JP2009279502A - Particulate atomizer - Google Patents

Particulate atomizer Download PDF

Info

Publication number
JP2009279502A
JP2009279502A JP2008132909A JP2008132909A JP2009279502A JP 2009279502 A JP2009279502 A JP 2009279502A JP 2008132909 A JP2008132909 A JP 2008132909A JP 2008132909 A JP2008132909 A JP 2008132909A JP 2009279502 A JP2009279502 A JP 2009279502A
Authority
JP
Japan
Prior art keywords
crushing
fluid
main body
granular material
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008132909A
Other languages
Japanese (ja)
Inventor
Takashi Yamaoka
隆 山岡
shun Miyamoto
俊 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yasunaga Corp
Original Assignee
Yasunaga Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasunaga Corp filed Critical Yasunaga Corp
Priority to JP2008132909A priority Critical patent/JP2009279502A/en
Publication of JP2009279502A publication Critical patent/JP2009279502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Pulverization Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain a particulate atomizer which can pulverize sufficiently a fluid circulating the inside and can atomize particulates in the fluid without depending on the specific gravity. <P>SOLUTION: The particulate atomizer comprises a column-shaped tubular body provided with a part generating a rotational flow, a pulverizing part, and a column, and an air supply part, and is characterized in that the part generating a rotational flow and the pulverizing part are positioned respectively in a fluid introducing port of the body and between the part generating a rotational flow and a fluid discharge spout of the body, and the column is positioned from the fluid introducing port of the body to the fluid discharge spout inside the body and a flow path is formed between the inner surface of the body and the column surface. The air supplier introduces a fluid in the vicinity of the air supplier from the fluid introducing port of the body to the inside of the body by the circulation of a gas supplied from a gas feeding system, and also generates a rotational flow to the fluid by the part generating a rotational flow, and allows the fluid introduced into the body to circulate the flow path between the inner surface of the body and the column surface to pulverize it in the pulverizing part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排水等の流体中に含まれる粒状物を微細化するための粒状物微細化装置に関するものである。   The present invention relates to a granular material refining apparatus for refining a granular material contained in a fluid such as waste water.

例えば、ディスポーザで粒状に粉砕された生ゴミは、台所排水とともに公共下水道等へ排出され、公共下水処理施設で処理される。このような下水処理では、環境問題等の観点から、公共下水道等へ排出される排水の水質基準が高められる傾向にある(BOD値等の基準値がより厳しく設定される傾向にある)。
こうした水質基準の高まりに対応するため、ディスポーザで粒状に粉砕された生ゴミ等の粒状物を処理槽内においてバクテリア(好気性バクテリア)で分解することが考えられる。処理槽では、散気装置で処理槽内の排水中に送気することで、バクテリアが繁殖し、繁殖したバクテリアが粉砕された生ゴミを分解するが、従来の散気装置では、撹拌能力が低いため粉砕された粒状生ゴミが沈殿し、可溶化速度が遅い。可溶化していないとバクテリアによる分解が進まないので、水質を高めるために、処理槽内に長時間滞留させる必要がある。粉砕された粒状生ゴミがほぼ定期的に処理槽に流入するため、長時間処理槽内に滞留させるためには、処理槽の大型化が求められる。その一方、スペース的な制約、コスト的観点等から処理槽を小型化したいという要求がある。そこで、排水等の流体中に含まれる粒状物を微細化することで、粒状物の可溶化を促進して処理槽を小型化することが考えられる。
For example, raw garbage pulverized in a granular form by a disposer is discharged into a public sewer or the like together with kitchen wastewater and processed in a public sewage treatment facility. In such sewage treatment, water quality standards for wastewater discharged to public sewers and the like tend to be raised from the viewpoint of environmental problems and the like (standard values such as BOD values tend to be set more strictly).
In order to cope with such an increase in water quality standards, it is conceivable that granular materials such as garbage that have been pulverized by a disposer are decomposed by bacteria (aerobic bacteria) in the treatment tank. In the treatment tank, air is fed into the wastewater in the treatment tank by an air diffuser, so that the bacteria propagate and the propagated bacteria decomposes the crushed garbage. Since it is low, pulverized granular garbage settles and the solubilization rate is slow. If not solubilized, decomposition by bacteria does not proceed, so it is necessary to stay in the treatment tank for a long time in order to improve water quality. Since the pulverized granular garbage flows into the processing tank almost regularly, an increase in the size of the processing tank is required in order to stay in the processing tank for a long time. On the other hand, there is a demand to reduce the size of the treatment tank from the viewpoint of space restrictions and cost. Therefore, it is conceivable to reduce the size of the processing tank by promoting solubilization of the granular material by refining the granular material contained in a fluid such as waste water.

このような技術に隣接する技術として、流体導入口と排出口を有する円筒管の流体導入口近傍に送気管を、そして円筒管の流体導入口側内部に旋回流発生手段を、さらに円筒管の流体排出口側に気液混合手段を設けた気液混合装置がある(特許文献1)。こうした気液混合装置1(図6)では、送気管2から吐出された空気とともに円筒管3の内部に導入された流体(排水)が、旋回流発生手段4で旋回流となって円筒管3の内部を通流する。旋回流となった排水は、円筒管3の内面近傍を螺旋状に流体排出口5に向けて通流し、その一方、送気管2からの空気は、円筒管3の中心軸近傍を流体排出口に向けて流通する。かくして、排水は円筒管3の内面の気液混合手段6(撹拌突起)で撹拌されて気液が混合する。なお本明細書では、流体とは液体をいうものとする。
特開2001―62269号公報
As a technique adjacent to such a technique, an air supply pipe is provided in the vicinity of the fluid inlet of the cylindrical pipe having the fluid inlet and outlet, a swirl flow generating means is provided inside the fluid inlet of the cylindrical pipe, and the cylindrical pipe There is a gas-liquid mixing device provided with gas-liquid mixing means on the fluid discharge port side (Patent Document 1). In such a gas-liquid mixing device 1 (FIG. 6), the fluid (drainage) introduced into the cylindrical tube 3 together with the air discharged from the air feeding tube 2 is turned into a swirling flow by the swirling flow generating means 4. Flows inside. The swirled wastewater flows spirally around the inner surface of the cylindrical tube 3 toward the fluid discharge port 5, while air from the air supply tube 2 flows near the central axis of the cylindrical tube 3 to the fluid discharge port. Circulate towards Thus, the waste water is stirred by the gas-liquid mixing means 6 (stirring protrusion) on the inner surface of the cylindrical tube 3 to mix the gas and liquid. In the present specification, the fluid means a liquid.
Japanese Patent Laid-Open No. 2001-62269

気液混合装置1では、流体(排水)に旋回流を生じさせて、円筒管3の内面の気液混合手段6の近傍には流体だけを通流させ、円筒管3の内部の中心軸近傍には空気だけを通流させるものといえる。気液混合装置1では、円筒管3の中心軸寄りの領域を流体(排水)がある程度通流する可能性があるが、気液混合手段6で生じたマイクロバブルの作用で円筒管3の中心軸寄りの領域を通流する流体中においても気液を混合することができる。   In the gas-liquid mixing device 1, a swirling flow is generated in the fluid (drainage), and only the fluid is passed near the gas-liquid mixing means 6 on the inner surface of the cylindrical tube 3, and the vicinity of the central axis inside the cylindrical tube 3. It can be said that only air is allowed to flow through. In the gas-liquid mixing device 1, there is a possibility that fluid (drainage) flows to a certain extent through the region near the central axis of the cylindrical tube 3, but the center of the cylindrical tube 3 is caused by the action of microbubbles generated in the gas-liquid mixing means 6. Gas-liquid can be mixed even in the fluid flowing through the region near the axis.

しかしながら、気液の混合ではなく排水中の粒状物を微細化しようとすると、気液混合装置1では生じない問題、すなわち、円筒管3の中心軸寄りの領域を通流する流体中の粒状物を破砕しにくいという問題が生じる(粒状物の破砕が円筒管3内の流通領域に依存するという問題が生じる)。また、円筒管3の内部を旋回しながら通流する流体中では、流体よりも比重が大きい粒状物は円筒管3の内面近傍を通流するが、流体よりも比重が小さい粒状物は、円筒管3の中心軸に寄った領域を通流して破砕されにくいという問題が生じる。   However, if the granular material in the waste water is made finer instead of the gas-liquid mixing, the problem does not occur in the gas-liquid mixing apparatus 1, that is, the granular material in the fluid flowing through the region near the central axis of the cylindrical tube 3. This causes a problem that it is difficult to crush (a problem that crushing of the granular material depends on a flow region in the cylindrical tube 3). Further, in the fluid flowing while swirling inside the cylindrical tube 3, the granular material having a specific gravity larger than that of the fluid flows near the inner surface of the cylindrical tube 3, but the granular material having a specific gravity smaller than that of the fluid is a cylinder. There arises a problem that it is difficult to be crushed by flowing through a region close to the central axis of the tube 3.

また、旋回流発生手段4を備えた円柱体7が流体導入口側内部に位置づけられる一方、気液混合手段6が設けられた部分には円柱体7が位置づけられていないため、流路の断面積は、流体導入口側の円柱体7が配置された部分の流路の断面積より広くなっている。そのため、気液混合手段6が設けられた部分では、円柱体7が配置された部分よりも、流体の流速が中心軸方向および旋回方向において遅くなってしまい、排水は、気液混合手段6で破砕されない円筒管3の内部の中心軸近傍をより多く通流するようになる。つまり、マイクロバブルによる気液混合では問題とならないことが、粒状物の微細化では問題となるのである。   In addition, the cylindrical body 7 provided with the swirling flow generating means 4 is positioned inside the fluid inlet port side. On the other hand, the cylindrical body 7 is not positioned in the portion where the gas-liquid mixing means 6 is provided. The area is wider than the cross-sectional area of the flow path in the portion where the cylindrical body 7 on the fluid inlet side is disposed. Therefore, in the portion where the gas-liquid mixing means 6 is provided, the flow velocity of the fluid is slower in the central axis direction and the swirling direction than in the portion where the cylindrical body 7 is arranged, and the waste water is discharged by the gas-liquid mixing means 6. A larger amount of air flows in the vicinity of the central axis inside the cylindrical tube 3 that is not crushed. That is, it does not become a problem in gas-liquid mixing by microbubbles, but it becomes a problem in the refinement of granular materials.

そこで、本発明は、流体(排水)中に気体を吐出することで生じる旋回流によって排水中の粒状物を充分破砕することができて(排水中の粒状物の微細化が流路内における流通領域に依存することを改善できて)、また粒状物の微細化が粒状物の比重に依存することを改善できて、さらに装置が有する流路の断面積の変化を少なくすることで粒状物の微細化および可溶化をより促進することができる粒状物微細化装置の実現を目的とした。また好ましくは、粒状物の分解を促進するバクテリアの生息に適した粒状物微細化装置の実現を目的とした。   Therefore, the present invention can sufficiently pulverize the particulate matter in the wastewater by the swirling flow generated by discharging the gas into the fluid (drainage) (the refinement of the particulate matter in the wastewater is distributed in the flow path). It is possible to improve the dependence on the area), and also to improve the refining of the granular material depending on the specific gravity of the granular material. Further, by reducing the change in the cross-sectional area of the flow path of the device, It aimed at realization of the granular material refinement | miniaturization apparatus which can accelerate | stimulate refinement | miniaturization and solubilization more. It is also desirable to realize a granule refinement apparatus suitable for bacterial inhabitants that promotes the degradation of particulate matter.

上記目的を達成するために、本発明に係る粒状物微細化装置は、旋回流発生部、破砕部、および柱体を備えた柱状管形状をなす本体部、並びに送気部を有する粒状物微細化装置において、本体部の流体導入口側には旋回流発生部を、そして旋回流発生部と本体部の流体排出口との間には破砕部を、それぞれ位置づけるとともに、本体部の内部には、流体導入口側から流体排出口側にわたって柱体を位置づけて、本体部内面と柱体表面の間に流路を形成するようになっている。そして、送気部が、送気装置から供給された気体を吐出することで、送気部近傍の流体を本体部の流体導入口から本体部の内部に導入するとともに、旋回流発生部によって流体に旋回流を生じさせることで、本体部に導入された流体が本体部内面と柱体表面の間の流路を通流するようになっている。かくして該粒状物微細化装置は、粒状物の微細化の、流通領域への依存性および粒状物の比重に対する依存性を改善することができる。もちろん流路の断面積の変化も少なくできる(請求項1)。   In order to achieve the above object, a granular material refinement apparatus according to the present invention includes a swirl flow generating unit, a crushing unit, a columnar tube-shaped main body unit including a columnar body, and a granular material fine unit having an air supply unit. The swirling flow generating portion is positioned on the fluid inlet side of the main body portion, and the crushing portion is positioned between the swirling flow generating portion and the fluid discharge port of the main body portion. The column body is positioned from the fluid introduction port side to the fluid discharge port side, and a flow path is formed between the inner surface of the main body and the column surface. Then, the air supply unit discharges the gas supplied from the air supply device, thereby introducing the fluid in the vicinity of the air supply unit from the fluid introduction port of the main unit into the main unit, and the swirl flow generating unit By causing a swirl flow to occur, the fluid introduced into the main body portion flows through the flow path between the inner surface of the main body portion and the surface of the column body. Thus, the granule refiner can improve the dependence of the refinement of the granulate on the flow area and the specific gravity of the granule. Of course, the change in the cross-sectional area of the flow path can also be reduced (claim 1).

また破砕部は複数段に連結された破砕翼部で形成され、破砕翼部は流路側に突出した破砕手段を有することで、流路を通流する排水中の粒状物を充分破砕することができ、粒状物の可溶化を促進することができる(請求項2)。
また破砕手段は、破砕板とこの破砕板に形成された複数の切り欠き部を有して、複数の破砕突起部を備えることで、流路を通流する排水を充分破砕することができ、排水中に含まれる粒状物の微細化を促進することができる(請求項3)。
The crushing part is formed of crushing wing parts connected in multiple stages, and the crushing wing part has crushing means protruding to the flow path side, so that the particulate matter in the waste water flowing through the flow path can be sufficiently crushed. And solubilization of the particulate matter can be promoted (claim 2).
The crushing means has a crush plate and a plurality of notches formed in the crush plate, and has a plurality of crush projections, so that the waste water flowing through the flow path can be sufficiently crushed. Refinement of the particulate matter contained in the waste water can be promoted (Claim 3).

また柱体の中心軸が本体部の中心軸上に位置づけられていれば、中心軸方向における流路の断面形状が、本体部の放射方向の何れの領域においても均一になって、旋回流となった排水中に含まれる粒状物を均一に破砕することができる(請求項4)。
また本体部および柱体の双方または何れか一方が、円形状または正多角形状の断面形状を有していれば、旋回流となった排水の通流を円滑にすることができる(請求項5)。
If the central axis of the column is positioned on the central axis of the main body, the cross-sectional shape of the flow path in the central axis direction is uniform in any region in the radial direction of the main body, and the swirl flow The granular material contained in the drained wastewater can be uniformly crushed (claim 4).
In addition, if both or any one of the main body and the column have a circular or regular polygonal cross-sectional shape, it is possible to smoothly flow the drainage that has turned into a swirling flow. ).

さらに、破砕手段および柱体の何れか一方若しくは双方が多孔質のセラミックで形成されたものであれば、粒状物がセラミック表面の微細な凹凸に衝突して微細化が促進されて、また、セラミックの微細な孔が水質改善を促進するバクテリアの生息を助けて、排水の処理能力を高めることができる(請求項6)。   Further, if either one or both of the crushing means and the column body are formed of porous ceramic, the particulate matter collides with fine irregularities on the ceramic surface and the miniaturization is promoted. These micropores can help the bacteria to promote water quality improvement and increase the wastewater treatment capacity (Claim 6).

以上のように、本発明の粒状物微細化装置によれば、排水中の粒状物の微細化が流通領域へ依存することを改善することができて、また上記微細化が粒状物の比重に依存することを改善することができて、粒状物の微細化および可溶化をより促進することができる。また、流路の断面積の変化を少なくすることができて、排水の破砕および粒状物の微細化および可溶化をより促進することができる。さらに、水質改善を促進するバクテリアの生息に適した、すなわち処理能力を長い期間にわたって良好に維持することができる粒状物微細化装置を実現できる。   As described above, according to the granular material refining device of the present invention, it is possible to improve that the refining of the granular material in the wastewater depends on the distribution region, and the above-mentioned refining is added to the specific gravity of the granular material. Dependence can be improved and further refinement and solubilization of the granular material can be promoted. Moreover, the change of the cross-sectional area of a flow path can be decreased, and the crushing of waste water and the refinement | miniaturization and solubilization of a granular material can be promoted more. Furthermore, it is possible to realize a particulate refining device that is suitable for the inhabiting of bacteria that promote water quality improvement, that is, can maintain the treatment capacity well over a long period of time.

以下、図面を参照して、本発明に係る粒状物微細化装置の一実施形態を説明する。   Hereinafter, with reference to drawings, one embodiment of the granular material refinement device concerning the present invention is described.

図1〜図5に基づき、粒状物微細化装置10を説明する。図1は、粒状物微細化装置10の概略構成を示す図であり、粒状物微細化装置10は、本体部11および送気部20を備えている。本体部11は、例えば旋回流発生部30に破砕部40を連結して形成され、例えば外径40mm、内径30mmの円柱形状の管体をなしている。ここで、本体部11の流体導入口12側には旋回流発生部30が配置され、旋回流発生部30と流体排出口13との間には破砕部40が配置されている。また、本体部11は、流体導入口12から流体排出口13にわたって配置された例えば外径12mmの円柱形状の柱体50を備えており、柱体50は、その中心軸が本体部11の中心軸11x上に位置づけられて、本体部11の内面11aと柱体50の表面(柱体の周面)50aの間に、流路14が形成されている。送気部20は、本体部11の流体導入口12側に連結されている。本体部11は、例えば処理槽の排水中において、送気部20が下方に、流体排出口13が上方にそれぞれ位置づけられる。   The granular material refinement | miniaturization apparatus 10 is demonstrated based on FIGS. FIG. 1 is a diagram illustrating a schematic configuration of a granular material refinement apparatus 10, and the granular material refinement apparatus 10 includes a main body 11 and an air supply unit 20. The main body 11 is formed, for example, by connecting the crushing part 40 to the swirling flow generating part 30, and has a cylindrical tube having an outer diameter of 40 mm and an inner diameter of 30 mm, for example. Here, the swirl flow generating unit 30 is disposed on the fluid introduction port 12 side of the main body 11, and the crushing unit 40 is disposed between the swirl flow generating unit 30 and the fluid discharge port 13. Further, the main body 11 includes a columnar column 50 having an outer diameter of 12 mm, for example, disposed from the fluid inlet 12 to the fluid outlet 13, and the central axis of the column 50 is the center of the main body 11. Positioned on the shaft 11x, a flow path 14 is formed between the inner surface 11a of the main body 11 and the surface of the column 50 (the peripheral surface of the column) 50a. The air supply unit 20 is connected to the fluid introduction port 12 side of the main body unit 11. In the main body 11, for example, in the waste water of the processing tank, the air supply unit 20 is positioned below and the fluid discharge port 13 is positioned above.

次に送気部20について説明する。
図1に示すように、送気部20は、本体部11より太い外径の円柱形状の管体をなす送気部管体21を有している。送気部管体21は、その一端21a側が縮径して本体部11の流体導入口12近傍に連結されている。送気部管体21の他端21b側の一部には、切り欠き部が設けられて、図示せぬ送気装置(例えばエアポンプ)から送気された気体(空気)を旋回流発生部30に供給するための送気管22(エルボ)を、送気部管体21の内部に導入している。送気管22は、送気装置から送気された気体を旋回流発生部30に送気するようになっている。送気部管体21は多孔質のセラミックで形成され、送気管22は樹脂等で形成されている。
Next, the air supply unit 20 will be described.
As shown in FIG. 1, the air supply unit 20 includes an air supply unit tube body 21 that forms a cylindrical tube body having an outer diameter larger than that of the main body unit 11. One end 21 a side of the air supply tube 21 is reduced in diameter, and is connected to the vicinity of the fluid inlet 12 of the main body 11. A cutout portion is provided in a part on the side of the other end 21b of the air supply unit tube body 21, and the swirl flow generating unit 30 converts gas (air) supplied from an air supply device (for example, an air pump) (not shown). An air supply tube 22 (elbow) for supplying to the inside of the air supply unit tube 21 is introduced. The air supply pipe 22 supplies the gas supplied from the air supply device to the swirl flow generating unit 30. The air supply tube 21 is formed of porous ceramic, and the air supply tube 22 is formed of resin or the like.

次に旋回流発生部30について説明する。
図1に示すように、旋回流発生部30は、円柱形状の管体をなす旋回流発生部本体31と、略半円形状の2枚の旋回流発生翼32aおよび32bを有しており、旋回流発生部30の内面は、旋回流発生部30において本体部11の内面11aの一部を形成している。旋回流発生翼32aおよび32bは、中心軸11xを挟んで、相対する位置に位置づけられるとともに、図1中において、交差するように位置づけられている。
Next, the swirl flow generator 30 will be described.
As shown in FIG. 1, the swirling flow generating unit 30 has a swirling flow generating unit main body 31 that forms a cylindrical tubular body, and two swirling flow generating blades 32 a and 32 b that are substantially semicircular. The inner surface of the swirl flow generator 30 forms part of the inner surface 11 a of the main body 11 in the swirl flow generator 30. The swirl flow generating blades 32a and 32b are positioned so as to face each other across the central axis 11x, and are positioned so as to intersect in FIG.

旋回流発生翼32aおよび32bは、それらの外周32cおよび32dが長円の弧をなし(図2)、それぞれ中心軸11x方向に位置づけられて、旋回流発生部30の内面に取り付けられるとともに、柱体50を支持するようになっている(外周32cおよび32dは、旋回流発生部30の内面状で約180度旋回するようになっている)。なお図2は、旋回流発生翼32aおよび32bとそれらに支持された柱体50を、旋回流発生部30から中心軸11x方向に取り出して示した分解斜視図である。旋回流発生部本体31、旋回流発生翼32aおよび32bは、多孔質のセラミックで形成されている。   The swirl flow generating blades 32a and 32b have their outer peripheries 32c and 32d arced as an ellipse (FIG. 2), are positioned in the direction of the central axis 11x, are attached to the inner surface of the swirl flow generating unit 30, and The body 50 is supported (the outer peripheries 32c and 32d are swirled about 180 degrees on the inner surface of the swirling flow generating unit 30). FIG. 2 is an exploded perspective view showing the swirl flow generating blades 32a and 32b and the column bodies 50 supported by them, taken out from the swirl flow generating unit 30 in the direction of the central axis 11x. The swirling flow generating section main body 31 and swirling flow generating blades 32a and 32b are formed of porous ceramic.

次に送気部20と旋回流発生部30との連結等について説明する。
旋回流発生部30には、図1に示すように、本体部11の流体導入口12側に送気管22を接続した送気管接続部23が位置づけられている。送気管接続部23は円柱形状の管体をなし、その中心軸が本体部11の中心軸11x上に位置づけられ、またその一端側が本体部11の流体導入口12に、若干入り込むようになっており、略台形状の複数(例えば3〜4枚)の支持板24で流体導入口12側に連結されている。これら支持板24は、本体部11の中心軸11xに対し放射状に位置づけられ、且つ支持板24の表面が中心軸11xと平行するようになっている(流体導入口12に導入される流体の通流を妨げないようになっている)。送気管接続部23および支持板24は、多孔質のセラミックで形成されている。
Next, connection between the air supply unit 20 and the swirl flow generation unit 30 will be described.
As shown in FIG. 1, the swirl flow generating unit 30 is positioned with an air supply pipe connecting part 23 in which an air supply pipe 22 is connected to the fluid inlet 12 side of the main body 11. The air supply pipe connection portion 23 is a cylindrical tube body, the central axis thereof is positioned on the central axis 11x of the main body portion 11, and one end side thereof slightly enters the fluid inlet 12 of the main body portion 11. In addition, a plurality of (for example, 3 to 4) support plates 24 each having a substantially trapezoidal shape are connected to the fluid inlet 12 side. These support plates 24 are positioned radially with respect to the central axis 11x of the main body 11, and the surface of the support plate 24 is parallel to the central axis 11x (the passage of fluid introduced into the fluid inlet 12). Not to obstruct the flow). The air pipe connecting portion 23 and the support plate 24 are formed of porous ceramic.

次に破砕部40について説明する。
図3に示すように破砕部40は、6段重ねに連結された破砕翼部40A〜40Fで形成されている(破砕翼部40Aは旋回流発生部30直近に位置づけられ、破砕翼部40B〜40Fが流体排出口13側に向けて順番に位置づけられている)。多孔質のセラミックで形成された破砕翼部40A〜40Fは、図4に示すようにリング形状の円環体41と、円環体41内部に形成されてと突出した破砕板42(破砕手段)を有している。破砕板42には、平面視において等間隔で略円形の流路部孔43が6箇所に形成され、これら流路部孔43は、円環体41の中心部に形成された中心部孔44に連通している。かくして破砕板42には、各流路部孔43の間に破砕突起部45が形成されて、破砕突起部45の突起先端45aと柱体50との間隙P(図3)が形成されるようになっている。
Next, the crushing part 40 will be described.
As shown in FIG. 3, the crushing part 40 is formed of crushing blade parts 40A to 40F connected in six stages (the crushing blade part 40A is positioned in the immediate vicinity of the swirl flow generating part 30 and the crushing blade part 40B to 40F). 40F is sequentially positioned toward the fluid discharge port 13 side). As shown in FIG. 4, the crushing blade portions 40 </ b> A to 40 </ b> F made of porous ceramic include a ring-shaped torus 41, and a crushing plate 42 (crushing means) that protrudes when formed inside the torus 41. have. The crushing plate 42 is formed with six substantially circular flow path holes 43 at equal intervals in plan view, and these flow path hole 43 is a central hole 44 formed at the center of the torus 41. Communicating with Thus, the crushing plate 42 is formed with the crushing protrusions 45 between the respective flow path hole 43 so that a gap P (FIG. 3) between the protrusion tip 45a of the crushing protrusions 45 and the column body 50 is formed. It has become.

図3に示すように、破砕板42は、円環体41との境界部において円環体41の厚さの約2分の1の厚さを有しているが、中心孔44に向けその厚さが減少している。したがって、破砕翼部40A〜40Fの各破砕板42の間には、円環体41の内面41aの内周を外径とする略円板リング形状の空隙40Ag〜40Egが形成される。なお円環体41の内面41aは、破砕部40において、本体部11の内面11aを形成している。   As shown in FIG. 3, the crushing plate 42 has a thickness of about one half of the thickness of the torus 41 at the boundary with the torus 41, but the crushing plate 42 is directed toward the center hole 44. The thickness is decreasing. Therefore, between the crushing plates 42 of the crushing blade portions 40A to 40F, substantially disc ring-shaped gaps 40Ag to 40Eg having an inner diameter of the inner surface 41a of the annular body 41 as an outer diameter are formed. Note that the inner surface 41 a of the torus 41 forms the inner surface 11 a of the main body 11 in the crushing portion 40.

また、第1段、第3段目および第5段目の破砕翼部40A、40Cおよび40Eの各突起先端45aは、これらを結ぶ直線が中心軸11xと平行するように位置づけられ、第2段、第4段目および第6段目の破砕翼部40B、40Dおよび40Fの各突起先端45aも同様に位置づけられている。そして図5に示すように、中心軸11x方向から見て、破砕翼部40A、40Cおよび40Eの各突起先端45aのちょうど中間に破砕翼部40B、40Dおよび40Fの各突起先端45aが位置づけられている(図5は、粒状物微細化装置10の平面図である)。このように配列された破砕翼部40A〜40Fの各突起先端45aは、これらを螺旋形状の曲線で結ぶことができて、破砕翼部40A〜40Fの各流路部孔43の中心部を結ぶ曲線も螺旋形状の曲線で結ぶことができるから、破砕部40には、柱体50の周囲に各流路部孔43による螺旋形状の流路が形成される。もちろんこの流路は、円板リング形状の空隙40Ag〜40Egを貫くように形成される。   Further, the projection tips 45a of the first, third, and fifth stage crushing blade portions 40A, 40C, and 40E are positioned so that the straight line connecting them is parallel to the central axis 11x, and the second stage The projections 45a of the fourth and sixth stage crushing wings 40B, 40D, and 40F are similarly positioned. As shown in FIG. 5, the protrusion tips 45 a of the crushing blade portions 40 </ b> B, 40 </ b> D, and 40 </ b> F are positioned just in the middle of the protrusion tips 45 a of the crushing blade portions 40 </ b> A, 40 </ b> C, and 40 </ b> E when viewed from the central axis 11x direction. (FIG. 5 is a plan view of the granular material refinement apparatus 10). The protrusion tips 45a of the crushing blade portions 40A to 40F arranged in this way can be connected by a spiral curve, and connect the center portions of the flow path portion holes 43 of the crushing blade portions 40A to 40F. Since the curve can also be connected by a spiral curve, a spiral channel is formed in the crushing part 40 around each column 50 by the channel holes 43. Of course, this flow path is formed so as to penetrate the disc ring-shaped gaps 40Ag to 40Eg.

このような比較的複雑な流路であっても、同一の形材等で形成された破砕翼部40A〜40Fを連結することで容易に形成することができるから、形材等のコスト等(破砕部40のコスト等)を低減できる。もちろん破砕翼部40A〜40Fを一体に形成して破砕部40としてもよい。
なお、図2に例示した旋回流発生翼32aおよび32によって生じる排水の旋回流(曲線F)が、旋回しながら破砕部40を通流することができるものであれば、破砕翼部40A〜40Fの各突起先端45aの配列は、図5の例に限定されない。
Even such a relatively complicated flow path can be easily formed by connecting the crushing blade portions 40A to 40F formed of the same shape or the like. The cost of the crushing part 40) can be reduced. Of course, the crushing wings 40 </ b> A to 40 </ b> F may be integrally formed as the crushing unit 40.
If the swirl flow (curve F) of the drainage generated by the swirl flow generating blades 32a and 32 illustrated in FIG. 2 can flow through the crushing portion 40 while swirling, the crushing blade portions 40A to 40F. The arrangement of the protrusion tips 45a is not limited to the example of FIG.

次に、粒状物微細化装置10による排水中の粒状物の微細化について説明する。
粒状物微細化装置10は、処理槽(排水中)に設置される。もちろん、粒状物微細化装置10は、排水中に水没するように設置され、且つ本体部11の中心軸11xを処理槽の中心部に位置づけることが望ましい。
こうして処理槽内に設置された粒状物微細化装置10の送気部20にエアポンプ(図示せず)で気体(空気)を送気すると、送気管接続部23から、本体部11の流体導入口12へと気体が吐出されて、送気管接続部23から旋回流発生部30に向かう負圧が生じる。そうすると、送気部20内および本体部11の流体導入口12近傍の排水が、上記負圧によって気体とともに本体部11の流体導入口12から流体排出口13へ向け通流する(もちろん、送気部管体21には、排水が流入する。他端21bからも排水が流入する)。
Next, the refinement | miniaturization of the granular material in the waste_water | drain by the granular material refinement | purification apparatus 10 is demonstrated.
The granular material refinement | miniaturization apparatus 10 is installed in a processing tank (in waste water). Of course, it is desirable that the granular material refinement device 10 is installed so as to be submerged in the waste water, and the central axis 11x of the main body 11 is positioned at the center of the treatment tank.
Thus, when gas (air) is supplied to the air supply unit 20 of the granular material refinement apparatus 10 installed in the processing tank by an air pump (not shown), the fluid introduction port of the main body unit 11 is supplied from the air supply pipe connection unit 23. As a result, gas is discharged to 12 and a negative pressure is generated from the air supply pipe connection portion 23 toward the swirl flow generation portion 30. Then, the waste water in the air supply unit 20 and in the vicinity of the fluid introduction port 12 of the main body unit 11 flows from the fluid introduction port 12 of the main body unit 11 to the fluid discharge port 13 together with the gas by the negative pressure (of course, the air supply unit). Drainage flows into the partial tube 21. Drainage also flows from the other end 21b).

送気管接続部23近傍では、排水は、吐出された気体とともに、ほとんど中心軸11x方向の速度成分だけを有して旋回流発生部30に流入する。こうして旋回流発生部30に流入した排水には、旋回流発生翼32aおよび32bによって、例えば右ねじ方向の旋回流が生じる(中心軸11x方向の速度成分の一部が旋回方向の速度成分に変換される)。旋回流発生部30は、もちろん旋回流発生翼32aおよび32bの外周32cおよび32dが形成する螺旋形状で排水に旋回を与えることになる。なお、図2中の曲線Fは、旋回流発生翼32aおよび32によって生じる旋回流を例示したものである。   In the vicinity of the air supply pipe connection portion 23, the waste water flows into the swirl flow generation portion 30 with almost only the velocity component in the direction of the central axis 11 x together with the discharged gas. For example, a swirl flow in the right-hand screw direction is generated by the swirl flow generating blades 32a and 32b in the waste water flowing into the swirl flow generating unit 30 (a part of the speed component in the direction of the central axis 11x is converted into a speed component in the swirl direction). ) Of course, the swirl flow generator 30 swirls the drainage in a spiral shape formed by the outer peripheries 32c and 32d of the swirl flow generating blades 32a and 32b. A curve F in FIG. 2 illustrates the swirl flow generated by the swirl flow generating blades 32a and 32.

こうして旋回流となった排水が破砕部40に流入する。破砕部40では、排水は、円板リング形状の空隙40Ag〜40Egと、これらを貫くように連通している破砕翼部40A〜40Fの各流路部孔43と、柱体50と破砕突起部45の突起先端45aとの間隙Pを通流することになる。このとき排水は、破砕翼部40A〜40Fの破砕板42に衝突するとともに破砕突起部45や突起先端45aで破砕されて、排水中に含まれる粒状物が微細化される。すなわち排水は破砕部40を通流することで充分破砕され、排水中の粒状物が微細化されるのである。   The drainage that has turned into a swirling flow flows into the crushing section 40. In the crushing part 40, the drainage is made into disc ring-shaped gaps 40Ag to 40Eg, the flow passage part holes 43 of the crushing blade parts 40A to 40F communicating so as to penetrate these, the column body 50, and the crushing protrusions. The gap P with the protrusion tip 45a of the 45 flows through. At this time, the wastewater collides with the crushing plates 42 of the crushing blade portions 40A to 40F and is crushed by the crushing projections 45 and the projection tips 45a, so that the particulate matter contained in the wastewater is refined. That is, the waste water is sufficiently crushed by passing through the crushing section 40, and the particulate matter in the waste water is refined.

こうして、粒状物微細化装置10では、本体部11の中心軸11x近傍を通流する排水が破砕されにくい(微細化されにくい)といった問題が改善されるとともに、流体よりも比重が小さい粒状物が円筒管の中心軸に寄った領域を通流して破砕されにくいという問題も改善される。もちろん、破砕部40においても、本体部11の内面11a(破砕部40では各円環体41の内面41a)と柱体50との間に形成される流路14は、断面積が変化しないから、破砕部40を通流する排水の中心軸方向および旋回方向の流速減少を防ぐことができる。   In this way, in the granular material refinement device 10, the problem that the waste water flowing through the vicinity of the central axis 11x of the main body 11 is difficult to be crushed (difficult to be miniaturized) is improved, and a granular material having a specific gravity smaller than that of the fluid. The problem that it is difficult to be crushed by flowing through a region close to the central axis of the cylindrical tube is also improved. Of course, also in the crushing part 40, the cross-sectional area of the flow path 14 formed between the inner surface 11a of the main body part 11 (in the crushing part 40, the inner surface 41a of each torus 41) and the column body 50 does not change. Further, it is possible to prevent a decrease in the flow velocity in the central axis direction and the swirling direction of the drainage flowing through the crushing portion 40.

また、旋回流の排水が衝突する破砕翼部40A〜Fの各破砕板42は、旋回流発生部30で生じた旋回流のピッチをより短くする作用を発揮する。その結果、各破砕板42は、流体の中心軸11x方向の運動エネルギーを旋回流の運動エネルギーに変換して、旋回流の運動エネルギーを増加させる作用を発揮する。かくして、破砕部40は、充分な破砕を実現することができる。また、破砕部40では、排水中に含まれる粒状物が、多孔質のセラミックで形成されて表面に微細な凹凸を有する円環体41と破砕板42に衝突して、また同様に表面に微細な凹凸を有する柱体50の表面に衝突して、粒状物の微細化が促進され可溶化速度が速くなる。したがって、粒状物微細化装置10を用いれば、粒状物の微細化・可溶化が促進され、バクテリアによる分解が速くなり、処理槽に流入する排水を短時間で高い水質基準に処理し排水が可能となるため処理槽を小型化できる。   Further, each crushing plate 42 of the crushing blade portions 40A to F with which the swirling flow drainage collides exerts an effect of further shortening the pitch of the swirling flow generated in the swirling flow generating unit 30. As a result, each crushing plate 42 exhibits an effect of increasing the kinetic energy of the swirl flow by converting the kinetic energy of the fluid in the direction of the central axis 11x into the kinetic energy of the swirl flow. Thus, the crushing unit 40 can realize sufficient crushing. Moreover, in the crushing part 40, the granular material contained in the waste water collides with the torus 41 and the crushing plate 42 which are formed of porous ceramics and have fine irregularities on the surface, and the surface is similarly fine. Colliding with the surface of the columnar body 50 having irregularities, the refinement of the granular material is promoted and the solubilization speed is increased. Therefore, if the granular material refinement apparatus 10 is used, the refinement and solubilization of the granular material is promoted, the decomposition by bacteria becomes faster, and the wastewater flowing into the treatment tank can be treated to a high water quality standard in a short time and discharged. Therefore, the processing tank can be downsized.

さらに、粒状物微細化装置10では、多孔質のセラミックで形成された破砕板42および柱体50等には、その微細な孔の内部に粒状物を分解処理するバクテリアが生息することができて、排水の処理能力が向上する。
なお、本発明に係る粒状物微細化装置は、その技術的思想を逸脱しない範囲で適宜変形して次実施することができ、上述した実施例に限定されるものではない。例えば、破砕翼部の段数は、上述した実施例に限定されないし、また各突起先端45aを結ぶ曲線で形成される螺旋形状の形成の仕方も、上述した実施例に限定されるものではない。また本体部および柱体の双方または何れか一方が、円形状または正多角形状の断面形状(例えば正六角形や正八角形)を有するものであってもよい。
Furthermore, in the granular material refinement apparatus 10, the crushing plate 42 and the column 50 formed of porous ceramic can inhabit bacteria that decompose the granular material inside the fine holes. , The wastewater treatment capacity is improved.
In addition, the granular material refinement | miniaturization apparatus which concerns on this invention can be implemented suitably after changing suitably in the range which does not deviate from the technical idea, and is not limited to the Example mentioned above. For example, the number of stages of the crushing blade portion is not limited to the above-described embodiment, and the method of forming a spiral shape formed by a curve connecting the protrusion tips 45a is not limited to the above-described embodiment. Further, both or any one of the main body portion and the column body may have a circular or regular polygonal cross-sectional shape (for example, a regular hexagon or a regular octagon).

本発明に係る粒状物微細化装置の一実施例における断面概略構成図である。It is a cross-sectional schematic block diagram in one Example of the granular material refinement | miniaturization apparatus which concerns on this invention. 図1の粒状物微細化装置において、旋回流発生部から、旋回流発生翼とそれらに支持された柱体を、中心軸方向に取り出したときの分解斜視図である。FIG. 2 is an exploded perspective view of the swirl flow generating unit in the granular material refinement apparatus of FIG. 1 when swirl flow generating blades and column bodies supported by them are taken out in the central axis direction. 図1の粒状物微細化装置の破砕部の断面概略構成を示す図である。It is a figure which shows the cross-sectional schematic structure of the crushing part of the granular material refinement | miniaturization apparatus of FIG. 図3の破砕部を構成する破砕翼部の平面および側面の概略構成を示す図である。It is a figure which shows schematic structure of the plane and side surface of the crushing wing | blade part which comprises the crushing part of FIG. 図1に示す粒状物微細化装置の平面概略構成を示すとともに、破砕部における各破砕突起部の配列例を示す図である。It is a figure which shows the example of an arrangement | sequence of each crushing protrusion part in a crushing part while showing the plane schematic structure of the granular material refinement | miniaturization apparatus shown in FIG. 従来の粒状物微細化装置(気液混合装置)の断面概略構成例を示す図である。It is a figure which shows the cross-sectional schematic structure example of the conventional granular material refinement | miniaturization apparatus (gas-liquid mixing apparatus).

符号の説明Explanation of symbols

10 粒状物微細化装置
11 本体部
11a 本体部内面
12 流体導入口
13 流体排出口
14 流路
20 送気部
30 旋回流発生部
40 破砕部
40A〜40F 破砕翼部
42 破砕板
43 流路部孔(切り欠き部)
45 破砕突起部(破砕手段)
50 柱体
50a 柱体表面
DESCRIPTION OF SYMBOLS 10 Granular material refiner 11 Main body part 11a Main body inner surface 12 Fluid introduction port 13 Fluid discharge port 14 Flow path 20 Air supply part 30 Swirling flow generation part 40 Crushing part 40A-40F Crushing blade part 42 Crushing plate 43 Channel part hole (Notch)
45 Crushing protrusion (crushing means)
50 Column 50a Column surface

Claims (6)

旋回流発生部、破砕部、および柱体を備えた柱状管形状をなす本体部、並びに送気部を有する粒状物微細化装置において、
前記本体部の流体導入口側には前記旋回流発生部が位置づけられるとともに、前記旋回流発生部と前記本体部の流体排出口との間には前記破砕部が位置づけられ、
さらに前記本体部の内部には、前記柱体が前記流体導入口側から前記流体排出口側にわたって位置づけられて、前記本体部内面と前記柱体表面の間に流路が形成され、
前記送気部が、送気装置から供給された気体の通流によって、前記送気部近傍の流体を前記本体部の流体導入口から前記流路に導入するとともに、旋回流発生部によって前記流体に旋回流を生じさせて、前記流路を通流する流体を前記破砕部で破砕することを特徴とする粒状物微細化装置。
In a granular material refinement apparatus having a swirl flow generating section, a crushing section, and a main body section having a columnar tube shape including a column body, and an air supply section,
The swirl flow generating portion is positioned on the fluid introduction port side of the main body, and the crushing portion is positioned between the swirl flow generating portion and the fluid discharge port of the main body,
Furthermore, in the inside of the main body portion, the column body is positioned from the fluid introduction port side to the fluid discharge port side, and a flow path is formed between the main body portion inner surface and the column body surface,
The air supply unit introduces the fluid in the vicinity of the air supply unit into the flow path from the fluid introduction port of the main body unit by the flow of the gas supplied from the air supply device, and the swirl flow generator generates A granular material refinement apparatus characterized in that a swirling flow is generated in the crushing unit, and the fluid flowing through the flow path is crushed by the crushing unit.
前記破砕部は複数段に連結された破砕翼部で形成され、前記破砕翼部は前記流路側に突出した破砕手段を有することを特徴とする請求項1に記載の粒状物微細化装置。   The granular material refinement apparatus according to claim 1, wherein the crushing part is formed of crushing wing parts connected in a plurality of stages, and the crushing wing part has crushing means protruding to the flow path side. 前記破砕手段は、破砕板とこの破砕板に形成された複数の切り欠き部を有して、複数の破砕突起部を備えていることを特徴とする請求項2に記載の粒状物微細化装置。   The granular material refinement apparatus according to claim 2, wherein the crushing means includes a crush plate and a plurality of notches formed in the crush plate, and includes a plurality of crush projections. . 前記柱体の中心軸が前記本体部の中心軸上に位置づけられたことを特徴とする請求項1ないし3の何れかに記載の粒状物微細化装置。   The granular material refinement apparatus according to any one of claims 1 to 3, wherein a central axis of the column is positioned on a central axis of the main body. 前記本体部および前記柱体の双方または何れか一方が、円形状または正多角形状の断面形状を有することを特徴とする請求項1ないし4の何れかに記載の粒状物微細化装置。   The granular material refinement apparatus according to any one of claims 1 to 4, wherein both or any one of the main body and the column has a circular or regular polygonal cross-sectional shape. 前記破砕手段および前記柱体の何れか一方若しくは双方が多孔質のセラミックで形成されたことを特徴とする請求項2または3に記載の粒状物微細化装置。   4. The granular material refining apparatus according to claim 2, wherein either one or both of the crushing means and the column body are formed of a porous ceramic.
JP2008132909A 2008-05-21 2008-05-21 Particulate atomizer Pending JP2009279502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132909A JP2009279502A (en) 2008-05-21 2008-05-21 Particulate atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132909A JP2009279502A (en) 2008-05-21 2008-05-21 Particulate atomizer

Publications (1)

Publication Number Publication Date
JP2009279502A true JP2009279502A (en) 2009-12-03

Family

ID=41450536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132909A Pending JP2009279502A (en) 2008-05-21 2008-05-21 Particulate atomizer

Country Status (1)

Country Link
JP (1) JP2009279502A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121960A (en) * 1976-04-06 1977-10-13 Suzuki Yasuo Diffusing apparatus for activated sludge treating equipment
JPS5386961U (en) * 1976-12-20 1978-07-17
JP2001062269A (en) * 1999-08-26 2001-03-13 Ohr:Kk Liquid mixing device
JP2002263678A (en) * 2001-03-05 2002-09-17 Az Shoji Kk Device for producing water which contains fine air bubble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121960A (en) * 1976-04-06 1977-10-13 Suzuki Yasuo Diffusing apparatus for activated sludge treating equipment
JPS5386961U (en) * 1976-12-20 1978-07-17
JP2001062269A (en) * 1999-08-26 2001-03-13 Ohr:Kk Liquid mixing device
JP2002263678A (en) * 2001-03-05 2002-09-17 Az Shoji Kk Device for producing water which contains fine air bubble

Similar Documents

Publication Publication Date Title
JP3677516B2 (en) Fine bubble water generator
US20160346758A1 (en) Systems and methods for processing fluids
JP4749961B2 (en) Bubble generator
KR101036227B1 (en) Micro bubble generator
KR101834909B1 (en) Ozone Water Treatment System Using Lower Energy
JP2006043701A (en) Suspension separator
KR102131677B1 (en) Guide module and micro bubble generator for wastewater treatment provided with the same
JP2009166026A (en) Air bubble generating device through mixing gas/liquid
KR101558822B1 (en) Turbulence flow using chemical rapid blending device
JP2011189240A (en) Cyclone type water treatment device
WO2018151171A1 (en) Bubble generating device for sewage purification
JP2002045667A (en) Device for generating circulating flow
JP2009279502A (en) Particulate atomizer
JP4402626B2 (en) Sewage treatment equipment
JP6342029B1 (en) Sludge treatment equipment
KR20160028170A (en) Micro-bubble generator
KR102039187B1 (en) Apparatus for mixing chemicals with a liquid carrier
JP2006212483A (en) Treatment equipment for sewage containing collected night soil and the like
RU2737273C1 (en) Volkov&#39;s cavitation aerator
WO2000078466A1 (en) High-efficiency gas dissolving device
JP2004049938A (en) Sludge treatment apparatus and method
JP2008149270A (en) Ozone reaction apparatus
JP6578599B2 (en) Underwater chemical injection device
KR102562116B1 (en) Advenced oxidation apparatus using micro-bubble and high concentration organic wast water treatment system having the same
JP2006159175A (en) Mixer and treatment method of polluted water using the mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Effective date: 20120411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120801

Free format text: JAPANESE INTERMEDIATE CODE: A02