JP3677128B2 - Sealing body and manufacturing method thereof - Google Patents

Sealing body and manufacturing method thereof Download PDF

Info

Publication number
JP3677128B2
JP3677128B2 JP27159596A JP27159596A JP3677128B2 JP 3677128 B2 JP3677128 B2 JP 3677128B2 JP 27159596 A JP27159596 A JP 27159596A JP 27159596 A JP27159596 A JP 27159596A JP 3677128 B2 JP3677128 B2 JP 3677128B2
Authority
JP
Japan
Prior art keywords
sealing body
pps
temperature
weight
melt viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27159596A
Other languages
Japanese (ja)
Other versions
JPH1097852A (en
Inventor
啓一郎 鈴木
正人 多田
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP27159596A priority Critical patent/JP3677128B2/en
Publication of JPH1097852A publication Critical patent/JPH1097852A/en
Application granted granted Critical
Publication of JP3677128B2 publication Critical patent/JP3677128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、ポリフェニレンスルフィド製の封口体に関し、更に詳しくは、電気二重層コンデンサ、リチウムイオン電池、ポリアセン電池など、金属容器を電極とし、液体または固体の電解質をその内部に封入してなる素子の開口部を密封するための封口体、及びその製造方法に関する。本発明の封口体は、これらの素子のなかでも、特に表面実装用素子に好適である。
【0002】
【従来技術】
電子機器の小型化、携帯通信機器の発達に伴い、電気二重層コンデンサなどの電荷蓄積を行う素子や、リチウムイオン電池、ポリアセン電池などの電池(電源素子)は、小型化の要求に加えて、表面実装化への対応が求められるようになった。表面実装化に当っては、これらの素子を基板に半田付けするため、封口体にも半田耐熱性が要求される。
従来、これらの素子は、対向電極または正負の電極を構成する2つの部分からなる金属容器、その内部に封入された液体または固体の電解質、及び各電極である金属容器の2つの部分の間に介在し、電気的絶縁とともに内部の電解質を封入する封口体とからなっている。封口体は、非導電性ガスケットまたは絶縁パッキングとも呼ばれる。
【0003】
リチウムイオン電池を例に取って、図1を参照しながら説明する。図1に、ボタン型(偏平型)のリチウム−二酸化マンガン電池の一例を示す。このリチウムイオン電池は、正極1(MnO2)、負極2(Li)、及びこれらの間に有機電解液を含浸させたセパレータ3を有している。正極1、負極2、及びセパレータ3は、皿状の金属ケース5(正極缶)と金属蓋6(負極キャップ)の間に封入され、負極2と金属蓋6との間には、集電層4が配置されている。金属ケース5の開口部は、封口体7を介して金属蓋6で密封されている。電池の種類によって、その内部構造や使用する極材料などが異なるが、金属ケースの開口部が封口体を介して金属蓋で密封されている点では、ほぼ共通した構造を有している。
電気二重層コンデンサは、▲1▼一対の分極性電極、▲2▼一対の分極性電極間に介在させたセパレータ、▲3▼各分極性電極とセパレータに含浸させた電解液、及び▲4▼一対の分極性電極と皿状の金属ケース及び金属蓋との間にそれぞれ配置した集電層を有し、皿状の金属ケースの開口部が封口体を介して金属蓋で密封されている構造を有している。
【0004】
従来より、封口体の材質としては、ポリプロピレンが使用されているが、耐熱性が充分ではなく、160℃以上の高温に曝されると、瞬間的な応力緩和によって封口体が変形し、電解液が漏れるという問題があった。素子の表面実装化の際に、240℃程度の高温での半田付け工程が必要となるが、ポリプロピレン製封口体は、半田耐熱性に劣るため、半田付け工程で密封が破れて漏液したり、その後の使用中に衝撃を受けて漏液することがある。
【0005】
この問題を解決するために、特開平8−64484号公報では、電気二重層コンデンサの封口体として、ポリアミド、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミドイミド、ポリイミド、液晶ポリマーのいずれか1種により構成することが提案されている。これらの中でも、ポリフェニレンスルフィドは、耐熱性、耐薬品性、耐湿性、難燃性、電気特性などに優れているため、特に好ましいものである。
しかしながら、単にポリフェニレンスルフィドを用いて封口体を形成しても、表面実装の際に高温に曝された素子は、使用を続けると電解液の漏洩が発生する場合があった。
【0006】
【発明の解決しようとする課題】
本発明の目的は、表面実装に適した電気二重層コンデンサ、リチウム電池、ポリアセン電池など、金属容器を電極とし、液体または固体の電解質をその内部に封入してなる素子の開口部を密封するための封口体を提供することにある。
本発明の他の目的は、素子の表面実装の際に高温での半田付け工程を経ても、漏液を生じることがない封口体の製造方法を提供することにある。
【0007】
本発明者は、ポリフェニレンスルフィド製の封口体の漏液問題を解決すべく鋭意研究した結果、特定の溶融粘度のポリフェニレンスルフィドを使用し、かつ、封口体に成形後、高温で熱処理を行うことにより、従来品に比べて収縮率が極めて小さく、引張伸度も適度の範囲にある封口体の得られることを見いだした。封口体の射出成形時に、金型温度を高温に保持することによっても、収縮率を小さくすることができる。また、ポリフェニレンスルフィドにガラス繊維を特定割合で配合した樹脂材料を使用することにより、引張伸度を下げすぎることなく、収縮率を更に小さくすることができる。本発明の封口体は、200℃における収縮率が0.1%以下と極めて小さく、該封口体を配置した素子は、表面実装の際に高温での半田付け工程を経ても、漏液を生じることがない。
本発明は、これらの知見に基づいて完成するに至ったものである。
【0008】
【課題を解決するための手段】
本発明によれば、310℃、剪断速度1200/秒で測定した溶融粘度が40〜600Pa・sのポリフェニレンスルフィド80〜100重量%とガラス繊維0〜20重量%とを含有する樹脂材料を成形してなり、200℃における収縮率が0.1%以下であることを特徴とする封口体が提供される。
また、本発明によれば、310℃、剪断速度1200/秒で測定した溶融粘度が40〜600Pa・sポリフェニレンスルフィド80〜100重量%とガラス繊維0〜20重量%とを含有する樹脂材料を封口体の形状に成形後、200〜280℃の温度で1分間〜72時間熱処理することを特徴とする封口体の製造方法が提供される。
なお、本発明において、200℃における収縮率とは、封口体を200℃まで昇温した後、室温(23℃)にまで戻したときの収縮率を意味する。
【0009】
【発明の実施の形態】
本発明で使用するポリフェニレンスルフィド(以下、PPSと略記)は、直鎖状ポリマーであることが好ましい。直鎖状PPSとは、一般に、酢酸ナトリウムや水などの重合助剤の存在下に、二官能性モノマーを主体とするモノマーを重合して得られた実質的に直鎖状のポリマーである。これに対して、架橋タイプのPPSは、一般に、重合助剤を使用することなく重合され、得られた低重合度のポリマーを酸化架橋して増粘(キュアリング)させたものであるが、そのような架橋タイプのPPSは、可撓性や剛性、強度などに劣るため好ましくない。
【0010】
本発明で用いるPPSは、例えば、特公昭63−33775号公報、特公昭53−25589号公報等に開示された公知の方法により得ることができる。例えば、特公昭63−33775号公報に開示されているように、アルカリ金属硫化物とジハロ芳香族化合物とをN−メチルピロリドンなどの極性溶媒中で、水の存在下に、特定の二段階昇温重合させることにより好適に得ることができる。
アルカリ金属硫化物としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムなどを挙げることができる。反応系でNaSHとNaOHを反応させることにより生成させた硫化ナトリウムなども使用することができる。
【0011】
ジハロ芳香族化合物としては、例えば、p−ジクロルベンゼン、m−ジクロルベンゼン、2,5−ジクロルトルエン、p−ジブロムベンゼン、2,6−ジクロルナフタリン、1−メトキシ−2,5−ジクロルベンゼン、4,4′−ジクロルビフェニル、3,5−ジクロル安息香酸、p,p′−ジクロルジフェニルエーテル、4,4′−ジクロルジフェニルスルホン、4,4′−ジクロルジフェニルスルホキシド、4,4′−ジクロルジフェニルケトン、及びこれらの2種以上の混合物などを挙げることができる。
【0012】
本発明で使用するPPSとしては、p−フェニレンスルフィド単位を50重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上含有するものが好ましく、特に、ポリ(p−フェニレンスルフィド)、及びm−フェニレンスルフィド単位を少量成分として含むポリ(p−フェニレンスルフィド/m−フェニレンスルフィド)共重合体が好ましい。p−フェニレンスルフィド単位が少なすぎるPPSを用いると、高温時の封口体の物性が低下する場合がある。
本発明で使用する直鎖状PPSは、実質的に直鎖状であれば、多少の分岐構造または架橋構造などを含むものであってもよく、より具体的には、例えば、重合時に1,3,5−トリクロロベンゼン等の1分子当たり3個以上のハロゲン置換基を有する芳香族ハロゲン化合物を少量存在させることにより、若干の分岐構造を導入したものであってもよい。
【0013】
本発明で使用するPPSは、310℃、剪断速度1200/秒で測定した溶融粘度が40〜600Pa・sの範囲内にあるものである。PPSの溶融粘度が小さすぎると、封口体の強度や引張伸度が低くなり、封口体を金属容器に装着する工程で、例えば、皿状の金属ケースの端部をかしめる際に割れ等の問題が起こるため好ましくない。PPSの溶融粘度が高すぎると、薄肉部を有する封口体の成形が困難となるため好ましくない。PPSの溶融粘度は、好ましくは100〜300Pa・sである。
【0014】
本発明では、樹脂材料として、PPSを単独で使用することができるが、収縮率をより小さくするために、PPSにガラス繊維を配合した樹脂組成物を使用することができる。ガラス繊維としては、特に限定されず、一般に充填材として使用されている短繊維を用いることができるが、直径15μm以下のものが伸度発現の点から好ましい。ガラス繊維は、各種表面処理剤で表面処理したものであってもよい。ガラス繊維の表面に、酸化防止剤を表面処理することもできる。
【0015】
樹脂材料中のPPSとガラス繊維の割合は、PPS80〜100重量%とガラス繊維0〜20重量%である。ガラス繊維を配合することにより、封口体の収縮率をより小さくすることができるが、ガラス繊維の配合割合が大きすぎると、封口体の引張伸度が低下しすぎる。封口体の引張伸度が小さすぎると、封口体を金属容器に装着する工程で、金属容器の端部を曲げて、封口体をかしめる際に割れが発生したり、金属容器との密着性が低下して、漏液の原因となる。ガラス繊維の配合割合は、好ましくは0.1〜20重量%、より好ましくは5〜15重量%である。
【0016】
本発明で使用する樹脂材料には、ガラス繊維以外に、所望に応じて、その他の充填材、離型剤、着色剤、熱安定剤、紫外線安定剤、防錆剤、難燃剤、滑剤、カップリング剤等の添加剤を配合することができる。また、樹脂材料には、本発明の目的を阻害しない範囲内において、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエーテルニトリル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリスチレン、ABS樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の樹脂;ポリオレフィン系ゴム、スチレン系ゴム、フッ素ゴム、シリコンゴム等のエラストマー:等を配合することができる。ただし、これらの配合剤は、樹脂材料(PPS+ガラス繊維)100重量部を基準として、通常、10重量部以下、好ましくは5重量部以下の小割合で使用することが望ましい。
樹脂材料は、そのままで成形加工機械に供給してもよいし、予め押出機を用いて溶融混練し、取り扱いやすいペレット状にしてから成形加工機械に供給してもよい。樹脂材料は、各種の成形加工機械に供給され、所望の封口体の形状に成形される。通常は、射出成形により封口体を成形することが望ましい。
【0017】
樹脂材料を封口体の形状に成形した後、200〜280℃の温度(乾熱条件)で1分間〜72時間熱処理を行う。この熱処理によって、200℃における収縮率が0.1%以下という低収縮率の封口体を得ることができる。射出成形時に、金型温度を高温に保持することによっても、低収縮率の封口体を得ることができるが、成形時間を短くし、樹脂材料の成形時の劣化を防ぎ、さらには、熱処理効果を高めるには、例えば、120〜160℃程度の温度に保持した金型に溶融した樹脂材料を射出し、得られた成形物を200〜280℃の温度で1分間以上72時間以下の時間、熱処理を行うことが好ましい。一般に、熱処理温度が低いほど熱処理時間を長くし、熱処理温度が高いほど熱処理時間を短くすることが望ましい。ただし、熱処理時間が短すぎると、充分に収縮率を下げることが困難となり、逆に、72時間を超えると、工業的、経済的に所望の封口体を得ることが困難となるため好ましくない。熱処理温度は、低すぎると充分な効果を得ることが困難となり、高すぎると変形したり溶融し始めるので、いずれも好ましくない。220〜260℃の温度で、30分間〜2時間程度の範囲内で熱処理することが好ましい。
【0018】
本発明の封口体は、200℃における収縮率が0.1%以下と極めて小さく、かつ、引張伸度が通常2%以上であるため、表面実装に適している。本発明者の検討によると、240℃程度の温度で半田リフローを行う際、素子の内部は200℃程度まで上昇する。このため、封口体を構成するPPSの結晶化が進み、その結果、収縮が起こり、金属容器面との密着性が損なわれる。高温条件下では、熱膨張のため内部の電解液の漏洩を防ぐことができるものの、室温付近に戻して使用すると内部の電解液が漏洩する不良を発生する。これに対して、本発明の封口体を使用すると、半田付けという高温での熱履歴を受けても、収縮率が小さいため、使用中に液漏れを生じることがない素子を得ることができる。
【0019】
本発明の封口体は、引張伸度が2%以上であることが好ましい。封口体は、金属容器に装着した後、金属容器の一部を曲げ、封口体をかしめる工程を経る。この際、封口体の伸度が低いと金属との密着性が低下すると共に封口体本体が割れる等の問題を引き起こす。このため、本発明では引張伸度が2%以上であることが好ましい。なお、本発明でいう引張伸度とは、同一の組成物から得た引張試験用の試料を用いて、封口体を得る工程と同様の熱履歴を加えた後、測定して得られる引張伸度をいう。
本発明の封口体は、金属容器を電極とし、液体または固体の電解質をその内部に封入してなる素子の開口部を密封するための封口体として有用である。このような素子としては、電気二重層コンデンサなどの電荷蓄積を行う素子、あるいはリチウムイオン電池、ポリアセン電池などの電池(電源素子)などを挙げることができる。
【0020】
【実施例】
以下、実施例及び比較例を示し、本発明を更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
【0021】
[実施例1]
ポリフェニレンスルフィド(呉羽化学工業製;310℃、剪断速度1200/秒における溶融粘度が210Pa・s)を、280〜310℃のシリンダー温度に調整した二軸押出機へ供給して、ペレットを作製した。得られたペレットを射出成型機(日精樹脂工業製、PS−10E)へ供給し、金型温度150℃、シリンダー温度280〜300℃にて、外径19.4mm、内径17mm、高さ1.1mmの封口体を成形した。このようにして得られた封口体を240℃で1時間熱処理した後、室温(23℃)まで冷却した。
収縮率の測定
上記得られた封口体を200℃まで昇温した後、室温にまで戻したときの収縮率を測定したところ、0.08%であった。
引張伸度の測定
前記で得られたペレットから引張試験(JIS K7113)用の試験片を成形し、240℃に1時間置き、室温まで戻してから引張伸度を測定したところ、8.0%であった。
漏液試験
得られた封口体を金属容器に装着し、プロピレンカーボネートにLiClO4を溶解させた電解液を用いたリチウムイオン電池を10個作成した。作成したリチウムイオン電池の裏面に半田ペーストを塗り、180℃に予熱後、240℃まで昇温して、ガラスエポキシ製基板に半田付けを行った。半田付け後、室温に7日間置き電解液の漏液の有無を観察した。1個の試料中、漏液が見られた試料は無かった。
【0022】
[実施例2]
実施例1と同じPPS9kgとガラス繊維(日本電子硝子製、直径13μm)1kgを混合し、280〜310℃のシリンダー温度に調整した二軸押出機へ供給し、ペレットを作製した。得られたペレットを射出成型機(日精樹脂工業製、PS−10E)へ供給し、金型温度150℃、シリンダー温度280〜300℃にて、外径19.4mm、内径17mm、高さ1.1mmの封口体を成形した。得られた封口体を240℃に1時間置いて熱処理を行った後、室温にまで冷却した。
収縮率の測定
得られた封口体を200℃まで昇温し、室温まで戻したときの収縮率を測定したところ、0.04%であった。
引張伸度の測定
前記得られたペレットから引張試験片を成形し、240℃に1時間置き、室温まで戻してから引張伸度を測定したところ、3.2%であった。
漏液試験
得られた封口体を金属容器に装着し、プロピレンカーボネートにLiClO4を溶解させた電解液を用いたリチウムイオン電池を10個作成した。作成したリチウムイオン電池の裏面に半田ペーストを塗り、180℃に予熱後、240℃まで昇温して、カラスエポキシ製基板に半田付けを行った。半田付け後、室温に7日間置き電解液の漏液の有無を観察した。1個の試料中、漏液が見られた試料は無かった。
【0023】
[実施例3]
PPS8.5kgとガラス繊維1.5kgを混合した他は、実施例2と同様の操作を行った。結果を表1に示す。
【0024】
[比較例1]
得られた封口体を熱処理しなかった他は、実施例1と同様の操作を行った。結果を表1に示す。
【0025】
[比較例2]
得られた封口体を熱処理しなかった他は、実施例2と同様の操作を行った。結果を表1に示す。
【0026】
[比較例3]
PPS7kgとガラス繊維3kgを使用した他は、実施例2と同様の操作を行った。結果を表1に示す。
【0027】
[実施例4]
溶融粘度210Pa・sのPPSをPPS(呉羽化学工業製;310℃、剪断速度1200/秒における溶融粘度120Pa・s)に代えたこと以外は、実施例2と同様の操作を行った。結果を表1に示す。
【0028】
[比較例4]
溶融粘度210Pa・sのPPSをPPS(呉羽化学工業製;310℃、剪断速度1200/秒における溶融粘度が20Pa・s)に代えたこと以外は、実施例2と同様の操作を行った。結果を表1に示す。
【0029】
【表1】

Figure 0003677128
(脚注)
PPS(1):溶融粘度(310℃、剪断速度1200/秒)210Pa・s
PPS(2):溶融粘度(310℃、剪断速度1200/秒)120Pa・s
PPS(3):溶融粘度(310℃、剪断速度1200/秒)20Pa・s
【0030】
【発明の効果】
本発明によれば、半田耐熱性に優れたPPS製の封口体が提供される。本発明の封口体は、収縮率が小さく、かつ、適度な引張伸度を有しているため、電気二重層コンデンサ、リチウムイオン電池、ポリアセン電池など、電荷蓄積を行う素子や電源素子などであって、特に表面実装用の素子に好適に使用される。
【図面の簡単な説明】
【図1】図1は、リチウムイオン電池の一例の構造を示す断面図である。
【符号の説明】
1:正極(MnO2
2:負極(Li)
3:有機電解液を含浸させたセパレータ
4:集電層
5:皿状の金属ケース(正極缶)
6:金属蓋(負極キャップ)
7:封口体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealing body made of polyphenylene sulfide, and more specifically, an element formed by enclosing a liquid or solid electrolyte inside a metal container such as an electric double layer capacitor, a lithium ion battery, or a polyacene battery. It is related with the sealing body for sealing an opening part, and its manufacturing method. Among these elements, the sealing body of the present invention is particularly suitable for a surface mounting element.
[0002]
[Prior art]
As electronic devices become smaller and mobile communication devices develop, elements that store charge, such as electric double layer capacitors, and batteries (power supply elements) such as lithium ion batteries and polyacene batteries, in addition to demands for miniaturization, Response to surface mounting is now required. In surface mounting, since these elements are soldered to the substrate, the sealing body is also required to have solder heat resistance.
Conventionally, these elements have a metal container composed of two parts constituting a counter electrode or a positive and negative electrode, a liquid or solid electrolyte enclosed therein, and two parts of the metal container that is each electrode. It consists of a sealing body that interposes and encloses the internal electrolyte together with electrical insulation. The sealing body is also called a non-conductive gasket or insulating packing.
[0003]
A lithium ion battery will be described as an example with reference to FIG. FIG. 1 shows an example of a button-type (flat type) lithium-manganese dioxide battery. This lithium ion battery has a positive electrode 1 (MnO 2 ), a negative electrode 2 (Li), and a separator 3 impregnated with an organic electrolyte therebetween. The positive electrode 1, the negative electrode 2, and the separator 3 are enclosed between a dish-shaped metal case 5 (positive electrode can) and a metal lid 6 (negative electrode cap), and a current collecting layer is disposed between the negative electrode 2 and the metal lid 6. 4 is arranged. The opening of the metal case 5 is sealed with a metal lid 6 via a sealing body 7. Depending on the type of battery, the internal structure and the pole material used differ, but the metal case has a substantially common structure in that the opening of the metal case is sealed with a metal lid via a sealing body.
The electric double layer capacitor comprises (1) a pair of polarizable electrodes, (2) a separator interposed between the pair of polarizable electrodes, (3) an electrolyte solution impregnated in each polarizable electrode and the separator, and (4) A structure having current collecting layers disposed between a pair of polarizable electrodes, a dish-shaped metal case and a metal lid, and the opening of the dish-shaped metal case being sealed with a metal lid via a sealing body have.
[0004]
Conventionally, polypropylene is used as the material of the sealing body, but the heat resistance is not sufficient, and when exposed to a high temperature of 160 ° C. or higher, the sealing body deforms due to instantaneous stress relaxation, and the electrolyte solution There was a problem of leaking. When the device is mounted on the surface, a soldering process at a high temperature of about 240 ° C. is necessary. However, since the polypropylene sealing body is inferior in solder heat resistance, the sealing is broken in the soldering process and the liquid leaks. During subsequent use, the battery may be shocked and leaked.
[0005]
In order to solve this problem, Japanese Patent Application Laid-Open No. 8-64484 discloses any one of polyamide, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyamideimide, polyimide, and liquid crystal polymer as a sealing body for an electric double layer capacitor. Is proposed. Among these, polyphenylene sulfide is particularly preferable because it is excellent in heat resistance, chemical resistance, moisture resistance, flame retardancy, electrical characteristics, and the like.
However, even if the sealing body is simply formed using polyphenylene sulfide, the element exposed to a high temperature during surface mounting may cause leakage of the electrolyte solution if continued to be used.
[0006]
[Problem to be Solved by the Invention]
An object of the present invention is to seal an opening of an element formed by using a metal container as an electrode and enclosing a liquid or solid electrolyte therein, such as an electric double layer capacitor suitable for surface mounting, a lithium battery, or a polyacene battery. It is to provide a sealing body.
Another object of the present invention is to provide a method of manufacturing a sealing body that does not cause liquid leakage even after a soldering process at a high temperature during surface mounting of an element.
[0007]
As a result of diligent research to solve the leakage problem of the sealing body made of polyphenylene sulfide, the present inventor uses polyphenylene sulfide having a specific melt viscosity and performs heat treatment at a high temperature after forming the sealing body. It was found that a sealing body having an extremely small shrinkage rate and a tensile elongation in an appropriate range as compared with a conventional product was obtained. The shrinkage rate can also be reduced by maintaining the mold temperature at a high temperature during injection molding of the sealing body. Further, by using a resin material in which glass fibers are blended with polyphenylene sulfide at a specific ratio, the shrinkage rate can be further reduced without excessively reducing the tensile elongation. The sealing body of the present invention has an extremely small shrinkage rate at 200 ° C. of 0.1% or less, and the element in which the sealing body is disposed causes liquid leakage even after a high temperature soldering process during surface mounting. There is nothing.
The present invention has been completed based on these findings.
[0008]
[Means for Solving the Problems]
According to the present invention, a resin material containing 80 to 100% by weight of polyphenylene sulfide having a melt viscosity of 40 to 600 Pa · s measured at 310 ° C. and a shear rate of 1200 / sec and 0 to 20% by weight of glass fiber is molded. Thus, a sealing body having a shrinkage rate at 200 ° C. of 0.1% or less is provided.
Moreover, according to the present invention, a resin material containing 80 to 100% by weight of polyphenylene sulfide having a melt viscosity of 40 to 600 Pa · s measured at 310 ° C. and a shear rate of 1200 / second and 0 to 20% by weight of glass fiber is sealed. There is provided a method for producing a sealing body, which is heat-treated at a temperature of 200 to 280 ° C for 1 minute to 72 hours after being formed into a body shape.
In the present invention, the shrinkage at 200 ° C. means the shrinkage when the sealing body is heated to 200 ° C. and then returned to room temperature (23 ° C.).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The polyphenylene sulfide (hereinafter abbreviated as PPS) used in the present invention is preferably a linear polymer. The linear PPS is generally a substantially linear polymer obtained by polymerizing a monomer mainly composed of a bifunctional monomer in the presence of a polymerization assistant such as sodium acetate or water. On the other hand, the cross-linked PPS is generally polymerized without using a polymerization aid, and the resulting low-polymerization degree polymer is oxidized and crosslinked to increase the viscosity (curing). Such a cross-linking type PPS is not preferable because it is inferior in flexibility, rigidity, strength, and the like.
[0010]
The PPS used in the present invention can be obtained, for example, by a known method disclosed in Japanese Patent Publication No. Sho 63-33775, Japanese Patent Publication No. 53-25589, and the like. For example, as disclosed in Japanese Patent Publication No. 63-33775, an alkali metal sulfide and a dihaloaromatic compound are heated in a specific two-step process in a polar solvent such as N-methylpyrrolidone in the presence of water. It can be suitably obtained by warm polymerization.
Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Sodium sulfide produced by reacting NaSH and NaOH in the reaction system can also be used.
[0011]
Examples of the dihaloaromatic compound include p-dichlorobenzene, m-dichlorobenzene, 2,5-dichlorotoluene, p-dibromobenzene, 2,6-dichloronaphthalene, 1-methoxy-2,5. -Dichlorobenzene, 4,4'-dichlorobiphenyl, 3,5-dichlorobenzoic acid, p, p'-dichlorodiphenyl ether, 4,4'-dichlorodiphenyl sulfone, 4,4'-dichlorodiphenyl sulfoxide 4,4'-dichlorodiphenyl ketone, and a mixture of two or more thereof.
[0012]
The PPS used in the present invention preferably contains p-phenylene sulfide units in an amount of 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, especially poly (p-phenylene sulfide), And a poly (p-phenylene sulfide / m-phenylene sulfide) copolymer containing m-phenylene sulfide units as a minor component. When PPS having too few p-phenylene sulfide units is used, the physical properties of the sealing body at high temperatures may be deteriorated.
As long as the linear PPS used in the present invention is substantially linear, it may contain some branched structure or a crosslinked structure. A slightly branched structure may be introduced by allowing a small amount of an aromatic halogen compound having 3 or more halogen substituents per molecule such as 3,5-trichlorobenzene.
[0013]
The PPS used in the present invention has a melt viscosity measured at 310 ° C. and a shear rate of 1200 / sec in the range of 40 to 600 Pa · s. If the melt viscosity of PPS is too small, the strength and tensile elongation of the sealing body will be low, and in the process of mounting the sealing body on a metal container, for example, when the end of a dish-shaped metal case is caulked, It is not preferable because a problem occurs. If the melt viscosity of PPS is too high, it is not preferable because it becomes difficult to form a sealing body having a thin portion. The melt viscosity of PPS is preferably 100 to 300 Pa · s.
[0014]
In the present invention, PPS can be used alone as the resin material, but a resin composition in which glass fibers are blended with PPS can be used in order to reduce the shrinkage rate. The glass fiber is not particularly limited, and short fibers generally used as a filler can be used, but those having a diameter of 15 μm or less are preferable from the viewpoint of elongation. The glass fiber may be surface-treated with various surface treatment agents. An antioxidant can be surface-treated on the surface of the glass fiber.
[0015]
The ratio of PPS and glass fiber in the resin material is 80 to 100% by weight of PPS and 0 to 20% by weight of glass fiber. By blending the glass fiber, the shrinkage rate of the sealing body can be made smaller. However, if the blending ratio of the glass fiber is too large, the tensile elongation of the sealing body is too low. If the tensile elongation of the sealing body is too small, the end of the metal container is bent in the process of attaching the sealing body to the metal container, and cracking occurs when the sealing body is caulked, or adhesion to the metal container Lowers and causes leakage. The blending ratio of the glass fiber is preferably 0.1 to 20% by weight, more preferably 5 to 15% by weight.
[0016]
Resin materials used in the present invention include, in addition to glass fibers, other fillers, mold release agents, colorants, heat stabilizers, UV stabilizers, rust preventives, flame retardants, lubricants, cups, as desired. Additives such as ring agents can be blended. Further, the resin material includes polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene within the range not impairing the object of the present invention. , Polyether nitrile, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polystyrene, ABS resin, epoxy resin, phenol resin, urethane resin, liquid crystal polymer, etc .; polyolefin rubber, styrene rubber, fluoro rubber, silicon Elastomers such as rubber: etc. can be blended. However, these compounding agents are desirably used in a small proportion of usually 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the resin material (PPS + glass fiber).
The resin material may be supplied to the molding machine as it is, or may be supplied to the molding machine after being melt-kneaded in advance using an extruder to form a pellet that is easy to handle. The resin material is supplied to various molding machines and molded into a desired sealing body shape. Usually, it is desirable to mold the sealing body by injection molding.
[0017]
After the resin material is molded into the shape of the sealing body, heat treatment is performed at a temperature of 200 to 280 ° C. (dry heat condition) for 1 minute to 72 hours. By this heat treatment, it is possible to obtain a sealing body having a low shrinkage rate of 0.1% or less at 200 ° C. By holding the mold temperature at a high temperature during injection molding, it is possible to obtain a sealing body with a low shrinkage rate, but shortening the molding time, preventing deterioration during molding of the resin material, and further heat treatment effect In order to increase, for example, a molten resin material is injected into a mold maintained at a temperature of about 120 to 160 ° C., and the resulting molded product is heated at a temperature of 200 to 280 ° C. for 1 minute to 72 hours, It is preferable to perform a heat treatment. In general, it is desirable that the heat treatment time is longer as the heat treatment temperature is lower, and the heat treatment time is shorter as the heat treatment temperature is higher. However, if the heat treatment time is too short, it is difficult to sufficiently reduce the shrinkage rate. Conversely, if it exceeds 72 hours, it is difficult to obtain a desired sealing body industrially and economically, which is not preferable. If the heat treatment temperature is too low, it will be difficult to obtain a sufficient effect, and if it is too high, it will be deformed or start to melt, which is not preferable. Heat treatment is preferably performed at a temperature of 220 to 260 ° C. within a range of about 30 minutes to 2 hours.
[0018]
The sealing body of the present invention has an extremely small shrinkage ratio at 200 ° C. of 0.1% or less and a tensile elongation of usually 2% or more, and thus is suitable for surface mounting. According to the study by the present inventors, when solder reflow is performed at a temperature of about 240 ° C., the inside of the device rises to about 200 ° C. For this reason, crystallization of PPS constituting the sealing body proceeds, and as a result, shrinkage occurs, and adhesion with the metal container surface is impaired. Under high temperature conditions, leakage of the internal electrolyte solution can be prevented due to thermal expansion, but when used by returning to around room temperature, a defect in which the internal electrolyte solution leaks occurs. On the other hand, when the sealing body of the present invention is used, an element that does not cause liquid leakage during use can be obtained because the shrinkage rate is small even when receiving a heat history at a high temperature of soldering.
[0019]
The sealing body of the present invention preferably has a tensile elongation of 2% or more. After the sealing body is mounted on the metal container, a part of the metal container is bent and the sealing body is caulked. At this time, if the elongation of the sealing body is low, the adhesion with the metal is lowered and the sealing body itself is broken. For this reason, in the present invention, the tensile elongation is preferably 2% or more. The tensile elongation referred to in the present invention refers to a tensile elongation obtained by measurement after adding a thermal history similar to the step of obtaining a sealing body using a sample for a tensile test obtained from the same composition. Say degree.
The sealing body of the present invention is useful as a sealing body for sealing an opening of an element formed by using a metal container as an electrode and enclosing a liquid or solid electrolyte therein. Examples of such an element include an element that accumulates charges such as an electric double layer capacitor, or a battery (power supply element) such as a lithium ion battery or a polyacene battery.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited only to this Example.
[0021]
[Example 1]
Polyphenylene sulfide (manufactured by Kureha Chemical Industry; 310 ° C., melt viscosity at a shear rate of 1200 / sec of 210 Pa · s) was supplied to a twin screw extruder adjusted to a cylinder temperature of 280 to 310 ° C. to produce pellets. The obtained pellets were supplied to an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., PS-10E), the mold temperature was 150 ° C., the cylinder temperature was 280 to 300 ° C., the outer diameter was 19.4 mm, the inner diameter was 17 mm, the height was 1. A 1 mm sealing body was formed. The sealing body thus obtained was heat-treated at 240 ° C. for 1 hour and then cooled to room temperature (23 ° C.).
Measurement of shrinkage rate After the temperature of the obtained sealing body was raised to 200C and then returned to room temperature, the shrinkage rate was 0.08%.
Measurement of tensile elongation A test piece for a tensile test (JIS K7113) was formed from the pellets obtained above, placed at 240 ° C for 1 hour, returned to room temperature, and then measured for tensile elongation. It was 8.0%.
Leakage test The obtained sealing body was attached to a metal container, and 10 lithium ion batteries using an electrolytic solution in which LiClO 4 was dissolved in propylene carbonate were prepared. A solder paste was applied to the back surface of the prepared lithium ion battery, preheated to 180 ° C., heated to 240 ° C., and soldered to a glass epoxy substrate. After soldering, it was placed at room temperature for 7 days and the presence or absence of electrolyte leakage was observed. There was no sample in which leakage was observed in one sample.
[0022]
[Example 2]
The same PPS 9 kg as in Example 1 and 1 kg of glass fiber (manufactured by JEOL Glass, diameter 13 μm) were mixed and supplied to a twin screw extruder adjusted to a cylinder temperature of 280 to 310 ° C. to produce pellets. The obtained pellets were supplied to an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., PS-10E), the mold temperature was 150 ° C., the cylinder temperature was 280 to 300 ° C., the outer diameter was 19.4 mm, the inner diameter was 17 mm, the height was 1. A 1 mm sealing body was formed. The obtained sealing body was subjected to heat treatment at 240 ° C. for 1 hour, and then cooled to room temperature.
Measurement of shrinkage rate When the obtained sealing body was heated to 200C and returned to room temperature, the shrinkage rate was measured and found to be 0.04%.
Measurement of tensile elongation A tensile test piece was molded from the obtained pellets, placed at 240C for 1 hour, returned to room temperature, and measured for tensile elongation, which was 3.2%.
Leakage test The obtained sealing body was attached to a metal container, and 10 lithium ion batteries using an electrolytic solution in which LiClO 4 was dissolved in propylene carbonate were prepared. A solder paste was applied to the back surface of the prepared lithium ion battery, preheated to 180 ° C., heated to 240 ° C., and soldered to a glass epoxy substrate. After soldering, it was placed at room temperature for 7 days and the presence or absence of electrolyte leakage was observed. There was no sample in which leakage was observed in one sample.
[0023]
[Example 3]
The same operation as in Example 2 was performed except that 8.5 kg of PPS and 1.5 kg of glass fiber were mixed. The results are shown in Table 1.
[0024]
[Comparative Example 1]
The same operation as in Example 1 was performed except that the obtained sealing body was not heat-treated. The results are shown in Table 1.
[0025]
[Comparative Example 2]
The same operation as in Example 2 was performed except that the obtained sealing body was not heat-treated. The results are shown in Table 1.
[0026]
[Comparative Example 3]
The same operation as in Example 2 was performed except that 7 kg of PPS and 3 kg of glass fiber were used. The results are shown in Table 1.
[0027]
[Example 4]
The same operation as in Example 2 was performed, except that PPS having a melt viscosity of 210 Pa · s was replaced with PPS (manufactured by Kureha Chemical Industry; 310 ° C., melt viscosity of 120 Pa · s at a shear rate of 1200 / sec). The results are shown in Table 1.
[0028]
[Comparative Example 4]
The same operation as in Example 2 was performed except that PPS having a melt viscosity of 210 Pa · s was replaced with PPS (manufactured by Kureha Chemical Industry; 310 ° C., melt viscosity at 1200 / sec shear rate of 20 Pa · s). The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003677128
(footnote)
PPS (1): Melt viscosity (310 ° C., shear rate 1200 / sec) 210 Pa · s
PPS (2): Melt viscosity (310 ° C., shear rate 1200 / sec) 120 Pa · s
PPS (3): Melt viscosity (310 ° C., shear rate 1200 / sec) 20 Pa · s
[0030]
【The invention's effect】
According to the present invention, a PPS sealing body excellent in solder heat resistance is provided. Since the sealing body of the present invention has a small shrinkage ratio and an appropriate tensile elongation, it is an element such as an electric double layer capacitor, a lithium ion battery, or a polyacene battery, a power storage element, and the like. In particular, it is preferably used for a surface mounting element.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of an example of a lithium ion battery.
[Explanation of symbols]
1: Positive electrode (MnO 2 )
2: Negative electrode (Li)
3: Separator impregnated with organic electrolyte 4: Current collecting layer 5: Dish-shaped metal case (positive electrode can)
6: Metal lid (negative electrode cap)
7: Sealing body

Claims (4)

310℃、剪断速度1200/秒で測定した溶融粘度が40〜600Pa・sのポリフェニレンスルフィド80〜100重量%とガラス繊維0〜20重量%とを含有する樹脂材料を成形してなり、200℃における収縮率が0.1%以下であることを特徴とする封口体。A resin material containing 80 to 100% by weight of polyphenylene sulfide having a melt viscosity of 40 to 600 Pa · s measured at 310 ° C. and a shear rate of 1200 / sec and 0 to 20% by weight of glass fiber is molded at 200 ° C. A sealing body having a shrinkage ratio of 0.1% or less. 成形後、200〜280℃の温度で熱処理されたものである請求項1記載の封口体。The sealing body according to claim 1, which is heat-treated at a temperature of 200 to 280 ° C. after molding. 引張伸度が2%以上である請求項1または2記載の封口体。The sealing body according to claim 1 or 2, wherein the tensile elongation is 2% or more. 310℃、剪断速度1200/秒で測定した溶融粘度が40〜600Pa・sポリフェニレンスルフィド80〜100重量%とガラス繊維0〜20重量%とを含有する樹脂材料を封口体の形状に成形後、200〜280℃の温度で1分間〜72時間熱処理することを特徴とする封口体の製造方法。A resin material containing 80 to 100% by weight of polyphenylene sulfide having a melt viscosity of 40 to 600 Pa · s and a glass fiber of 0 to 20% by weight measured at 310 ° C. and a shear rate of 1200 / sec. A method for producing a sealing body, characterized by heat-treating at a temperature of 280 ° C for 1 minute to 72 hours.
JP27159596A 1996-09-21 1996-09-21 Sealing body and manufacturing method thereof Expired - Fee Related JP3677128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27159596A JP3677128B2 (en) 1996-09-21 1996-09-21 Sealing body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27159596A JP3677128B2 (en) 1996-09-21 1996-09-21 Sealing body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1097852A JPH1097852A (en) 1998-04-14
JP3677128B2 true JP3677128B2 (en) 2005-07-27

Family

ID=17502273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27159596A Expired - Fee Related JP3677128B2 (en) 1996-09-21 1996-09-21 Sealing body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3677128B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050328A (en) * 2000-08-02 2002-02-15 Seiko Instruments Inc Nonaqueous electrolyte secondary cell
US8252458B2 (en) 2003-10-09 2012-08-28 Eveready Battery Company, Inc. Electrolyte-absoring, non-permeable sealing materials
US7923137B2 (en) 2003-10-09 2011-04-12 Eveready Battery Company, Inc. Nonaqueous cell with improved thermoplastic sealing member
JP4873838B2 (en) * 2004-03-12 2012-02-08 セイコーインスツル株式会社 Gasket, coin or button type electrochemical cell, and method for manufacturing gasket
JP2006145468A (en) * 2004-11-24 2006-06-08 Nagano Keiki Co Ltd Sealing structure of sensor, and sealing method of sensor
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
JP2008027849A (en) * 2006-07-25 2008-02-07 Denso Corp Seal member
JP7229854B2 (en) * 2019-06-04 2023-02-28 マクセル株式会社 NONAQUEOUS ELECTROLYTE BATTERY AND MANUFACTURING METHOD THEREOF

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566374A (en) * 1979-06-28 1981-01-22 Hitachi Maxell Ltd Manufacturing method of alkaline cell
JPS62151462A (en) * 1985-12-26 1987-07-06 Toyo Soda Mfg Co Ltd Polyphenylene sulfide resin composition
JPH0513059A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery
JP3145493B2 (en) * 1992-06-24 2001-03-12 東芝電池株式会社 Manufacturing method of alkaline battery
JPH0831429A (en) * 1994-07-21 1996-02-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JPH0864484A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lectric double layer capacitor
JP3374555B2 (en) * 1994-11-29 2003-02-04 松下電器産業株式会社 Battery with terminal
US5656392A (en) * 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries

Also Published As

Publication number Publication date
JPH1097852A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
EP1271673B1 (en) Battery-use separator, battery-use power generating element and battery
JP3677128B2 (en) Sealing body and manufacturing method thereof
KR100369858B1 (en) Polyimide battery
JPH0464628B2 (en)
US20120183819A1 (en) Battery pack, method for manufacturing battery pack, electronic device, and molded part
JP5370781B2 (en) Sealed battery case and sealed battery using the same
EP0760383A1 (en) Ion-conductive film and precursor film therefor
TW200534311A (en) Aluminum electrolytic capacitor and its manufacturing method
US9962871B2 (en) Insert molding method and insert molded article
US5332770A (en) Electronic device sealing resin compositions and sealed electronic devices
JP2000315481A (en) Nonaqueous electrolyte secondary battery
KR910003975B1 (en) Polyarylene thioether composition for sealing
US5246795A (en) High temperature lithium solid cathode electrochemical cells
CN111742426A (en) Solid polymer electrolyte
CN111213256A (en) Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
US7092243B2 (en) Niobium solid electrolytic capacitor
US4172182A (en) Energy conversion devices
JPH04202363A (en) Polyarylene sulfide resin composition
KR20070084816A (en) Electric double layer capacitor
JPH05198292A (en) Nonaqueous electrolyte battery
KR20050122980A (en) A cathode tab attachment for secondary battery & secondary battery manufactured using the same
KR790000880B1 (en) Sheathed device of electrolytic condenser
KR100893778B1 (en) Electric double layer capacitor and making method having gasket
JP3482970B2 (en) Organic electrolyte battery
JP3363533B2 (en) Solid electrolytic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees