JP3673546B2 - Observation optical equipment - Google Patents

Observation optical equipment Download PDF

Info

Publication number
JP3673546B2
JP3673546B2 JP1700395A JP1700395A JP3673546B2 JP 3673546 B2 JP3673546 B2 JP 3673546B2 JP 1700395 A JP1700395 A JP 1700395A JP 1700395 A JP1700395 A JP 1700395A JP 3673546 B2 JP3673546 B2 JP 3673546B2
Authority
JP
Japan
Prior art keywords
optical
pair
optical axis
eyepiece
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1700395A
Other languages
Japanese (ja)
Other versions
JPH08211303A (en
Inventor
野田頭  英文
俊美 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1700395A priority Critical patent/JP3673546B2/en
Publication of JPH08211303A publication Critical patent/JPH08211303A/en
Application granted granted Critical
Publication of JP3673546B2 publication Critical patent/JP3673546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は光学機器の光学像を常に一定の位置に保持するように光軸を偏向させる像振れ補正機能を有する双眼鏡等の観察用光学機器に関するものである。
【0002】
【従来の技術】
従来、双眼鏡の構造は日本工業規格プリズム双眼鏡(JIS B 7121)に記載されているように(図4)、左右の対物レンズ100、プリズム101、接眼レンズ102を中心軸で回転可能に結合し、左右の接眼レンズ102間の眼幅調整を可能としている。この場合の左右の光軸調整は実開昭52−33866号に記載されているように、プリズムの位置を移動させて光軸の中心位置を補正する方式、あるいは特開昭57−33763号に記載されているように、対物レンズを偏心移動させて光軸調整を行なう方式、さらに同様に接眼レンズを偏心移動させて光軸調整を行なう方式がある。
【0003】
いずれの方式においても、眼幅調整の最小幅から最大幅の変化において、左右の光軸のズレは所定の量以下でなくてはならない。つまり光軸調整を行なった双眼鏡は、図4に示す中心軸Lに対して左右の光軸がほぼ平行に調整されることになる。
【0004】
【発明が解決しようとする課題】
上記従来例に示したような光軸調整では対物レンズ、プリズム、接眼レンズを通る光路を光軸として左右それぞれの光軸を眼幅調整の中心軸に対してほぼ平行にすると同時に、眼幅調整の際は対物レンズ、プリズム、接眼レンズが左右それぞれ一体となって中心軸に対して回動する必要があった。
【0005】
そこで双眼鏡の振れを検出する振れ検出手段や振れ検出手段に基づいて振れを補正する補正光学系や、制御手段を含む電気回路を双眼鏡の中に実装する像振れ補正機能を有する双眼鏡の場合では、補正光学系も光路の一部であるので従来の光軸調整を行なった場合、眼幅調整の際に対物レンズ、プリズム、接眼レンズと一体的に中心軸に対して回動する必要がある。
【0006】
しかしながら、補正光学系には補正光学系を駆動するためのアクチュエータや電気回路が一体となって固定されており、左右の補正光学系を同一の振れ検出手段に基づいて制御するためには、左右の補正光学系の振れ検出手段は眼幅調整の際にも回動しない構造にすることが望ましい。
【0007】
さらに補正光学系を対物レンズと正立プリズムの間に実装することが双眼鏡を小型にするために必要であるが、その場合には対物レンズも眼幅調整の際に回動しない構造にすることが望ましい。
【0008】
本出願に係る発明の目的は、補正光学系や振れ検出手段、対物レンズ等を眼幅調整時にも不動とし、正立プリズムと接眼レンズを一体的に対物レンズの光軸まわりに回動させて眼幅を変化させる構造とした場合においても適切な光軸調整を行なうことができる観察用光学系機器を提供するものである。
【0009】
【課題を解決するための手段および作用】
本出願に係る発明の目的を実現する第1の構成は、請求項1に記載のように、並設された一対の対物光学系と、該各対物光学系からの光学像を正立像とするように反射する一対の正立プリズムと、該各正立プリズムからの光学像を観察側へ導く一対の接眼光学系と、該一対の対物光学系を保持する眼幅調整に際しては不動の固定部材と、眼幅調整可能に該固定部材に対して回動する一対の回転枠とを有し、該一方の回転枠に該一方の正立プリズムと接眼光学系を保持し、該他方の回転枠に該他方の正立プリズムと接眼光学系を保持した観察用光学機器であって、該一対の対物光学系のうち少なくとも一方の対物光学系を光軸に直交する方向に移動調整可能とする第1の光軸調整手段と、該一対の回転枠のうち少なくとも一方に保存された正立プリズムと接眼光学系を光軸に直交する方向に相対的に移動調整可能とする第2の光軸調整手段とを有することを特徴とする観察用光学機器にある。
【0010】
この構成では、固定部材に対して第1の光軸調整手段により対物光学系の光軸調整が行え、眼幅調整時に該固定部材に対して回動可能な回転枠に保持される正立プリズムと接眼光学系の光軸調整が第2の光軸調整手段で行え、対物光学系から接眼光学系の光軸調整を行うことができるので、一対の回転枠を回動して眼幅調整を行っても左右の光軸のずれが生じない光軸調整が可能となる。
【0011】
本出願に係る発明の目的を実現する第2の構成は、請求項2に記載のように、並設された一対の対物光学系と、該各対物光学系からの光学像を移動させる一対の補正光学系と、該各補正光学系からの光学像を正立像とするように反射する一対の正立プリズムと、該各正立プリズムからの光学像を観察側へ導く一対の接眼光学系と、該一対の対物光学系および該一対の補正光学系を保持する眼幅調整に際しては不動の固定部材と、光学機器本体の振れを検出する振れ検出手段と、該振れ検出手段の検出出力に基づいて該補正光学系の作動を制御する駆動制御手段と、該制御手段を含む電気回路を実装した回路基板と、該回路基板に電力を供給するバッテリーと、眼幅調整可能に該固定部材に対して回動する一対の回転枠とを有し、該一方の回転枠に該一方の正立プリズムと接眼光学系を保持し、該他方の回転枠に該他方の正立プリズムと接眼光学系を保持した観察用光学機器であって、該一対の対物光学系のうち少なくとも一方の対物光学系を光軸に直交する方向に移動調整可能とする第1の光軸調整手段と、該一対の回転枠のうち少なくとも一方に保持された正立プリズムと接眼光学系を光軸に直交する方向に相対的に移動調整可能とする第2の光軸調整手段とを有することを特徴とする観察用光学機器にある。
【0012】
この構成では、補正光学系等の振れ補正手段を装備しても、固定部材に対して第1の光軸調整手段により対物光学系の光軸調整が行え、眼幅調整時に該固定部材に対して回動可能な回転枠に保持される正立プリズムと接眼光学系の光軸調整が第2の光軸調整手段で行え、対物光学系から接眼光学系の光軸調整を行うことができるので、一対の回転枠を回動して眼幅調整を行っても左右の光軸のずれが生じない光軸調整が可能となる。
【0013】
【実施例】
(第1の実施例)
図1は本発明の第1の実施例の双眼鏡の平面断面図、図2,図3は図1の一部を表わす図である。
【0014】
これらの図において、1は第1の固定部材、2は第2の固定部材であり、第1の固定部材1と一体的に構成されている。
【0015】
3は第1の対物レンズ鏡筒であり、4は第2の対物レンズ鏡筒であり、それぞれ取付用穴3a,3b及び4a,4bを有している。第1の対物レンズ鏡筒3及び第2の対物レンズ鏡筒4はそれぞれ取付用ビス5,6及び7,8で第1の固定部材1に固定されている。ここで取付用穴3a,3b,4a,4bは取付用ビス5,6,7,8に対して穴径が多少大きく設定されているので取付用ビス5,6,7,8を締付ける前は光軸と垂直方向に対物レンズ鏡筒3,4を移動させることができる。L1R,L1Lは対物レンズであり、それぞれ対物レンズ鏡筒3,4に保持されている。9は第1の回転枠であり、10は第2の回転枠であり、それぞれ第2の固定部材に回動自在に支持されている。ここで第1の回転枠9の回動の中心軸は対物レンズL1Rの光軸とほぼ一致しており、第2の回転枠10の回動の中心軸は対物レンズL1Lの光軸とほぼ一致している。
【0016】
L2R,L2Lは接眼レンズであり、それぞれ第1の回転枠9、第2の回転枠10に保持されている。11は第1のプリズムホルダーであり、12は第2のプリズムホルダーである。第1のプリズムホルダー11は図2に示すように、バネ13a,13b,13cを介してビス14a,14b,14cで第1の回転枠9に保持されており、ビス14a,14b,14cの締め具合で接眼レンズL2Rの光軸に対して傾き調整を行なうことが可能である。
【0017】
第2のプリズムホルダー12も第1のプリズムホルダー11と同様にバネ15a,15b,15cを介してビス16a,16b,16cで第2の回転枠10に保持されており、ビス16a,16b,16cの締め具合で接眼レンズL2Lの光軸に対して傾き調整を行なうことが可能である。
【0018】
L3R,L3Lは前プリズムであり、L4R,L4Lは後プリズムである。前プリズムL3R、後プリズムL4Rは第1のプリズムホルダー11に保持されており、前プリズムL3Lと後プリズムL4Lは第2のプリズムホルダー12に保持されている。
【0019】
29は第1の連動板、30は第2の連動板であり、それぞれ第1のプリズムホルダー11及び第2のプリズムホルダー12にビス31,ビス32で固定されている。第1の連動板29及び第2の連動板30には、それぞれギヤ部29a,30aを備えており、これらのギア部29a,30aは互いにかみ合っており、第1の回転枠9と第2の回転枠10の連動をとっている。これにより、第1の回転枠9と第2の回転枠10を回転させると、第2の固定部材2に対して同一角度だけ回転し、これにより眼幅調整を行なえるようになっている。
【0020】
17は第1の可変頂角プリズム(VAP)ユニットであり、18は第2の頂角プリズム(VAP)ユニットである。
【0021】
第1のVAPユニット17は対物レンズL1Rと前プリズムL3Rの間に、また第2のVAPユニット18は対物レンズL1Lと前プリズムL3Lの間にそれぞれ配設され、第1の固定部材1に固定されている。第1のVAPユニット17の本体19の中には、VAP素子21が収容されている。
【0022】
VAP素子21は2枚の透明板の間がベローズにより液密に接続され、その中に所定の屈折率を有する透明液体が収容されている。
【0023】
VAP素子21は図3にも示すように、保持枠23a,23bに保持され、保持枠23a,23bに形成されたコイル部25a,25bおよび本体19に形成されたマグネット部27とで電磁アクチュエータを構成し、その駆動によりVAP素子21の対物レンズL1R側の透明板がピッチ(垂直)方向に傾けられ、前プリズムL3R側の透明板がヨー(水平)方向に傾けられる。これによりVAP素子21を通過する光線が偏向させられる。同様に第2のVAPユニット18の本体20の中にはVAP素子22が収容されている。
【0024】
VAP素子22は2枚の透明板の間がベローズにより液密に接続され、その中に所定の屈折率を有する透明液体が収容されている。VAP素子2aは図3にも示すように保持枠24a,24bに保持され保持枠24a,24bに形成されたコイル部26a,26bおよび本体20に形成されたマグネット部28とで電磁アクチュエータを構成し、その駆動によりVAP素子22の対物レンズL1L側の透明板がピッチ(垂直)方向に傾けられ、前プリズムL3L側の透明板がヨー(水平)方向に傾けられる。これによりVAP素子22を通過する光線が偏向させられる。
【0025】
33は制御回路基板であり、第1のVAPユニット17と第2のVAPユニット18の駆動を制御する回路が収容され、第1,第2のVAPユニット17,18と電気的に結合している。制御回路基板33はビス36,37で第1の固定部材1に固定されている。
【0026】
34,35は振れ検出センサであり、双眼鏡全体の垂直方向の振れを振れ検出センサ34で検出し、水平方向の振れを振れ検出センサ35で検出する。振れ検出センサ34,35は制御回路基板33に実装されている。38はベッテリーケースであり、内部にはバッテリーが収容されており不図示のリード線で制御回路基板33に電力を供給できるようになっている。39は前カバーであり、対物レンズL1R,L1Lの光束を遮らないよう穴が形成され第1の固定部材1に固着されている。
【0027】
次に、上述の実施例の双眼鏡の光軸調整と動作について説明する。
【0028】
まず、第1の固定部材に第1のVAPユニット17及び第2のVAPユニット18を取付けた状態で、VAP素子21,22の対物レンズL1R,L1L側の透明板と前プリズムL3R,L3L側の透明板が平行になるよう電気的な調整を行なう。さらに対物レンズL1R,L1Lを保持した第1の対物レンズ鏡筒3及び第2の対物レンズ鏡筒4を光軸に対して垂直方向に動かして対物レンズL1RとVAP素子21を通る光束の光軸(以下第1の対物系光軸という)と、対物レンズL1LとVAP素子22を通る光束の光軸(以下第2の対物系光軸という)をそれぞれ第1の回転枠9及び第2の回転枠10の回動の中心軸と一致させるよう調整を行なう。ここで第1の回転枠9と第2の回転枠10の回動の中心軸は第2の固定部材2のそれぞれの回動摺動面の機械的精度を高めることでほぼ平行にできるため調整後は第1の対物系光軸と第2の対物系光軸はほぼ平行に調整されたことになる。
【0029】
次に接眼レンズL2R,L2Lを第1の回転枠9と第2の回転枠10に保持させた状態で、前プリズムL3R,L3L後プリズムL4R,L4Lを保持した第1のプリズムホルダー11及び第2のプリズムホルダー12のビス14a,14b,14c及び16a,16b,16cの締め具合を調整することにより、前プリズムL3Rと後プリズムL4Rと接眼レンズL2Rを通る光束の光軸(以下第1の接眼系光軸という)と前プリズムL3Lと後プリズムL4Lと接眼レンズL2Lを通る光束の光軸(以下、第2の接眼系光軸という)をそれぞれ第1の回転軸枠9と第2の回転枠10の中心軸と一致させるよう調整を行なう。ここで、第1の回転枠9と第2の回転枠10の回動の中心軸は第2の固定部材2のそれぞれの回動摺動面の機械的精度を高めることでほぼ平行にできるため、調整後は第1の接眼系光軸と第2の接眼系光軸はほぼ平行に調整されることになる。
【0030】
以上の調整によって、第1の対物系光軸と第1の接眼系光軸は第1の回転枠9の回動の中心軸と一致し、第2の対物系光軸と第2の接眼系光軸は第2の回転枠10の回動の中心軸と一致することになるので第1の回転枠9及び第2の回転枠10を回動させて眼幅調整を行なう際でも、左右の光軸は傾くことなく良好な像を観察することが可能となる。
【0031】
以上のように光軸調整をなされた双眼鏡で観察者は第1の回転枠9及び第2の回転枠10を内側、あるいは外側に回動させて眼幅調整を行なう。
【0032】
さらに観察者が不図示のスイッチを作動させることにより、第1のVAPユニット17及び第2のVAPユニット18が振れ補正状態となり、振れ検出センサ34,35の出力に基づいてVAP素子21,22が傾動され、手ぶれ等による像の振れが補正された像を観察することができる。また、観察者が不図示のスイッチの作動を解除することにより、VAP素子21,22は当初調整された状態に復帰され、振れ補正状態は解除となり通常の双眼鏡としての像を観察することができる。
【0033】
上述の実施例では接眼系の光軸調整を前プリズムL3R,L3L、後プリズムL4R,L4Lを保持するプリズムホルダー11,12を傾けて行なったが、接眼レンズL2R,L2Lを偏心させて光軸調整を行なっても良いことは勿論である。
【0034】
また、前述の説明においては、左右の対物レンズを夫々左右の回転枠の回動中心軸と一致させるように調整を行った後に、左右のプリズムホルダーを夫々左右の回転枠の回動中心軸に一致させるような調整を行う例を挙げたが、先に左右のプリズムホルダーを夫々左右の回転枠の回動中心に一致させてから対物レンズの調整を行っても良い。
【0035】
さらに上述の実施例では第1,第2の対物系光軸及び第1,第2の接眼系光軸をそれぞれ光軸調整する例を述べたが、部品精度の向上や普及品等で光軸調整の要求精度が厳しくない場合は、例えば第1の対物系光軸と第1の接眼系光軸は調整せずに第2の対物系光軸と第2の接眼系光軸の調整のみで良い場合もある。
【0036】
【発明の効果】
請求項1に記載の発明によれば、固定部材に対して第1の光軸調整手段により対物光学系の光軸調整が行え、眼幅調整時に該固定部材に対して回動可能な回転枠に保持される正立プリズムと接眼光学系の光軸調整が第2の光軸調整手段で行え、対物光学系から接眼光学系の光軸調整を行うことができるので、一対の回転枠を回動して眼幅調整を行っても左右の光軸のずれが生じない光軸調整が可能となる。
【0037】
請求項2に記載の発明によれば、補正光学系等の振れ補正手段を装備しても、固定部材に対して第1の光軸調整手段により対物光学系の光軸調整が行え、眼幅調整時に該固定部材に対して回動可能な回転枠に保持される正立プリズムと接眼光学系の光軸調整が第2の光軸調整手段で行え、対物光学系から接眼光学系の光軸調整を行うことができるので、一対の回転枠を回動して眼幅調整を行っても左右の光軸のずれが生じない光軸調整が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す双眼鏡の横断面図。
【図2】図1のプリズムホルダーの取付け構造を示す平面図。
【図3】図1のVAP素子の保持枠の斜視図。
【図4】従来の双眼鏡の平面図。
【符号の説明】
1 第1の固定部材
2 第2の固定部材
3 第1の対物レンズ
4 第2の対物レンズ
9 第1の回転枠
10 第2の回転枠
11 第1のプリズムホルダー
12 第2のプリズムホルダー
17 第1のVAPユニット
18 第2のVAPユニット
[0001]
[Industrial application fields]
The present invention relates to an observation optical apparatus such as binoculars having an image blur correction function for deflecting an optical axis so that an optical image of an optical apparatus is always held at a fixed position.
[0002]
[Prior art]
Conventionally, as described in Japanese Industrial Standard Prism Binoculars (JIS B 7121) (FIG. 4), the structure of binoculars is a combination of left and right objective lenses 100, prism 101, and eyepiece lens 102 that are rotatable about a central axis. Eye width adjustment between the left and right eyepieces 102 is possible. In this case, the left and right optical axes are adjusted by moving the prism position to correct the center position of the optical axis as described in Japanese Utility Model Laid-Open No. 52-33866, or in Japanese Patent Application Laid-Open No. 57-33763. As described, there are a method of adjusting the optical axis by moving the objective lens eccentrically, and a method of adjusting the optical axis by moving the eyepiece lens in the same manner.
[0003]
In any of the methods, the shift between the left and right optical axes must be a predetermined amount or less when the eye width adjustment changes from the minimum width to the maximum width. That is, the binoculars that have undergone optical axis adjustment are adjusted so that the left and right optical axes are substantially parallel to the central axis L shown in FIG.
[0004]
[Problems to be solved by the invention]
In the optical axis adjustment as shown in the above conventional example, the optical path passing through the objective lens, the prism, and the eyepiece lens is set as the optical axis, and the left and right optical axes are made substantially parallel to the central axis of the eye width adjustment, and at the same time, the eye width is adjusted. In this case, the objective lens, the prism, and the eyepiece need to be rotated integrally with respect to the central axis.
[0005]
Therefore, in the case of binoculars having an image shake correction function in which a shake detection unit for detecting shakes of binoculars, a correction optical system for correcting shakes based on shake detection units, and an electric circuit including a control unit are mounted in the binoculars, Since the correction optical system is also a part of the optical path, when the conventional optical axis adjustment is performed, it is necessary to rotate about the central axis integrally with the objective lens, the prism, and the eyepiece when adjusting the eye width.
[0006]
However, an actuator and an electric circuit for driving the correction optical system are integrally fixed to the correction optical system, and in order to control the left and right correction optical systems based on the same shake detection means, It is desirable that the shake detection means of the correction optical system has a structure that does not rotate during eye width adjustment.
[0007]
Furthermore, it is necessary to mount the correction optical system between the objective lens and the erecting prism in order to reduce the size of the binoculars. In that case, the objective lens should also be structured so that it does not rotate during eye width adjustment. Is desirable.
[0008]
The purpose of the invention according to the present application is to make the correction optical system, shake detection means, objective lens, etc. immobile even when adjusting the eye width, and to rotate the erecting prism and the eyepiece integrally around the optical axis of the objective lens. It is an object of the present invention to provide an observation optical system apparatus that can perform appropriate optical axis adjustment even when the structure is one that changes the eye width.
[0009]
[Means and Actions for Solving the Problems]
A first configuration for realizing the object of the invention according to the present application is, as described in claim 1, a pair of objective optical systems arranged in parallel and an optical image from each objective optical system as an erect image. A pair of erecting prisms that reflect in this way, a pair of eyepiece optical systems that guide the optical images from the erecting prisms to the observation side, and a fixed member that does not move during eye width adjustment that holds the pair of objective optical systems And a pair of rotating frames that rotate with respect to the fixing member so that the eye width can be adjusted, and the one rotating frame holds the one erecting prism and the eyepiece optical system, and the other rotating frame. An observation optical apparatus that holds the other erecting prism and an eyepiece optical system, wherein at least one of the pair of objective optical systems is movable and adjustable in a direction perpendicular to the optical axis. One optical axis adjusting means and an upright stored in at least one of the pair of rotating frames Certain rhythm and ocular optical system for observation optical apparatus characterized by having a second optical axis adjustment means for relatively movable adjustment in a direction perpendicular to the optical axis.
[0010]
In this configuration, the first optical axis adjusting unit can adjust the optical axis of the objective optical system with respect to the fixed member, and the upright prism is held by a rotating frame that is rotatable with respect to the fixed member when adjusting the eye width. The optical axis of the eyepiece optical system can be adjusted by the second optical axis adjustment means, and the optical axis of the eyepiece optical system can be adjusted from the objective optical system. The optical axis can be adjusted without causing a deviation between the left and right optical axes even when the operation is performed.
[0011]
According to a second configuration for realizing the object of the present invention, a pair of objective optical systems arranged side by side and a pair of optical images from each objective optical system are moved. A correction optical system, a pair of erecting prisms that reflect the optical image from each correction optical system as an erect image, and a pair of eyepiece optical systems that guide the optical image from each erect prism to the observation side Based on the detection output of the shake detection means, a stationary member that does not move during eye width adjustment that holds the pair of objective optical systems and the pair of correction optical systems, the shake detection means that detects the shake of the optical device body, Drive control means for controlling the operation of the correction optical system, a circuit board on which an electric circuit including the control means is mounted, a battery for supplying power to the circuit board, and the fixing member so that the eye width can be adjusted. And a pair of rotating frames that rotate in rotation. An observation optical device that holds the one erecting prism and the eyepiece optical system and holds the other erecting prism and the eyepiece optical system on the other rotating frame, and includes the pair of objective optical systems. A first optical axis adjusting means that enables movement adjustment of at least one objective optical system in a direction orthogonal to the optical axis, an erecting prism held on at least one of the pair of rotating frames, and an eyepiece optical system; An observation optical apparatus comprising: a second optical axis adjustment unit capable of relatively moving and adjusting in a direction orthogonal to the axis.
[0012]
In this configuration, even if shake correction means such as a correction optical system is provided, the optical axis of the objective optical system can be adjusted by the first optical axis adjustment means with respect to the fixed member. The optical axis of the erecting prism held by the rotatable rotating frame and the eyepiece optical system can be adjusted by the second optical axis adjusting means, and the optical axis of the eyepiece optical system can be adjusted from the objective optical system. Even if the eye width adjustment is performed by rotating the pair of rotary frames, the optical axis can be adjusted without causing a deviation between the left and right optical axes.
[0013]
【Example】
(First embodiment)
FIG. 1 is a plan sectional view of binoculars according to a first embodiment of the present invention, and FIGS. 2 and 3 are views showing a part of FIG.
[0014]
In these drawings, reference numeral 1 denotes a first fixing member, 2 denotes a second fixing member, and is configured integrally with the first fixing member 1.
[0015]
Reference numeral 3 denotes a first objective lens barrel, and reference numeral 4 denotes a second objective lens barrel, each having mounting holes 3a, 3b and 4a, 4b. The first objective lens barrel 3 and the second objective lens barrel 4 are fixed to the first fixing member 1 with mounting screws 5, 6 and 7, 8, respectively. Here, the mounting holes 3a, 3b, 4a and 4b are set to have a slightly larger hole diameter than the mounting screws 5, 6, 7 and 8 before the mounting screws 5, 6, 7 and 8 are tightened. The objective lens barrels 3 and 4 can be moved in the direction perpendicular to the optical axis. L1R and L1L are objective lenses, which are held by the objective lens barrels 3 and 4, respectively. Reference numeral 9 denotes a first rotating frame, and reference numeral 10 denotes a second rotating frame, which are rotatably supported by second fixing members. Here, the central axis of rotation of the first rotating frame 9 substantially coincides with the optical axis of the objective lens L1R, and the central axis of rotation of the second rotating frame 10 is substantially equal to the optical axis of the objective lens L1L. I'm doing it.
[0016]
L2R and L2L are eyepiece lenses, which are held by the first rotating frame 9 and the second rotating frame 10, respectively. 11 is a first prism holder, and 12 is a second prism holder. As shown in FIG. 2, the first prism holder 11 is held by the first rotating frame 9 with screws 14a, 14b, and 14c via springs 13a, 13b, and 13c. It is possible to adjust the inclination with respect to the optical axis of the eyepiece L2R.
[0017]
Similarly to the first prism holder 11, the second prism holder 12 is also held by the second rotary frame 10 with screws 16a, 16b, and 16c via springs 15a, 15b, and 15c, and screws 16a, 16b, and 16c. It is possible to adjust the inclination with respect to the optical axis of the eyepiece lens L2L with the degree of tightening.
[0018]
L3R and L3L are front prisms, and L4R and L4L are rear prisms. The front prism L3R and the rear prism L4R are held by the first prism holder 11, and the front prism L3L and the rear prism L4L are held by the second prism holder 12.
[0019]
Reference numeral 29 denotes a first interlocking plate, and reference numeral 30 denotes a second interlocking plate, which are fixed to the first prism holder 11 and the second prism holder 12 with screws 31 and 32, respectively. The first interlocking plate 29 and the second interlocking plate 30 are provided with gear portions 29a and 30a, respectively, and these gear portions 29a and 30a mesh with each other, and the first rotating frame 9 and the second interlocking plate 30 are engaged with each other. The rotation frame 10 is interlocked. As a result, when the first rotating frame 9 and the second rotating frame 10 are rotated, the first rotating frame 9 and the second rotating frame 10 are rotated by the same angle with respect to the second fixing member 2, and thereby the eye width can be adjusted.
[0020]
Reference numeral 17 denotes a first variable apex angle prism (VAP) unit, and reference numeral 18 denotes a second apex angle prism (VAP) unit.
[0021]
The first VAP unit 17 is disposed between the objective lens L1R and the front prism L3R, and the second VAP unit 18 is disposed between the objective lens L1L and the front prism L3L, and is fixed to the first fixing member 1. ing. A VAP element 21 is accommodated in the main body 19 of the first VAP unit 17.
[0022]
The VAP element 21 is liquid-tightly connected between two transparent plates by a bellows, and a transparent liquid having a predetermined refractive index is accommodated therein.
[0023]
As shown in FIG. 3, the VAP element 21 is held by holding frames 23 a and 23 b, and an electromagnetic actuator is formed by coil portions 25 a and 25 b formed on the holding frames 23 a and 23 b and a magnet portion 27 formed on the main body 19. The transparent plate on the objective lens L1R side of the VAP element 21 is tilted in the pitch (vertical) direction and the transparent plate on the front prism L3R side is tilted in the yaw (horizontal) direction. Thereby, the light beam passing through the VAP element 21 is deflected. Similarly, a VAP element 22 is accommodated in the main body 20 of the second VAP unit 18.
[0024]
The VAP element 22 is liquid-tightly connected between two transparent plates by a bellows, and a transparent liquid having a predetermined refractive index is accommodated therein. As shown in FIG. 3, the VAP element 2a is held by holding frames 24a and 24b, and coil portions 26a and 26b formed on the holding frames 24a and 24b and a magnet portion 28 formed on the main body 20 constitute an electromagnetic actuator. As a result, the transparent plate on the objective lens L1L side of the VAP element 22 is tilted in the pitch (vertical) direction, and the transparent plate on the front prism L3L side is tilted in the yaw (horizontal) direction. Thereby, the light beam passing through the VAP element 22 is deflected.
[0025]
A control circuit board 33 accommodates a circuit for controlling driving of the first VAP unit 17 and the second VAP unit 18 and is electrically coupled to the first and second VAP units 17 and 18. . The control circuit board 33 is fixed to the first fixing member 1 with screws 36 and 37.
[0026]
Reference numerals 34 and 35 denote shake detection sensors. The shake detection sensor 34 detects the shake in the vertical direction of the entire binoculars, and the shake detection sensor 35 detects the shake in the horizontal direction. The shake detection sensors 34 and 35 are mounted on the control circuit board 33. Reference numeral 38 denotes a battery case, in which a battery is accommodated, and power can be supplied to the control circuit board 33 by a lead wire (not shown). A front cover 39 is formed with a hole so as not to block the light flux of the objective lenses L1R and L1L, and is fixed to the first fixing member 1.
[0027]
Next, the optical axis adjustment and operation of the binoculars of the above-described embodiment will be described.
[0028]
First, with the first VAP unit 17 and the second VAP unit 18 attached to the first fixing member, the transparent plates on the objective lenses L1R, L1L side of the VAP elements 21, 22 and the front prisms L3R, L3L side Make electrical adjustments so that the transparent plates are parallel. Further, the first objective lens barrel 3 and the second objective lens barrel 4 holding the objective lenses L1R and L1L are moved in the direction perpendicular to the optical axis, and the optical axis of the light flux passing through the objective lens L1R and the VAP element 21. (Hereinafter referred to as the first objective optical axis) and the optical axis of the light beam passing through the objective lens L1L and the VAP element 22 (hereinafter referred to as the second objective optical axis) are respectively the first rotating frame 9 and the second rotation. Adjustment is performed so as to coincide with the central axis of rotation of the frame 10. Here, the central axis of rotation of the first rotating frame 9 and the second rotating frame 10 can be adjusted substantially parallel by increasing the mechanical accuracy of the respective rotating sliding surfaces of the second fixing member 2. After that, the first objective optical axis and the second objective optical axis are adjusted to be substantially parallel.
[0029]
Next, the first prism holder 11 and the second prism holder 11 holding the front prisms L3R and L3L and the second prisms L4R and L4L in a state where the eyepiece lenses L2R and L2L are held by the first rotary frame 9 and the second rotary frame 10, respectively. By adjusting the tightening of the screws 14a, 14b, 14c and 16a, 16b, 16c of the prism holder 12, the optical axis of the light beam passing through the front prism L3R, the rear prism L4R, and the eyepiece L2R (hereinafter referred to as the first eyepiece system). The optical axis of the light beam passing through the front prism L3L, the rear prism L4L, and the eyepiece lens L2L (hereinafter referred to as the second eyepiece system optical axis), respectively. Make adjustments so that it matches the center axis. Here, the central axis of rotation of the first rotating frame 9 and the second rotating frame 10 can be made substantially parallel by increasing the mechanical accuracy of the respective rotating sliding surfaces of the second fixing member 2. After the adjustment, the first eyepiece optical axis and the second eyepiece optical axis are adjusted substantially in parallel.
[0030]
By the adjustment described above, the first objective optical axis and the first eyepiece optical axis coincide with the central axis of rotation of the first rotary frame 9, and the second objective optical axis and the second eyepiece system. Since the optical axis coincides with the central axis of rotation of the second rotary frame 10, the left and right sides of the left and right frames can be adjusted even when the eye width is adjusted by rotating the first rotary frame 9 and the second rotary frame 10. A good image can be observed without tilting the optical axis.
[0031]
With the binoculars with the optical axis adjusted as described above, the observer rotates the first rotary frame 9 and the second rotary frame 10 inward or outward to adjust the eye width.
[0032]
Further, when the observer operates a switch (not shown), the first VAP unit 17 and the second VAP unit 18 are in a shake correction state, and the VAP elements 21 and 22 are moved based on the outputs of the shake detection sensors 34 and 35. It is possible to observe an image that is tilted and in which image shake due to camera shake or the like is corrected. Further, when the observer releases the operation of the switch (not shown), the VAP elements 21 and 22 are returned to the originally adjusted state, the shake correction state is released, and an image as normal binoculars can be observed. .
[0033]
In the above embodiment, the optical axis adjustment of the eyepiece system is performed by tilting the prism holders 11 and 12 holding the front prisms L3R and L3L and the rear prisms L4R and L4L. However, the optical axis adjustment is performed by decentering the eyepiece lenses L2R and L2L. Of course, this may be performed.
[0034]
In the above description, after adjusting the left and right objective lenses so as to coincide with the rotation center axes of the left and right rotation frames, the left and right prism holders are respectively set to the rotation center axes of the left and right rotation frames. Although an example in which the matching is performed is described, the objective lens may be adjusted after the left and right prism holders are first aligned with the rotation centers of the left and right rotating frames, respectively.
[0035]
Further, in the above-described embodiment, an example in which the optical axes of the first and second objective optical axes and the first and second eyepiece optical axes are adjusted has been described. If the required accuracy of the adjustment is not strict, for example, the first objective optical axis and the first eyepiece optical axis are not adjusted, and only the second objective optical axis and the second eyepiece optical axis are adjusted. Sometimes it is good.
[0036]
【The invention's effect】
According to the first aspect of the present invention, the optical axis of the objective optical system can be adjusted by the first optical axis adjusting means with respect to the fixed member, and the rotary frame can be rotated with respect to the fixed member when adjusting the eye width. The optical axis of the erecting prism held by the eyepiece and the eyepiece optical system can be adjusted by the second optical axis adjustment means, and the optical axis of the eyepiece optical system can be adjusted from the objective optical system. Even if the eye width adjustment is performed by moving the optical axis, the optical axis can be adjusted without causing a deviation between the left and right optical axes.
[0037]
According to the second aspect of the present invention, the optical axis of the objective optical system can be adjusted by the first optical axis adjusting unit with respect to the fixed member even when the shake correcting unit such as the correcting optical system is provided. The optical axis of the erecting prism and the eyepiece optical system that are held by a rotating frame that can be rotated with respect to the fixed member at the time of adjustment can be adjusted by the second optical axis adjustment means. Since the adjustment can be performed, the optical axis can be adjusted so that the left and right optical axes do not shift even if the eye width is adjusted by rotating the pair of rotary frames.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of binoculars showing a first embodiment of the present invention.
FIG. 2 is a plan view showing a mounting structure of the prism holder of FIG.
3 is a perspective view of a holding frame of the VAP element shown in FIG.
FIG. 4 is a plan view of conventional binoculars.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st fixing member 2 2nd fixing member 3 1st objective lens 4 2nd objective lens 9 1st rotation frame 10 2nd rotation frame 11 1st prism holder 12 2nd prism holder 17 1st 1 VAP unit 18 2nd VAP unit

Claims (2)

並設された一対の対物光学系と、該各対物光学系からの光学像を正立像とするように反射する一対の正立プリズムと、該各正立プリズムからの光学像を観察側へ導く一対の接眼光学系と、該一対の対物光学系を保持する眼幅調整に際しては不動の固定部材と、眼幅調整可能に該固定部材に対して回動する一対の回転枠とを有し、該一方の回転枠に該一方の正立プリズムと接眼光学系を保持し、該他方の回転枠に該他方の正立プリズムと接眼光学系を保持した観察用光学機器であって、
該一対の対物光学系のうち少なくとも一方の対物光学系を光軸に直交する方向に移動調整可能とする第1の光軸調整手段と、該一対の回転枠のうち少なくとも一方に保存された正立プリズムと接眼光学系を光軸に直交する方向に相対的に移動調整可能とする第2の光軸調整手段とを有することを特徴とする観察用光学機器。
A pair of objective optical systems arranged side by side, a pair of erecting prisms that reflect an optical image from each objective optical system as an erect image, and an optical image from each erecting prism are guided to the observation side. A pair of eyepiece optical systems, a fixed member that does not move during eye width adjustment that holds the pair of objective optical systems, and a pair of rotating frames that rotate relative to the fixed member so that the eye width can be adjusted; An observation optical apparatus in which the one erecting prism and the eyepiece optical system are held in the one rotating frame, and the other erecting prism and the eyepiece optical system are held in the other rotating frame,
A first optical axis adjusting means capable of moving and adjusting at least one of the pair of objective optical systems in a direction perpendicular to the optical axis; and a positive optical axis stored in at least one of the pair of rotating frames. An observation optical apparatus comprising: a second optical axis adjustment unit that can relatively move and adjust the vertical prism and the eyepiece optical system in a direction orthogonal to the optical axis.
並設された一対の対物光学系と、該各対物光学系からの光学像を移動させる一対の補正光学系と、該各補正光学系からの光学像を正立像とするように反射する一対の正立プリズムと、該各正立プリズムからの光学像を観察側へ導く一対の接眼光学系と、該一対の対物光学系および該一対の補正光学系を保持する眼幅調整に際しては不動の固定部材と、光学機器本体の振れを検出する振れ検出手段と、該振れ検出手段の検出出力に基づいて該補正光学系の作動を制御する駆動制御手段と、該制御手段を含む電気回路を実装した回路基板と、該回路基板に電力を供給するバッテリーと、眼幅調整可能に該固定部材に対して回動する一対の回転枠とを有し、該一方の回転枠に該一方の正立プリズムと接眼光学系を保持し、該他方の回転枠に該他方の正立プリズムと接眼光学系を保持した観察用光学機器であって、
該一対の対物光学系のうち少なくとも一方の対物光学系を光軸に直交する方向に移動調整可能とする第1の光軸調整手段と、該一対の回転枠のうち少なくとも一方に保持された正立プリズムと接眼光学系を光軸に直交する方向に相対的に移動調整可能とする第2の光軸調整手段とを有することを特徴とする観察用光学機器。
A pair of objective optical systems arranged side by side, a pair of correction optical systems that move an optical image from each objective optical system, and a pair that reflects the optical image from each correction optical system as an erect image An erecting prism, a pair of eyepiece optical systems that guide the optical images from the erecting prisms to the observation side, and a fixed fixed during eye width adjustment that holds the pair of objective optical systems and the pair of correction optical systems A member, a shake detection means for detecting a shake of the optical apparatus body, a drive control means for controlling the operation of the correction optical system based on a detection output of the shake detection means, and an electric circuit including the control means are mounted. A circuit board, a battery for supplying electric power to the circuit board, and a pair of rotating frames that rotate with respect to the fixing member so that the eye width can be adjusted, and the one erecting prism on the one rotating frame And the eyepiece optical system, and the other rotating frame to the other The standing prism and the eyepiece optical system to a viewing optical apparatus and held,
A first optical axis adjusting means capable of moving and adjusting at least one of the pair of objective optical systems in a direction perpendicular to the optical axis; and a positive optical axis held by at least one of the pair of rotating frames. An observation optical apparatus comprising: a second optical axis adjustment unit that can relatively move and adjust the vertical prism and the eyepiece optical system in a direction orthogonal to the optical axis.
JP1700395A 1995-02-03 1995-02-03 Observation optical equipment Expired - Fee Related JP3673546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1700395A JP3673546B2 (en) 1995-02-03 1995-02-03 Observation optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1700395A JP3673546B2 (en) 1995-02-03 1995-02-03 Observation optical equipment

Publications (2)

Publication Number Publication Date
JPH08211303A JPH08211303A (en) 1996-08-20
JP3673546B2 true JP3673546B2 (en) 2005-07-20

Family

ID=11931840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1700395A Expired - Fee Related JP3673546B2 (en) 1995-02-03 1995-02-03 Observation optical equipment

Country Status (1)

Country Link
JP (1) JP3673546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825999B2 (en) 2001-08-20 2006-09-27 キヤノン株式会社 binoculars
CN103207439B (en) * 2013-05-09 2015-08-12 云南奥凯科技开发有限责任公司 A kind of Borrow's type telescope suspension type prismatic group

Also Published As

Publication number Publication date
JPH08211303A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JPH1020213A (en) Binoculars provided with shake correcting mechanism
US10890780B2 (en) Anti-vibration device and binocle
US10928644B2 (en) Anti-vibration device and binocle
EP0725295B1 (en) Binoculars having objectives spaced apart at a fixed distance and adjustable eyepieces and having image shake compensation
JP4579409B2 (en) Binocular image stabilizer and binocular optical instrument
US10261336B2 (en) Anti-vibration optical system, telephoto optical system, binocle, and anti-vibration unit
JPH1062674A (en) Binocular
JP3673546B2 (en) Observation optical equipment
JP3231687B2 (en) Binocular device and monocular device having camera shake correction mechanism
US11002981B2 (en) Anti-vibration device and binocle
JP3825999B2 (en) binoculars
US20220107489A1 (en) Optical system for imaging an object, and method for operating the optical system
US6057962A (en) Observation optical system having hand-vibration compensation system
JP3295030B2 (en) Camera shake correction mechanism of binocular device
JP3231688B2 (en) Camera shake correction mechanism of binocular device
JP4677111B2 (en) Binoculars with image stabilization
JPH08160485A (en) Observation optical instrument
JP3188739B2 (en) Anti-sway device
JP3150224B2 (en) Image stabilizer
US11644659B2 (en) Optical apparatus
JPH09218342A (en) Optical equipment for observation
JP2000056351A (en) Optical device
JP2020008705A (en) Binocular
JP3446192B2 (en) Camera shake correction lens
JPH06175077A (en) Light deflector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees