JP3674991B2 - Rotating polygon mirror drive - Google Patents

Rotating polygon mirror drive Download PDF

Info

Publication number
JP3674991B2
JP3674991B2 JP21854195A JP21854195A JP3674991B2 JP 3674991 B2 JP3674991 B2 JP 3674991B2 JP 21854195 A JP21854195 A JP 21854195A JP 21854195 A JP21854195 A JP 21854195A JP 3674991 B2 JP3674991 B2 JP 3674991B2
Authority
JP
Japan
Prior art keywords
bearing
polygon mirror
rotary polygon
driving device
mirror driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21854195A
Other languages
Japanese (ja)
Other versions
JPH0961741A (en
Inventor
浩一郎 大畑
孝雄 ▲吉▼嗣
才明 松本
剛 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21854195A priority Critical patent/JP3674991B2/en
Publication of JPH0961741A publication Critical patent/JPH0961741A/en
Application granted granted Critical
Publication of JP3674991B2 publication Critical patent/JP3674991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はレーザービームプリンター(以下LBPと略す)などでレーザーのスキャンに利用される回転多面鏡駆動装置に関するものである。
【0002】
【従来の技術】
近年、出力装置として高速で印字品質の高いLBPの市場への浸透が拡大している。このLBPの印字精度は、光学スキャナユニットの機械的精度により大きく左右されるが、中でも回転多面鏡駆動装置にはLBPの光学系の基準として、回転多面鏡の中心と回転軸の中心と装置取付け用位置決め部の中心を高精度に構成する必要があるため、種々の方法がとられている。
【0003】
以下に従来の回転多面鏡駆動装置について説明する。
図3は従来の回転多面鏡駆動装置の断面図である。図3において、1は回転軸で回転多面鏡10とロータマグネット4とロータフレーム3とが固定されるロータボス2が焼き嵌めなどの方法で固定されロータ11を構成している。回転多面鏡駆動装置の取付け部および取付け用位置決め部5aを有するブラケット5は、ロータマグネット4と磁路を構成する磁性体を積層したステータコア8にロータマグネット4と対向して電磁トルクを発生するステータコイル9をほどこしたステータ巻線13と駆動IC14が実装されたステータ基板6とで構成されるステータ12と、回転軸1を軸支する軸受7とが固定されている。
【0004】
以上のように構成された回転多面鏡駆動装置について、その動作を説明する。まず、ステータコイル9に電流が供給されるとロータマグネット4との間で電磁力を発生し、軸受7により軸支されている回転軸1を中心にロータ11が回転しロータ11に固定されている回転多面鏡10により照射されたレーザの偏光走査を行う。
【0005】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、顧客から要求される装置取付け用位置決め部の寸法および形状および材料に応じたブラケットを作成する必要があるため顧客要求に対する対応が困難であり、また回転多面鏡駆動装置の構成部品の共用化が望めず製品コストダウンの向上が求められないという問題点を有していた。
【0006】
また、上記軸受がボールベアリングである場合、ブラケットとボールベアリングとの取付け精度やボールベアリングと回転軸とのクリアランスによる誤差が大きく回転軸と装置取付け用位置決め部の中心ズレを小さくすることが困難であった(同軸度でφ0.02〜φ0.03の実力)。
【0007】
本発明は上記従来の問題点を解決するもので、顧客から要求される装置取付け用位置決め部の寸法および形状および材料に対して幅広い対応が容易でかつ安価にて可能であり、また回転多面鏡駆動装置の構成部品の共用化にて低コスト化を実現し、回転多面鏡の中心軸と装置取付け用位置決め部を高精度にて構成した回転多面鏡駆動装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
この目的を達成するために本発明の回転多面鏡駆動装置は、回転軸とロータマグネットを有し回転多面鏡が固定されたロータと、前記ロータマグネットと対向して電磁トルクを発生するステータ巻線と回転軸を軸支する軸受が固定される金属ベースプリント基板で構成されたステータを有し、前記軸受は軸受内径と同時加工にて形成された外径円筒部が形成され、前記軸受の外径円筒部回転多面鏡駆動装置取付け用位置決め部材が直接固定される構成を有している。また、軸受には動圧流体軸受を採用した。
【0009】
【作用】
この構成によって、顧客から要求される装置取付け用位置決め部の寸法および形状および材料に対して幅広い対応が容易でかつ安価にて可能となり、また回転多面鏡駆動装置の構成部品の共用化にて低コスト化を実現することができる。
【0010】
また、動圧流体軸受の採用により、回転多面鏡の中心軸と装置取付け用位置決め部との同軸度を高精度にて構成した回転多面鏡駆動装置を実現することができる。
【0011】
【実施例】
(実施例1)
以下本発明の第1の実施例について、図面を参照しながら説明する。
【0012】
図1において、1は回転軸で回転多面鏡10とロータマグネット4とロータフレーム3とが固定されるロータボス2が焼き嵌めなどの方法で固定されロータ11を構成している。回転多面鏡駆動装置の取付け部を有するステータ基板6は鉄基板などの金属ベースプリント基板であり、ロータマグネット4と磁路を構成する磁性体を積層したステータコア8にロータマグネット4と対向して電磁トルクを発生するステータコイル9をほどこしたステータ巻線13と、回転多面鏡駆動装置を動作させる駆動IC14が実装されステータ12を構成している。軸受7は前記ステータ基板6に直接固定されており軸受7の内径にはヘリングボーン溝が形成され、流体軸受を構成し回転軸1を回転可能に軸支している。カラー15は装置取付け用位置決め部材であり軸受7の外径円筒部7aに直接かしめられているか、または圧入され固定されている。
【0013】
以上のように構成された回転多面鏡駆動装置について、その動作を説明する。まず、ステータコイル9に電流が供給されるとロータマグネット4との間で電磁力を発生し、軸受7により軸支されている回転軸1を中心にロータ11が回転しロータ11に固定されている回転多面鏡10により照射されたレーザの偏光走査を行う。このとき回転軸1は回転により発生した圧力により軸受7の機械的な中心で浮上し回転する。また、軸受7の内径と外径円筒部7aは同時加工により仕上げられているため、外径円筒部7aと回転軸1の同軸度はほぼ0となる。
【0014】
以上のように第1の実施例によれば、カラー15を軸受7の外径円筒部7aに直接固定することにより、顧客から要望される装置取付け用位置決め部5aの寸法および形状および材料に対して幅広い対応が軸受7の形状をかえることなく容易でかつ安価に構成できる。また、軸受7の共用化が可能となり軸受開発,製作の低コスト化を実現することができ、かつ回転軸1とカラー15の同軸精度を容易に高めることができる。
【0015】
また、動圧流体軸受の採用により、回転多面鏡の中心軸と装置取付け用位置決め部との同軸度を高精度にて構成した回転多面鏡駆動装置を実現することができる。
【0016】
なお、本実施例では軸受に動圧流体軸受を使用した構成としたが、通常の含油メタルでも同様であることはいうまでもない。
【0017】
(実施例2)
以下本発明の第2の実施例について、図面を参照しながら説明する。
【0018】
図2において、1は回転軸で回転多面鏡10とロータマグネット4とロータフレーム3とが固定されるロータボス2が焼き嵌めなどの方法で固定されロータ11を構成している。回転多面鏡駆動装置の取付け部を有するステータ基板6は鉄基板などの金属ベースプリント基板であり、ロータマグネット4と磁路を構成する磁性体を積層したステータコア8にロータマグネット4と対向して電磁トルクを発生するステータコイル9をほどこしたステータ巻線13と、回転多面鏡駆動装置を動作させる駆動IC14が実装されステータ12を構成している。軸受7は前記ステータ基板6に直接固定されており、この外径部は装置取付け用位置決め部5aを共用しており軸受7の内径と同軸加工してある。軸受7の内径にはヘリングボーン溝が形成され、流体軸受を構成し回転軸1を回転可能に軸支している。
【0019】
以上のように構成された回転多面鏡駆動装置について、その動作を説明する。まず、ステータコイル9に電流が供給されるとロータマグネット4との間で電磁力を発生し、軸受7により軸支されている回転軸1を中心にロータ11が回転しロータ11に固定されている回転多面鏡10により照射されたレーザの偏光走査を行う。このとき回転軸1は回転により発生した圧力により軸受7の中心で浮上し回転する。
【0020】
以上のように第2の実施例によれば、装置取付け用位置決め部5aを軸受7の外径部にほどこし軸受7の内径と同軸加工することにより軸受7の中心と装置取付け用位置決め部5aの同軸度を高精度にすることができ、動圧流体軸受の採用により軸受7の中心と回転軸1の中心の同軸度を小さくすることが可能となり、回転多面鏡の中心軸と装置取付け用位置決め部との同軸度を高精度にかつ、カラーなどの部材を用いることなく安価に構成した回転多面鏡駆動装置を実現することができる。
【0021】
【発明の効果】
以上のように本発明は、軸受7に動圧流体軸受を採用し装置取付け用位置決め部5aを軸受7の外径部にほどこし軸受7の内径と同軸加工することにより、
(1)回転多面鏡の中心軸と装置取付け用位置決め部との同軸度を高精度にて構成した回転多面鏡駆動装置を実現することができる。(同軸度φ0.02以下)
また、カラー15を軸受7に直接固定することにより、
(2)顧客から要望される装置取付け用位置決め部の寸法および形状および材料に対して幅広い対応が容易でかつ安価にて可能になる。
(3)回転多面鏡駆動装置の構成部品の共用化が可能となり、低コスト化を実現することができる。
等々優れた回転多面鏡駆動装置を実現できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施例における回転多面鏡駆動装置の断面図
【図2】本発明の第2の実施例における回転多面鏡駆動装置の断面図
【図3】従来の回転多面鏡駆動装置の断面図
【符号の説明】
1 回転軸
2 ロータボス
3 ロータフレーム
4 ロータマグネット
5 ブラケット
5a 位置決め部
6 ステータ基板
7 軸受
7a 外径円筒部
8 ステータコア
9 ステータコイル
10 回転多面鏡
11 ロータ
12 ステータ
13 ステータ巻線
14 駆動IC
15 カラー
[0001]
[Industrial application fields]
The present invention relates to a rotary polygon mirror driving device used for laser scanning in a laser beam printer (hereinafter abbreviated as LBP) or the like.
[0002]
[Prior art]
In recent years, the penetration of the high-speed LBP with high printing quality as an output device has increased. The printing accuracy of this LBP is greatly influenced by the mechanical accuracy of the optical scanner unit, but in particular, the rotating polygon mirror drive device uses the center of the rotating polygon mirror, the center of the rotating shaft, and the device mounting as the standard of the LBP optical system. Since it is necessary to configure the center of the positioning part with high accuracy, various methods are employed.
[0003]
A conventional rotary polygon mirror driving device will be described below.
FIG. 3 is a sectional view of a conventional rotary polygon mirror driving apparatus. In FIG. 3, reference numeral 1 denotes a rotating shaft, and a rotor boss 2 to which the rotary polygon mirror 10, the rotor magnet 4, and the rotor frame 3 are fixed is fixed by a method such as shrink fitting to constitute the rotor 11. The bracket 5 having the mounting portion of the rotary polygon mirror driving device and the mounting positioning portion 5a is a stator that generates electromagnetic torque opposite to the rotor magnet 4 on the stator core 8 in which the rotor magnet 4 and a magnetic material constituting a magnetic path are laminated. A stator 12 composed of a stator winding 13 with a coil 9 and a stator substrate 6 on which a drive IC 14 is mounted, and a bearing 7 that supports the rotary shaft 1 are fixed.
[0004]
The operation of the rotary polygon mirror driving apparatus configured as described above will be described. First, when an electric current is supplied to the stator coil 9, an electromagnetic force is generated between the rotor magnet 4 and the rotor 11 rotates around the rotating shaft 1 supported by the bearing 7 to be fixed to the rotor 11. Polarization scanning of the laser irradiated by the rotating polygonal mirror 10 is performed.
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration described above, it is difficult to respond to customer requirements because it is necessary to create a bracket according to the dimensions, shape, and material of the device mounting positioning portion required by the customer. There was a problem in that it was not possible to share components, and improvement in product cost was not required.
[0006]
In addition, when the bearing is a ball bearing, errors due to the mounting accuracy between the bracket and the ball bearing and the clearance between the ball bearing and the rotating shaft are large, and it is difficult to reduce the center misalignment between the rotating shaft and the device mounting positioning portion. (The ability of φ0.02 to φ0.03 in terms of coaxiality).
[0007]
The present invention solves the above-mentioned conventional problems, and can be easily and inexpensively applied to a wide range of sizes, shapes and materials of positioning portions for mounting devices required by customers. It is an object of the present invention to provide a rotary polygon mirror drive device that realizes cost reduction by sharing the components of the drive device and that has a central axis of the rotary polygon mirror and a device mounting positioning portion configured with high accuracy.
[0008]
[Means for Solving the Problems]
In order to achieve this object, a rotary polygon mirror driving apparatus according to the present invention includes a rotor having a rotary shaft and a rotor magnet to which the rotary polygon mirror is fixed, and a stator winding that generates electromagnetic torque opposite to the rotor magnet. a bearing for supporting the rotary shaft has a stator formed by a metal base printed circuit board fixed, the bearing outer diameter cylindrical portion formed by co-processed and the bearing inner diameter is formed, out of the bearing The positioning member for attaching the rotary polygon mirror driving device is directly fixed to the diameter cylindrical portion . A hydrodynamic bearing was adopted as the bearing.
[0009]
[Action]
With this configuration, it is possible to easily and inexpensively handle a wide range of dimensions, shapes, and materials of the positioning part for mounting the device required by the customer, and it can be reduced by sharing the components of the rotary polygon mirror driving device. Cost reduction can be realized.
[0010]
In addition, the adoption of the hydrodynamic bearing makes it possible to realize a rotary polygon mirror driving device in which the coaxiality between the central axis of the rotary polygon mirror and the device mounting positioning portion is configured with high accuracy.
[0011]
【Example】
(Example 1)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0012]
In FIG. 1, reference numeral 1 denotes a rotating shaft, and a rotor boss 2 to which a rotary polygon mirror 10, a rotor magnet 4 and a rotor frame 3 are fixed is fixed by a method such as shrink fitting to constitute a rotor 11. The stator substrate 6 having a mounting portion of the rotary polygon mirror driving device is a metal base printed circuit board such as an iron substrate. The stator core 8 is formed by laminating the rotor magnet 4 and a magnetic material constituting a magnetic path so as to oppose the rotor magnet 4 and electromagnetically. A stator winding 13 having a stator coil 9 that generates torque and a driving IC 14 for operating the rotary polygon mirror driving device are mounted to constitute the stator 12. The bearing 7 is directly fixed to the stator substrate 6, and a herringbone groove is formed on the inner diameter of the bearing 7 to constitute a fluid bearing and rotatably support the rotary shaft 1. The collar 15 is a positioning member for mounting the device and is directly caulked to the outer diameter cylindrical portion 7a of the bearing 7 or is press-fitted and fixed.
[0013]
The operation of the rotary polygon mirror driving apparatus configured as described above will be described. First, when an electric current is supplied to the stator coil 9, an electromagnetic force is generated between the rotor magnet 4 and the rotor 11 rotates around the rotating shaft 1 supported by the bearing 7 to be fixed to the rotor 11. Polarization scanning of the laser irradiated by the rotating polygonal mirror 10 is performed. At this time, the rotating shaft 1 floats and rotates at the mechanical center of the bearing 7 due to the pressure generated by the rotation. In addition, since the inner diameter and the outer diameter cylindrical portion 7a of the bearing 7 are finished by simultaneous processing, the coaxiality between the outer diameter cylindrical portion 7a and the rotary shaft 1 becomes substantially zero.
[0014]
As described above, according to the first embodiment, by directly fixing the collar 15 to the outer diameter cylindrical portion 7a of the bearing 7, the size, shape and material of the device mounting positioning portion 5a desired by the customer can be obtained. Therefore, it can be easily and inexpensively configured without changing the shape of the bearing 7. In addition, the bearing 7 can be shared, so that the cost for developing and manufacturing the bearing can be reduced, and the coaxial accuracy of the rotary shaft 1 and the collar 15 can be easily increased.
[0015]
In addition, the adoption of the hydrodynamic bearing makes it possible to realize a rotary polygon mirror driving device in which the coaxiality between the central axis of the rotary polygon mirror and the device mounting positioning portion is configured with high accuracy.
[0016]
In this embodiment, the hydrodynamic bearing is used as the bearing, but it goes without saying that the same applies to ordinary oil-impregnated metal.
[0017]
(Example 2)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
[0018]
In FIG. 2, reference numeral 1 denotes a rotating shaft and a rotor boss 2 to which the rotary polygon mirror 10, the rotor magnet 4 and the rotor frame 3 are fixed is fixed by a method such as shrink fitting to constitute the rotor 11. The stator substrate 6 having a mounting portion of the rotary polygon mirror driving device is a metal base printed circuit board such as an iron substrate. The stator core 8 is formed by laminating the rotor magnet 4 and a magnetic material constituting a magnetic path so as to oppose the rotor magnet 4 and electromagnetically. A stator winding 13 having a stator coil 9 that generates torque and a driving IC 14 for operating the rotary polygon mirror driving device are mounted to constitute the stator 12. The bearing 7 is directly fixed to the stator substrate 6, and the outer diameter portion shares the device mounting positioning portion 5 a and is coaxially processed with the inner diameter of the bearing 7. A herringbone groove is formed in the inner diameter of the bearing 7 to form a fluid bearing and rotatably support the rotary shaft 1.
[0019]
The operation of the rotary polygon mirror driving apparatus configured as described above will be described. First, when an electric current is supplied to the stator coil 9, an electromagnetic force is generated between the rotor magnet 4 and the rotor 11 rotates around the rotating shaft 1 supported by the bearing 7 to be fixed to the rotor 11. Polarization scanning of the laser irradiated by the rotating polygonal mirror 10 is performed. At this time, the rotating shaft 1 floats and rotates at the center of the bearing 7 due to the pressure generated by the rotation.
[0020]
As described above, according to the second embodiment, the device mounting positioning portion 5a is applied to the outer diameter portion of the bearing 7 so as to be coaxial with the inner diameter of the bearing 7, whereby the center of the bearing 7 and the device mounting positioning portion 5a are formed. The coaxiality can be made highly accurate, and the use of a hydrodynamic bearing makes it possible to reduce the coaxiality between the center of the bearing 7 and the center of the rotary shaft 1, and positioning the central axis of the rotary polygon mirror and the device mounting position. Therefore, it is possible to realize a rotary polygon mirror driving device having a high degree of concentricity with the unit and having a low cost without using a member such as a collar.
[0021]
【The invention's effect】
As described above, the present invention adopts a hydrodynamic bearing as the bearing 7 and applies the apparatus mounting positioning portion 5a to the outer diameter portion of the bearing 7 so as to be coaxial with the inner diameter of the bearing 7.
(1) It is possible to realize a rotary polygon mirror driving device in which the coaxiality between the central axis of the rotary polygon mirror and the device mounting positioning portion is configured with high accuracy. (Concentricity φ0.02 or less)
Further, by directly fixing the collar 15 to the bearing 7,
(2) It is easy and inexpensive to deal with a wide range of dimensions, shapes and materials of the positioning part for mounting the device desired by the customer.
(3) The components of the rotary polygon mirror driving device can be shared, and the cost can be reduced.
An excellent rotating polygon mirror driving device can be realized.
[Brief description of the drawings]
FIG. 1 is a sectional view of a rotary polygon mirror driving apparatus according to a first embodiment of the present invention. FIG. 2 is a sectional view of a rotary polygon mirror driving apparatus according to a second embodiment of the present invention. Sectional view of mirror drive device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Rotor boss 3 Rotor frame 4 Rotor magnet 5 Bracket 5a Positioning part 6 Stator substrate 7 Bearing 7a Outer diameter cylindrical part 8 Stator core 9 Stator coil 10 Rotating polygon mirror 11 Rotor 12 Stator 13 Stator winding 14 Drive IC
15 colors

Claims (6)

回転軸とロータマグネットを有し回転多面鏡が固定されたロータと、前記ロータマグネットと対向して電磁トルクを発生するステータ巻線を有するステータと回転軸を軸支する軸受が固定される金属ベースプリント基板を有し、前記軸受は軸受内径と同時加工にて形成された外径円筒部が形成され、前記軸受の外径円筒部回転多面鏡駆動装置取付け用位置決め部材が直接固定された回転多面鏡駆動装置。A metal base on which a rotor having a rotating shaft and a rotor magnet and having a rotating polygon mirror fixed thereto, a stator having a stator winding facing the rotor magnet and generating electromagnetic torque, and a bearing supporting the rotating shaft are fixed Rotating with a printed circuit board, wherein the bearing has an outer diameter cylindrical portion formed by simultaneous processing with the bearing inner diameter, and a rotary polygon mirror drive positioning member fixed directly to the outer diameter cylindrical portion of the bearing Polyhedral mirror drive device. 軸受は回転軸またはスリーブの何れか一方に動圧を発生するためのヘリングボーン溝を有する動圧流体軸受である請求項1項記載の回転多面鏡駆動装置。  2. The rotary polygon mirror driving device according to claim 1, wherein the bearing is a hydrodynamic bearing having a herringbone groove for generating a dynamic pressure on either the rotating shaft or the sleeve. 軸受は含油メタルである請求項1項記載の回転多面鏡駆動装置。  2. The rotary polygon mirror driving device according to claim 1, wherein the bearing is an oil-impregnated metal. 装置取付け用部材は軸受に直接かしめにより固定される請求項1または請求項2または請求項3記載の回転多面鏡駆動装置。  4. The rotary polygon mirror driving device according to claim 1, wherein the device mounting member is fixed directly to the bearing by caulking. 装置取付け用位置決め部材は軸受に直接圧入により固定される請求項1または請求項2または請求項3記載の回転多面鏡駆動装置。  4. The rotary polygon mirror driving device according to claim 1, wherein the device mounting positioning member is fixed directly to the bearing by press-fitting. 軸受は銅系材料である請求項項記載の回転多面鏡駆動装置。6. The rotary polygon mirror driving device according to claim 5, wherein the bearing is made of a copper-based material.
JP21854195A 1995-08-28 1995-08-28 Rotating polygon mirror drive Expired - Fee Related JP3674991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21854195A JP3674991B2 (en) 1995-08-28 1995-08-28 Rotating polygon mirror drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21854195A JP3674991B2 (en) 1995-08-28 1995-08-28 Rotating polygon mirror drive

Publications (2)

Publication Number Publication Date
JPH0961741A JPH0961741A (en) 1997-03-07
JP3674991B2 true JP3674991B2 (en) 2005-07-27

Family

ID=16721552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21854195A Expired - Fee Related JP3674991B2 (en) 1995-08-28 1995-08-28 Rotating polygon mirror drive

Country Status (1)

Country Link
JP (1) JP3674991B2 (en)

Also Published As

Publication number Publication date
JPH0961741A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
US5969844A (en) Rotor and polygon scanner that incorporates the rotor
WO2008068910A1 (en) Polygon mirror scanner motor and method of manufacturing the same
JPH05683B2 (en)
JP3674991B2 (en) Rotating polygon mirror drive
JP2569859Y2 (en) Light beam scanning device
JP3410567B2 (en) Optical deflector
JPH10225079A (en) Motor
JP4636711B2 (en) Outer rotor motor for rotating polygon mirror and optical deflection scanning apparatus including the same
JP3877435B2 (en) Bearing device
JP2010039337A (en) Polygon mirror scanner motor
JP2001061266A (en) Dc brushless motor
JP3410080B2 (en) Motor core positioning method and polygon scanner motor
JP3087482B2 (en) Rotating polygon mirror drive
JP2002341282A (en) Rotary polygon mirror driving device
JP2888361B2 (en) Dynamic pressure air bearing type polygon scanner
JP2002233120A (en) Electromagnetic rotating machine
JP4067686B2 (en) Hydrodynamic air bearing motor and polygon scanner
JP3402668B2 (en) Scanner motor
JPH09230269A (en) Bearing structure for polygon mirror and polygon scanner driving device having the bearing structure
JPH0787679B2 (en) Toroidal motor
JPH08278462A (en) Driving device for rotary polygon mirror
JPH11289740A (en) Stepping motor
JP2002303815A (en) Dynamic pressure air bearing type polygon scanner, and processing method for dynamic pressure air bearing type polygon scanner
JP2003224942A (en) Electromagnetic rotating machine
JPH09131032A (en) Rotary-polygon-mirror driving apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees