en) * 2018-09-05 2020-03-13 안형일 Full Discharge Type Agitator Using In-Line Mixer Improving Assembly
KR20200027700A (en) * 2018-09-05 2020-03-13 안형일 In-Line Mixer Improving Assembly
KR102087032B1 (en) * 2018-09-05 2020-04-23 안형일 Apparatus for improvement of drinking water for Livestock Using In-Line Mixer Improving Assembly
KR102099829B1 (en) * 2018-09-05 2020-05-15 안형일 Full Discharge Type Agitator Using In-Line Mixer Improving Assembly
KR102099826B1 (en) * 2018-09-05 2020-05-15 안형일 In-Line Mixer Improving Assembly

Also Published As

Publication number Publication date
KR20020071432A (en) 2002-09-12
JP2002263678A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3677516B2 (en) Fine bubble water generator
KR101036227B1 (en) Micro bubble generator
JP3397154B2 (en) Revolving microbubble generator
US4337152A (en) Aeration apparatus and method
JP5028637B2 (en) Microbubble generator
US6032931A (en) Apparatus for selective aeration
JP2008018330A (en) Bubble generating device
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
US6787036B2 (en) Method and apparatus for aerating wastewater
UA46884C2 (en) APPARATUS FOR MIXING AND AERATION OF LIQUID AND REMOVAL OF FOAM IN THE TANK WHERE THIS LIQUID IS PROCESSED
WO1998031453A1 (en) Improvded gas-liquid vortex mixer
KR20110088355A (en) Gas/liquid mixing circulatory flow generating device
KR20010102736A (en) Process and plant for the efficiency solubility of gas and sludge mixing
Shukla et al. A comprehensive review of surface jet aerators
KR102100463B1 (en) Air Diffuser Improved Purifying Efficiency
KR101824240B1 (en) High-density micro-bubble generating device
JPH11333491A (en) Microbubble jet water purifying apparatus
WO2018151171A1 (en) Bubble generating device for sewage purification
KR100900275B1 (en) Micro bubble instrument
JP2018130653A5 (en)
JP2002045667A (en) Device for generating circulating flow
KR20020041693A (en) Mixer for mixing fluids and electrolytic water treatment system having the same
JP2001205278A (en) Sewage cleaning treatment apparatus
US5358671A (en) Aerator device
JP2003181259A (en) Swirling type fine bubble formation method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees