JP2020008705A - Binocular - Google Patents

Binocular Download PDF

Info

Publication number
JP2020008705A
JP2020008705A JP2018129216A JP2018129216A JP2020008705A JP 2020008705 A JP2020008705 A JP 2020008705A JP 2018129216 A JP2018129216 A JP 2018129216A JP 2018129216 A JP2018129216 A JP 2018129216A JP 2020008705 A JP2020008705 A JP 2020008705A
Authority
JP
Japan
Prior art keywords
binoculars
optical
image
correction means
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018129216A
Other languages
Japanese (ja)
Inventor
小山 敦史
Atsushi Koyama
小山  敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018129216A priority Critical patent/JP2020008705A/en
Publication of JP2020008705A publication Critical patent/JP2020008705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Telescopes (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

To provide a binocular that has a hand tremor correction mechanism making a computation of a hand tremor simple by preventing a change in drive characteristic difference between right and left hand tremor correction mechanisms due to an amount of interpupillary adjustment, and enabling a control circuit to be simplified.SOLUTION: In a binocular capable of changing a relative position of a pair of right and left optical systems upon which light from an observed body is incident by rotating with an axis parallel with an optical axis of the optical system as a center, the binocular has: tremor detection means that detects tremors; and two image tremor correction means that are provided in both of the optical systems, and correct respective image tremors of the optical systems in response to an output of the tremor detection means. At least one of the two image tremor correction means is configured to rotate with an optical axis of the image tremor correction means as a center in response to a change in relative position of the optical system.SELECTED DRAWING: Figure 5

Description

本発明は、双眼鏡に関し、特に手振れ補正機構を有する双眼鏡に関する。   The present invention relates to binoculars, and more particularly to binoculars having a camera shake correction mechanism.

従来、双眼鏡やカメラなどの光学機器に搭載される手振れ補正機構の方式として、バリアングルプリズム方式、ジンバル方式、レンズチルト方式、レンズシフト方式などの様々な方式が知られている。   2. Description of the Related Art Conventionally, various methods such as a variangle prism method, a gimbal method, a lens tilt method, and a lens shift method are known as methods of a camera shake correction mechanism mounted on optical devices such as binoculars and cameras.

レンズシフト方式を用いた双眼鏡の防振機能は、一対の光学系の一部を構成する防振レンズを、光軸に直交する方向のうち双眼鏡の振れによる像振れを打ち消す方向にシフトさせることで実現される。   The anti-shake function of the binoculars using the lens shift method is to shift the anti-shake lens forming a part of the pair of optical systems in a direction perpendicular to the optical axis in a direction to cancel image shake due to the shake of the binoculars. Is achieved.

双眼鏡では、左右の光学系によって形成される光学像は両眼で同時に観察されるため、左右の光学系内において同時かつ同じように防振レンズをシフトさせる。   In binoculars, since the optical images formed by the left and right optical systems are observed simultaneously by both eyes, the anti-vibration lenses are simultaneously and similarly shifted in the left and right optical systems.

ここで、像ぶれを防ぐシステムについて簡単に説明する。   Here, a system for preventing image blur will be briefly described.

観察時の観察者の手振れは、周波数として通常1Hzから10Hzの振動である。観察時においてこのような手振れを起こしても像ぶれの無い観察像を得るための基本的な考えとして、上記手振れによる光学機器の振動を検出し、その検出値に応じて補正レンズまたはプリズムを変位させなければならない。   The shake of the observer at the time of observation is generally a vibration of 1 Hz to 10 Hz as a frequency. As a basic idea for obtaining an observation image free from image blur even when such camera shake occurs during observation, the vibration of the optical device due to the camera shake is detected, and the correction lens or prism is displaced according to the detected value. I have to do it.

従って、手振れが生じても像ぶれが生じない観察を可能とするためには、光学機器の振動を正確に検出し、手振れによる光軸変化を補正することが必要となる。   Therefore, in order to enable observation in which image blur does not occur even if camera shake occurs, it is necessary to accurately detect the vibration of the optical device and correct the optical axis change due to camera shake.

この振動の検出は、原理的にいえば、加速度,角加速度,角速度,角変位等を検出する振れ検出センサと、像ぶれ補正の為にその出力を適宜演算処理する演算部を具備した振動検出装置を光学機器に搭載することによって行うことができる。   In principle, this vibration is detected by a vibration detection sensor having a shake detection sensor for detecting acceleration, angular acceleration, angular velocity, angular displacement, and the like, and a calculation unit for appropriately calculating the output for image blur correction. This can be performed by mounting the device on an optical device.

そして、この検出情報に基づき、撮影光軸を偏心させる手振れ補正機構を、検出情報の出力をもとに演算部で算出した目標値となるように、手振れ補正機構の位置を検出する位置検出部を設けて駆動させて像ぶれ補正が行われる。   Then, based on the detection information, a camera-shake correction mechanism for decentering the photographing optical axis is provided with a position detection unit for detecting the position of the camera-shake correction mechanism so as to have a target value calculated by the calculation unit based on the output of the detection information. Is provided and driven to perform image blur correction.

手振れ補正機構を有する双眼鏡として、特許文献1にはポロプリズム型の光学系を採用し、対物レンズとポロプリズムの間に手振れ補正機構を配置する構成が開示されている。   As a binocular having a camera shake correction mechanism, Patent Document 1 discloses a configuration in which a Porro prism type optical system is adopted and a camera shake correction mechanism is arranged between an objective lens and a Porro prism.

特許文献1の手振れ補正機構は、左右の手振れ補正機構を一体とすることで、同時かつ同じように防振レンズを駆動することを可能としている。このため眼幅調整は、手振れ補正機構より接眼レンズ側のポロプリズムを含めた光学群を回転させることで行われる。   The camera shake correction mechanism disclosed in Patent Literature 1 can simultaneously and similarly drive the image stabilizing lenses by integrating the left and right camera shake correction mechanisms. For this reason, the interpupillary distance adjustment is performed by rotating the optical group including the Porro prism on the eyepiece lens side by the camera shake correction mechanism.

一方で、ダハプリズム型の光学系を採用した双眼鏡では、対物レンズ側と接眼レンズ側の光路が直線的になることで、小型、軽量化が可能となる。また眼幅調整を行う際には対物レンズと接眼レンズを一体に動かすことでおこなえば、左右の光学系をヒンジで接続すればよいので、構造的にも軽量化が可能であり、左右の光学系を保持する筒部が独立するのでホールド性にも優れる利点がある。   On the other hand, in the binoculars adopting the roof prism type optical system, the optical path on the objective lens side and the eyepiece side becomes linear, so that the size and weight can be reduced. Also, when adjusting the interpupillary distance, if the objective lens and the eyepiece are moved together, the left and right optical systems can be connected by hinges. Since the cylinder for holding the system is independent, there is an advantage that the holdability is excellent.

このダハプリズム型の光学系を採用した双眼鏡に、上述した利点を生かしたまま手振れ補正機構を搭載しようとすると、特許文献1の構成とは異なり、左右の手振れ補正機構が独立することになる。このため、眼幅調整をおこなうと、左右の手振れ補正機構の相対関係が変化するため手振れ補正制御も独立しておこなう必要が生じる。   If the camera shake correction mechanism is mounted on the binoculars employing the roof prism type optical system while taking advantage of the above-mentioned advantages, the left and right camera shake correction mechanisms become independent, unlike the configuration of Patent Document 1. For this reason, when the interpupillary distance adjustment is performed, the relative relationship between the left and right hand shake correction mechanisms changes, so that it is necessary to independently perform the hand shake correction control.

これに対応するために、特許文献2には右の手振れ補正機構の相対関係の変化を検出する位置変化検出手段の出力に対応したパラメータに基づき手振れ補正制御をおこなう構成が開示されている。   To cope with this, Patent Document 2 discloses a configuration in which camera shake correction control is performed based on a parameter corresponding to an output of a position change detection unit that detects a change in the relative relationship of the right camera shake correction mechanism.

特開2016−29403号公報JP-A-2006-29403 特開平8−62540号公報JP-A-8-62540

しかしながら、上記の特許文献2に開示された従来技術では、左右の手振れ補正機構を個別で制御していることに変わりないので、演算負荷が高く、電気回路が複雑かつ高価になるおそれがある。   However, in the related art disclosed in Patent Literature 2, since the left and right camera shake correction mechanisms are individually controlled, the calculation load is high, and the electric circuit may be complicated and expensive.

さらに特許文献2の内容に加えて、双眼での観察時に違和感を感じないためには、左右の光学系と重力方向の関係も演算に加える必要があり、さらに制御および電気回路が複雑かつ高価になるおそれがある。   Furthermore, in addition to the contents of Patent Document 2, it is necessary to add the relationship between the left and right optical systems and the direction of gravity to the calculation in order not to feel uncomfortable when observing with the binocular, and furthermore, the control and electric circuits are complicated and expensive. Could be.

そこで、本発明の目的は、演算を単純なものとし、電気回路を簡素化することを可能にした手振れ補正機構を有する双眼鏡を提供することにある。   Therefore, an object of the present invention is to provide binoculars having a camera shake correction mechanism that can simplify calculations and simplify an electric circuit.

上記の目的を達成するために、本発明に係る双眼鏡は、
被観察体からの光が入射する左右一対の対物光学系と、
該対物光学系の光軸から光軸偏心手段を介して偏心した位置に光軸を配置した接眼光学系と、
該対物光学系または該接眼光学系の光軸と平行な軸を中心として回転することで、左右一対の光学系の相対位置を変更可能な双眼鏡において、
該双眼鏡の振れを検出する振れ検出手段と、
該光学系の双方に設けられて該振れ検出手段の出力に対応して該光学系のそれぞれの像振れを補正する二つの像振れ補正手段と、を有し、
該像ぶれ補正手段のうちの少なくとも一方は、該光学系の相対位置の変更に応じて該像振れ補正手段の光軸を中心として回転することを特徴とする。
In order to achieve the above object, binoculars according to the present invention,
A pair of left and right objective optical systems into which light from the object to be observed enters,
An eyepiece optical system in which the optical axis is arranged at a position decentered from the optical axis of the objective optical system via the optical axis decentering means,
By rotating around an axis parallel to the optical axis of the objective optical system or the eyepiece optical system, binoculars that can change the relative position of the pair of left and right optical systems,
Shake detection means for detecting shake of the binoculars,
Two image blur correction means provided in both of the optical systems and correcting each image blur of the optical system in accordance with the output of the blur detection means,
At least one of the image blur correction means rotates around the optical axis of the image blur correction means in response to a change in the relative position of the optical system.

本発明によれば、手振れ補正の演算を単純なものとし、制御回路を簡素化することを可能にした手振れ補正機構を有する双眼鏡を提供することができる。   According to the present invention, it is possible to provide binoculars having a camera shake correction mechanism that makes calculation of camera shake correction simple and can simplify a control circuit.

本発明の実施形態にかかわる双眼鏡の第1の状態を示す外観斜視図FIG. 1 is an external perspective view showing a first state of binoculars according to an embodiment of the present invention. 本発明の実施形態にかかわる双眼鏡の第1の状態から眼幅を広げる方向に調整した第2の状態を示す外観斜視図FIG. 3 is an external perspective view showing a second state of the binoculars according to the embodiment of the present invention, which is adjusted from the first state to the direction in which the interpupillary distance is increased. 図1の第1の状態を示す双眼鏡の上面図1. Top view of binoculars showing the first state of FIG. 図2の第2の状態を示す双眼鏡の上面図Top view of the binoculars showing the second state of FIG. 図3のA−A線に沿った第1の実施例を示す断面図FIG. 3 is a sectional view showing the first embodiment along the line AA in FIG. 3. 図4のB−B線に沿った第1の実施例を示す断面図FIG. 4 is a sectional view showing the first embodiment along the line BB in FIG. 4; 図3のA−A線に沿った第2の実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment taken along line AA in FIG. 3. 図4のB−B線に沿った第2の実施例を示す断面図FIG. 4 is a sectional view showing the second embodiment along the line BB in FIG. 4;

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施形態にかかわる双眼鏡の第1の状態を示す外観斜視図である。図2は、本発明の実施形態にかかわる双眼鏡の第1の状態から眼幅を広げる方向に調整した第2の状態を示す外観斜視図である。図3は、図1の第1の状態を示す双眼鏡の上面図である。図4は、図2の第2の状態を示す双眼鏡の上面図である。図5は、図3のA−A線に沿った第1の実施例を示す断面図である。図6は、図4のB−B線に沿った第1の実施例を示す断面図である。図7は、図3のA−A線に沿った第2の実施例を示す断面図である。図8は、図4のB−B線に沿った第2の実施例を示す断面図である。   FIG. 1 is an external perspective view showing a first state of the binoculars according to the embodiment of the present invention. FIG. 2 is an external perspective view showing a second state of the binoculars according to the embodiment of the present invention, which is adjusted from the first state to the direction in which the interpupillary distance is increased. FIG. 3 is a top view of the binoculars showing the first state of FIG. FIG. 4 is a top view of the binoculars showing the second state of FIG. FIG. 5 is a sectional view showing the first embodiment along the line AA in FIG. FIG. 6 is a sectional view showing the first embodiment along the line BB in FIG. FIG. 7 is a sectional view showing the second embodiment along the line AA in FIG. FIG. 8 is a sectional view showing the second embodiment along the line BB in FIG.

以下、図1および図2および図3および図4を参照して、本発明の第1の実施例による、双眼鏡について説明する。   Hereinafter, binoculars according to a first embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, and 4.

1は左側レンズ鏡筒であり、この内部には対物レンズ、接眼レンズ、正立プリズム(以上は不図示)、後述する手振れ補正機構7が配置される。   Reference numeral 1 denotes a left lens barrel in which an objective lens, an eyepiece, an erect prism (not shown), and a camera shake correction mechanism 7 described later are arranged.

2は右側レンズ鏡筒であり、左側レンズ鏡筒1と同様に対物レンズ、接眼レンズ、正立プリズム(以上は不図示)、後述する手振れ補正機構8が配置される。左側レンズ鏡筒1の外周からは、腕部3および腕部4が延出している。同様に右側レンズ鏡筒2の外周からは、腕部5および腕部6が延出している。腕部3および腕部5は、軸Cを回転軸とするヒンジ構造にて連結されている。同様に腕部4および腕部6は、軸Cを回転軸とするヒンジ構造にて連結されている。   Reference numeral 2 denotes a right lens barrel, similar to the left lens barrel 1, in which an objective lens, an eyepiece, an erect prism (not shown), and a camera shake correction mechanism 8 described later are arranged. An arm 3 and an arm 4 extend from the outer periphery of the left lens barrel 1. Similarly, an arm 5 and an arm 6 extend from the outer periphery of the right lens barrel 2. The arm 3 and the arm 5 are connected by a hinge structure using the axis C as a rotation axis. Similarly, the arm 4 and the arm 6 are connected by a hinge structure having the axis C as a rotation axis.

軸Cは左側レンズ鏡筒1の光軸Lおよび右側レンズ鏡筒2の光軸Rと平行になるように設けられている。これにより軸Cを中心として、左側レンズ鏡筒1および右側レンズ鏡筒2を相対的に回転させることで、光軸Lと光軸Rの距離を変化させ眼幅調整が行われる。   The axis C is provided so as to be parallel to the optical axis L of the left lens barrel 1 and the optical axis R of the right lens barrel 2. Thus, by rotating the left lens barrel 1 and the right lens barrel 2 about the axis C relatively, the distance between the optical axis L and the optical axis R is changed to adjust the interpupillary distance.

図1に対して、眼幅を広げる方向に調整をおこなったのが図2である。図3は図1の状態の双眼鏡の上面図であり、図4は図2の状態の双眼鏡の上面図である。図5は図3のA−A線に沿った第1の実施例を示す断面図であり、図6は、図4のB−B線に沿った第1の実施例を示す断面図である。   FIG. 2 shows an adjustment made in the direction of increasing the interpupillary distance with respect to FIG. FIG. 3 is a top view of the binoculars in the state of FIG. 1, and FIG. 4 is a top view of the binoculars in the state of FIG. FIG. 5 is a sectional view showing the first embodiment along line AA in FIG. 3, and FIG. 6 is a sectional view showing the first embodiment along line BB in FIG. .

手振れ補正機構7および手振れ補正機構8は、コイルおよび永久磁石による公知のボイスコイルモータにより光軸Lおよび光軸Rと直交する平面内で駆動可能に構成されている。   The camera shake correction mechanism 7 and the camera shake correction mechanism 8 are configured to be driven in a plane orthogonal to the optical axis L and the optical axis R by a known voice coil motor using a coil and a permanent magnet.

9aおよび9bは振れ検出手段であるところの角速度センサで、直交する2方向の振れを検出するように配置される。   Reference numerals 9a and 9b denote angular velocity sensors serving as shake detecting means, which are arranged to detect shakes in two orthogonal directions.

10は重力方向検出手段であるところの加速度センサである。   Reference numeral 10 denotes an acceleration sensor which is a gravitational direction detecting means.

手振れ補正機構7および手振れ補正機構8は、角速度センサ9および加速度センサ10の出力をもとに、光軸Lおよび光軸Rと直交する平面内で駆動されることで、手振れが生じても像振れが生じない観察像を得ることが可能となる。   The camera shake correction mechanism 7 and the camera shake correction mechanism 8 are driven in a plane orthogonal to the optical axis L and the optical axis R based on the outputs of the angular velocity sensor 9 and the acceleration sensor 10, so that even if camera shake occurs, the image It is possible to obtain an observation image in which no shake occurs.

11は回転角検出センサで、左側レンズ鏡筒1に対して右側レンズ鏡筒2がどれ位回転しているかを検出するための装置であり、本実施例では公知のロータリーエンコーダで構成されている。   Reference numeral 11 denotes a rotation angle detection sensor, which is a device for detecting how much the right lens barrel 2 is rotated with respect to the left lens barrel 1, and is constituted by a known rotary encoder in this embodiment. .

12はモータで、回転角検出センサ11で検出した回転角に応じて、手振れ補正機構8を回転させる。   A motor 12 rotates the camera shake correction mechanism 8 in accordance with the rotation angle detected by the rotation angle detection sensor 11.

これにより、図5の状態と図6の状態を比較するとわかるように、眼幅調整をおこなっても、手振れ補正機構7および手振れ補正機構8と角速度センサ9a、9bの相対的な位相関係が変化しない。   As a result, as can be seen from a comparison between the state in FIG. 5 and the state in FIG. 6, even when the interpupillary distance is adjusted, the relative phase relationship between the camera shake correction mechanisms 7 and 8 and the angular velocity sensors 9a and 9b changes. do not do.

よって、手振れ補正機構7および手振れ補正機構8を個別に制御する必要性は無いので、加速度センサ10より出力される重力方向の変化のみ加味して制御をおこなえば、演算負荷を低く抑えることが可能となり、電気回路を簡素化することが可能となる。   Therefore, since it is not necessary to individually control the camera shake correction mechanism 7 and the camera shake correction mechanism 8, if the control is performed in consideration of only the change in the direction of gravity output from the acceleration sensor 10, the calculation load can be reduced. Thus, the electric circuit can be simplified.

以下、図7および図8を参照して、本発明の第2の実施例による、双眼鏡について説明する。   Hereinafter, a binocular according to a second embodiment of the present invention will be described with reference to FIGS. 7 and 8.

図7および図8において、上述した実施例1と同様の機能を有する部分については同符号を付与し、説明を省略する。   In FIGS. 7 and 8, portions having the same functions as those in the first embodiment are given the same reference numerals, and description thereof will be omitted.

13は、腕部3と腕部5をヒンジ構造にて連結する連結部で、外周に部分的に不図示の歯車が設けられている。   A connecting portion 13 connects the arm 3 and the arm 5 by a hinge structure, and a gear (not shown) is partially provided on the outer periphery.

14は、連結部13の歯車部と噛み合う歯車である。   Reference numeral 14 denotes a gear that meshes with the gear portion of the connecting portion 13.

15は、歯車14と噛み合う歯車である。   Reference numeral 15 denotes a gear that meshes with the gear 14.

16は、歯車15と噛み合う小歯車16aと同軸で一体的に構成される大歯車16bからなる段歯車で、大歯車16bは手振れ補正機構8の外周に部分的に設けられている不図示の歯車と噛み合っている。   Reference numeral 16 denotes a step gear composed of a large gear 16 b coaxially and integrally formed with a small gear 16 a meshing with the gear 15. The large gear 16 b is a gear (not shown) partially provided on the outer periphery of the camera shake correction mechanism 8. And are engaged.

連結部13、歯車14、歯車15、歯車16および手振れ補正機構8により構成される歯車列は、その歯車比が1になるように構成されている。   The gear train composed of the connecting portion 13, the gear 14, the gear 15, the gear 16, and the camera shake correction mechanism 8 is configured such that the gear ratio becomes 1.

これにより眼幅調整による左側レンズ鏡筒1および右側レンズ鏡筒2の相対回転角と同様の回転を手振れ補正機構8に与える。   As a result, a rotation similar to the relative rotation angle of the left lens barrel 1 and the right lens barrel 2 due to the interpupillary adjustment is given to the camera shake correction mechanism 8.

また、歯車14および歯車15の作用により回転方向を合わせることで、図7の状態と図8の状態を比較するとわかるように、眼幅調整をおこなっても、手振れ補正機構7および手振れ補正機構8と角速度センサ9a、9bの相対的な位相関係が変化しない。   Also, by adjusting the rotation direction by the action of the gears 14 and 15, as can be seen by comparing the state of FIG. 7 and the state of FIG. 8, even if the interpupillary distance adjustment is performed, the camera shake correction mechanism 7 and the camera shake correction mechanism 8 And the relative phase relationship between the angular velocity sensors 9a and 9b does not change.

よって、手振れ補正機構7および手振れ補正機構8を個別に制御する必要性は無いので、加速度センサ10より出力される重力方向の変化のみ加味して制御をおこなえば、演算負荷を低く抑えることが可能となり、電気回路を簡素化することが可能となる。   Therefore, since it is not necessary to individually control the camera shake correction mechanism 7 and the camera shake correction mechanism 8, if the control is performed in consideration of only the change in the direction of gravity output from the acceleration sensor 10, the calculation load can be reduced. Thus, the electric circuit can be simplified.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

1 左側レンズ鏡筒、2 右側レンズ鏡筒、3 腕部、4 腕部、5 腕部、6 腕部、
7 手振れ補正機構、8 手振れ補正機構、9 角速度センサ、10 加速度センサ、
11 回転角検出センサ、12 モータ、13 連結部、14 歯車、15 歯車、
16 段歯車
1 left lens barrel, 2 right lens barrel, 3 arms, 4 arms, 5 arms, 6 arms,
7 camera shake correction mechanism, 8 camera shake correction mechanism, 9 angular velocity sensor, 10 acceleration sensor,
11 rotation angle detection sensor, 12 motor, 13 connecting part, 14 gears, 15 gears,
16 gears

Claims (3)

被観察体からの光が入射する左右一対の光学系を有し、
該光学系の光軸と平行な軸を中心として回転することで、左右一対の光学系の相対位置を変更可能な双眼鏡において、
該双眼鏡の振れを検出する振れ検出手段と、
該光学系の双方に設けられて該振れ検出手段の出力に対応して該光学系のそれぞれの像振れを補正する二つの像振れ補正手段と、
を有し、該像ぶれ補正手段のうちの少なくとも一方は、該光学系の相対位置の変更に応じて該像振れ補正手段の光軸を中心として回転することを特徴とする双眼鏡。
It has a pair of left and right optical systems on which light from the object to be observed enters,
By rotating around an axis parallel to the optical axis of the optical system, binoculars that can change the relative position of the pair of left and right optical systems,
Shake detection means for detecting shake of the binoculars,
Two image shake correction means provided in both of the optical systems and correcting respective image shakes of the optical system in accordance with an output of the shake detection means;
Binoculars, wherein at least one of the image blur correction means rotates about the optical axis of the image blur correction means in accordance with a change in the relative position of the optical system.
前記双眼鏡は更に、該光学系の相対位置の変化量を検出する位置変化量検出手段と、該像ぶれ補正手段を該像振れ補正手段の光軸を中心として回転させる回転駆動手段と、を有し、該位置変化量検出手段の出力に応じて、該回転駆動手段による回転量が決定されることを特徴とする請求項1に記載の双眼鏡。 The binoculars further include position change amount detection means for detecting a change amount of the relative position of the optical system, and rotation driving means for rotating the image blur correction means around the optical axis of the image shake correction means. The binoculars according to claim 1, wherein the amount of rotation by the rotation driving unit is determined according to the output of the position change amount detection unit. 該光学系の光軸と平行な軸を中心とした回転と連動して、該像振れ補正手段のうちの少なくとも一方を、該像ぶれ補正手段の光軸を中心として回転させる連結手段を有することを特徴とする請求項1に記載の双眼鏡。 Coupling means for rotating at least one of the image blur correction means around the optical axis of the image blur correction means in conjunction with rotation about an axis parallel to the optical axis of the optical system; The binoculars according to claim 1, wherein:
JP2018129216A 2018-07-06 2018-07-06 Binocular Pending JP2020008705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018129216A JP2020008705A (en) 2018-07-06 2018-07-06 Binocular

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129216A JP2020008705A (en) 2018-07-06 2018-07-06 Binocular

Publications (1)

Publication Number Publication Date
JP2020008705A true JP2020008705A (en) 2020-01-16

Family

ID=69151470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129216A Pending JP2020008705A (en) 2018-07-06 2018-07-06 Binocular

Country Status (1)

Country Link
JP (1) JP2020008705A (en)

Similar Documents

Publication Publication Date Title
JP5109450B2 (en) Blur correction device and optical apparatus
JP5284169B2 (en) Image shake correction apparatus, optical apparatus including the same, and imaging apparatus
JPH1020213A (en) Binoculars provided with shake correcting mechanism
JP2010286651A (en) Image blur correction device and imaging apparatus
JP5895586B2 (en) Lens unit
JPH06250100A (en) Image stabilizing device
JP3683930B2 (en) Blur correction device
JP6280218B2 (en) Anti-vibration optical system, telephoto optical system, binoculars, and anti-vibration unit
JP3683929B2 (en) Blur correction device and optical device
JP5506297B2 (en) Optical equipment
JP2004212878A (en) Image stabilizer and binoculars incorporating this image stabilizer
JP2020008705A (en) Binocular
WO2018198258A1 (en) Lens barrel, camera body, camera system
JP2011053240A5 (en)
JP3197995B2 (en) Optical equipment with camera shake correction function
JP2020144257A (en) Observation optical system
JP5458521B2 (en) Lens barrel, lens barrel adjustment method, optical device, and optical device adjustment method
JP2014228623A (en) Camera-shake correcting device, lens barrel, and photographing apparatus
JPH07301839A (en) Camera shake correcting device
JP3295030B2 (en) Camera shake correction mechanism of binocular device
JP2754872B2 (en) Image blur prevention device
JP2000081646A (en) Camera with camera-shake correction function
JP3231688B2 (en) Camera shake correction mechanism of binocular device
EP3869260A1 (en) Anti-vibration optical device
JP3673546B2 (en) Observation optical equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125