JP3673370B2 - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
JP3673370B2
JP3673370B2 JP16622597A JP16622597A JP3673370B2 JP 3673370 B2 JP3673370 B2 JP 3673370B2 JP 16622597 A JP16622597 A JP 16622597A JP 16622597 A JP16622597 A JP 16622597A JP 3673370 B2 JP3673370 B2 JP 3673370B2
Authority
JP
Japan
Prior art keywords
gear
chamber
meshing
drive gear
closed region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16622597A
Other languages
Japanese (ja)
Other versions
JPH1113644A (en
Inventor
靖 志田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP16622597A priority Critical patent/JP3673370B2/en
Priority to PCT/JP1998/001791 priority patent/WO1998059171A1/en
Publication of JPH1113644A publication Critical patent/JPH1113644A/en
Application granted granted Critical
Publication of JP3673370B2 publication Critical patent/JP3673370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/088Elements in the toothed wheels or the carter for relieving the pressure of fluid imprisoned in the zones of engagement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、互いに噛み合う一対のギアの回転によりポンプ作用をなすギアポンプに関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来より、ギアポンプは、簡単な構造を有する小型軽量のポンプとして種々の産業分野に用いられている。
この種のギアポンプの構造としては、ハウジング内部の空洞に一対のサイドプレートを嵌め合わせてギア室を区画し、このギア室の内部に互いに噛み合う一対のギアを収容して、各ギアの支軸を各サイドプレートに形成した支持孔によって嵌合支持すると共に、ギア室の内部に両ギアの噛み合い位置を挟んで作動流体の吸込室および吐出室を形成したタイプのものが一般的である。
【0003】
ところで、ギアポンプでは、支持孔内の潤滑が不充分になると、支持孔内での摩耗が助長される結果、やがてポンプ効率が低下するという問題がある。
また、ギアポンプのギアの噛み合い部分では、各サイドプレートおよび噛合する各ギア歯で形成される閉塞領域に油が閉じ込められる、いわゆる閉じ込み現象を生じて、閉じ込められた油がギアの回転に伴って圧縮されるときに、非常な高圧が生じる結果、振動や騒音が発生するという問題がある。
【0004】
これらの問題に対して、本願出願人は、閉塞領域と支持孔とを連通する流路を備えたギアポンプを提案している(例えば、特願平8−274948号等)。このギアポンプでは、図9に示すように、高圧側の吐出室90と低圧側の吸込室91とは、駆動ギア96と従動ギア97との噛み合い点92で区画されており、この噛み合い点92の両側の近傍に一対の閉塞領域93,94(図9にハッチングを施した。)が区画されている。この一対の閉塞領域93,94と連通するように、流路の閉塞領域側開口95はピッチ点に一致して設けられていた。このギアポンプでは、閉じ込みに起因した振動や騒音を防止できるとともに、支持孔への潤滑を確保して耐久性にすぐれたギアポンプを実現できる。一方で、このギアポンプは、高圧になるほど、ポンプ効率が低下する傾向を有していた。
【0005】
そこで、本発明の目的は、上述の技術的課題を解決し、ギアポンプの閉じ込み現象に起因した振動や騒音を防止できるとともに、ギアの支軸を支持する部分の摩耗を防止できて耐久性に優れ、高圧時にポンプ効率の低下を防止できるギアポンプを提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる発明のギアポンプは、ハウジング内部の空洞に一対のサイドプレートを嵌め合わせてギア室を区画し、このギア室の内部に互いに噛み合う駆動ギアおよび従動ギアを収容して、各ギアの支軸を各サイドプレートに形成した支持孔によって嵌合支持すると共に、上記ギア室の内部に両ギアの噛み合い点を挟んで作動流体の吸込室および吐出室を形成したギアポンプにおいて、上記サイドプレートに、両サイドプレートおよび噛合する各ギア歯で形成される閉塞領域と上記支持孔とを連通する流路を形成し、この流路の閉塞領域側の開口と、両ギアの噛み合いの作用線とは、上記支軸の軸方向からみたときに互いに重なり合うことを回避していることを特徴とする。
【0007】
ここで、噛み合いの作用線とは、両ギア同士の噛み合い点が、ギアの回転に伴って移動する軌跡である。両ギアの噛み合い点を挟んだ両側には、一対の閉塞領域が区画されるが、これら一対の閉塞領域は、噛み合い点が噛み合いの作用線に沿って移動するのに伴って吸込室と吐出室とにそれぞれ連通する場合がある。このような状態で、仮に一対の閉塞領域が、上記開口を通して、互いに連通してしまうと、吸込室と吐出室とが互いに連通してしまう。
【0008】
これに対して本発明では、噛み合いの作用線と流路の閉塞領域側の開口とが互いに重なり合うことを回避しているので、噛み合い点の両側にある一対の閉塞領域が開口を介して互いに連通することがない。従って、一対の閉塞領域および開口を通しての吸込室と吐出室との両室の連通を防止でき、その結果、両室が連通することに起因した流量損失の発生を防止できる。
【0009】
ところで、上述の開口が、吐出室と連通している状態の閉塞領域に開口する場合を想定すると、高圧の吐出室から流路に作動流体が流れ込むので、流量損失が生じる虞がある。そこで、開口を請求項1のように配置するには、請求項2のように配置することが好ましい。すなわち、請求項2にかかる発明のギアポンプは、請求項1に記載のギアポンプにおいて、上記開口は、上記作用線よりも駆動ギア寄りに配置されたことを特徴とするものである。
【0010】
この構成によれば、請求項1にかかる発明の作用に加えて、以下の作用を奏する。すなわち、上記一対の閉塞領域は、駆動ギアの歯底によって区画される駆動ギア側の閉塞領域と、従動ギアの歯底によって区画される従動ギア側の閉塞領域とを含み、これら駆動ギア側および従動ギア側の閉塞領域は作用線を挟んだ両側に配置されることになる。
【0011】
一方、その描く軌跡が作用線となる噛み合い点は、駆動ギアのギア歯の進行方向側(すなわち吸込室側)の歯面に位置している。このため、従動ギア側の閉塞領域は噛み合い点によって吸込室との連通を確実に阻止される一方、駆動ギア側の閉塞領域は噛み合い点によって吐出室との連通を確実に阻止される。
本発明では、流路の開口を作用線よりも駆動ギア寄りに配置したので、当該開口は、駆動ギア側の閉塞領域のみに連通する。この駆動ギア側の閉塞領域は上述したように吐出室との連通が噛み合い点によって確実に阻止されている。従って、吐出室から流路への圧力抜けが生じることを確実に防止できる。また、駆動ギア側の閉塞領域に閉じ込められた作動流体を流路を介して支持孔の潤滑に利用できる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を、添付図面を参照しつつ説明する。
図1は、本発明の一実施の形態にかかるギアポンプの概略構成を示す正面図である。図2は、図1のギアポンプの断面側面図であり、ハッチングを省略してある。
【0013】
本ギアポンプは、その中央部を貫通する長円形断面の空洞を有する本体筒10の両側を、これの全面を覆う態様にねじ止めされた一対の蓋板11により塞いで構成されたハウジング1を備えている。このハウジング1の内部には、前記空洞部の両側から嵌挿された、例えば、アルミニウム合金製の一対のサイドプレート12同士の間にギア室14が区画されている。このギア室14は、環状溝66(図4参照)に収容された状態で蓋板11とサイドプレート12との間に介在するOリング13によって密封されている。ギア室14内には、互いに対をなす駆動ギア3と従動ギア4とが配置されている。
【0014】
ギア室14の内部には、各サイドプレート12にそれぞれ一対が形成された支持孔31,41により、それぞれ両持ち支持された一対の支軸30,40が、略長円形断面を有するギア室14の両側の半円部の軸心上にそれぞれ位置し、互いに平行をなして架設されている。
一対の支持孔31により支持された一方の支軸30は、一方の蓋板11を貫通して外部に延長され、この延長端に伝達される図示しないモータ等の動力源からの駆動力により回転駆動される駆動軸を構成している。また、支軸30には、ギア室14の内部において駆動ギア3が一体回転可能に装着されている。支軸30が蓋板11を貫通する部分にはオイルシール17が配置されている。
【0015】
また、一対の支持孔41によって支持された他方の支軸40は、各サイドプレート12の支持孔41内に軸端を有する従動軸を構成している。支軸40には、ギア室14の内部において従動ギア4が装着されている。従動ギア4は、両支軸30,40の軸心を含む平面近傍範囲内において駆動ギア3と噛み合い、支軸30により駆動される駆動ギア3の回転に伴って、支軸40と共に従動回転するようにしてある。
【0016】
図2には、駆動ギア3およびこれに連動する従動ギア4の回転方向が矢符により示してあり、両ギア3,4の噛み合い位置を挟んだ両側には、前記回転方向側に吸込室5が、反回転方向側に吐出室6が形成されている。これら吸込室5および吐出室6は、本体筒10の対応位置に開口する吸込口15および吐出口16を介して、ハウジング1外の図示しない吸込先および吐出先にそれぞれ接続されるようにしてある。
【0017】
このような構成により、吸込口15を経て吸込室5に導入される作動流体は、該吸込室5に臨む駆動ギア3および従動ギア4の歯間に受け入れられ、両ギア3,4の回転により、それぞれの歯間の本体筒10の内周面との間に封止された状態で搬送され、吐出室6に送り出される。吐出室6への送り出しを終えた駆動ギア3と従動ギア4とは、両ギア3,4の噛み合い位置を経て吸込室5側に向き、該吸込室5内の作動流体を再度受け入れて吐出室6側へ送り出す作用をなす。
【0018】
以上の如く行われるギアポンプの動作中、駆動ギア3および従動ギア4には、図2中に黒塗り矢符で示す向きの押圧力が作用する。これにより、駆動ギア3および従動ギア4の支軸30,40は、吸込室5側において、支持孔31,41の内周面にそれぞれ押し付けられるので、支持孔31,41の内面の摩耗が生じ易い傾向にあり、特に支持孔31,41と支軸30,40との間に潤滑の油膜の形成が良好に行われない低回転下でその傾向が大きい。
【0019】
他方、駆動ギア3と従動ギア4との噛み合い点近傍で、一方の歯の歯底と、他方の歯の歯先との間に形成される閉塞領域に、作動流体が閉じ込められる、いわゆる閉じ込みが生じて、その結果、非常な高圧を発生し振動や騒音を発生するおそれがある。
本実施形態では、支持孔31,41へ閉塞領域の高圧作動流体を導くための流路80を設けることにより、支持孔31,41での潤滑性の向上および閉じ込み防止を図っている。
【0020】
図3は、サイドプレートの側面図である。図4は、図3のサイドプレートの断面後面図である。
サイドプレート12のギア側側面12aには、両ギア3,4の噛み合い位置から吸込室5側へ延びる逃げ溝63および吐出室6側へ延びる逃げ溝64が形成されている。これらの逃げ溝63,64は、後述するように閉じ込みの発生を防止するためのものである。また、流路80を形成するために、サイドプレート12のギア側側面12aには、両逃げ溝63,64同士間の略中間位置に凹部81が形成され、また、サイドプレート12内には、凹部81と支持孔31内とを連通する孔状の連通路82、および凹部81と支持孔41内とを連通する孔状の連通路83が形成されている。また、サイドプレート12のギア側側面12aおよび反ギア側側面12bには、溝65が形成されている。
【0021】
溝65は、支持孔31,41の内周面31a,41aの偏心側嵌合領域P(図3において、支持孔31,41の軸心71,72を含む仮想の平面73よりも吸込室5側に位置する、支持孔31,41の内周面31a,41aの部分である。)に対応する支持孔31,41の両端部分と、吸込室5側とを連通している。
両逃げ溝63,64は、両ギア3,4の噛み合い中心位置Kを避けるようにして設けられ、互いの間に所定の距離が確保されている。これは、両逃げ溝63,64同士を連通させると、これら逃げ溝63,64を通して、吸込室5と吐出室6とが連通されてしまいポンプ機能を果たせなくなるので、これを防止するためである。なお、両ギア3,4の噛み合い中心位置K(ピッチ点)を挟んで離間する逃げ溝63,64間の離間距離は、各部品の寸法精度や両ギア3,4の噛み合い誤差等を勘案して、できるだけ狭くなるように設定されている。
【0022】
凹部81は、サイドプレート12のギア側側面12aにおいて、例えば、円錐状に形成されている。
各連通路82,83の一端は、凹部81内の内奥部に開口している。また、各連通路82,83は、支持孔31,41の内周面31a,41aの偏心側嵌合領域Pに開口している。この偏心側嵌合領域Pは、高圧時に支軸30,40との間が狭くなる傾向にあることから、支持孔31,41の偏心側嵌合領域Pに対して潤滑用の流体を供給する各連通路82,83は、摩耗防止に一層効果がある。
【0023】
流路80は、連通路82と凹部81とで構成されて閉塞領域と支持孔31とを連通する部分と、後述する連通路83と凹部81とで構成されて閉塞領域と支持孔41とを連通する部分とを有している。流路80は、凹部81から支持孔31,41へ作動流体を流すことができる。流路80の閉塞領域側の開口81aは、サイドプレート12のギア側側面12aに形成された凹部81の入口からなっている。
【0024】
開口81aは、両ギア3,4の閉塞領域であって両逃げ溝63,64から隔離された領域にある。開口81aの全体と、両ギア3,4の噛み合いの作用線Lとは、支軸30(支軸40でもよい。)の軸方向からみたときに互いに重なり合うことを回避している。これによって、吸込室5と吐出室6とが互いに連通することを回避している。というのは、開口81aが開口する閉塞領域は一対で構成され、この一対の閉塞領域は、両ギア3,4の噛み合い点が噛み合いの作用線Lに沿って移動するのに伴って、吸込室5および吐出室6にそれぞれ連通する場合がある。このような状態で、仮に、開口81aと作用線Lとが重なり合っていると、開口81aと一対の閉塞領域とが互いに連通してしまい、その結果、吸込室5と吐出室6とが互いに開口81aを通じて連通する場合があるからである。
【0025】
ここで、開口81aを上述のように作用線Lを回避して配置するには、凹部81を駆動ギア3寄りに配置することと、凹部81を従動ギア4寄りに配置することとが考えられる。本実施の形態では、後述するように吐出室6と流路80との連通に起因した流量損失の発生を防止するために、開口81aは作用線Lよりも駆動ギア3寄りに配置されている。
【0026】
また、開口81aは、ギア室14に臨んで、例えば、円形に形成されている。この円の直径は、開口81aの前方を通過するギア歯部分の歯厚よりも小さくされ、隣接する歯溝が、互いに凹部81を介して連通することを回避している。
次に動作を説明する。
図5は、駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。図6は、図5に続く状態での、駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。
【0027】
まず、閉塞領域を図5を参照して説明する。
閉塞領域は、両ギア3,4の歯面同士の接触点である噛み合い点K2を挟んで一対で区画されている。
そして、両ギア3,4の回転に伴って、噛み合い点K2も移動し、その軌跡が上述の作用線Lとなる。この作用線Lは、両ギア3,4の並ぶ方向と交差する方向に延びており、この作用線Lを挟んで両側に、上述の一対の閉塞領域は区画されている。
【0028】
この一対の閉塞領域は、駆動ギア3の歯底によって区画される駆動ギア側の閉塞領域S3と、従動ギア4の歯底によって区画される従動ギア側の閉塞領域S4とを含み、これら駆動ギア側および従動ギア側の閉塞領域S3,S4は作用線Lを挟んだ両側に配置されることになる。一方、その描く軌跡が作用線Lとなる噛み合い点K2は、駆動ギア3のギア歯3aの進行方向側(すなわち吸込室5側)の歯面3bに位置している。このため、従動ギア側の閉塞領域S4は、吐出室6と連通し、且つ噛み合い点K2によって吸込室5との連通を確実に阻止される。一方、駆動ギア側の閉塞領域S3は、吸込室5と連通し、且つ噛み合い点K2によって吐出室6との連通を確実に阻止される。
【0029】
次に、閉塞領域の連通状態をより詳細に説明する。
駆動ギア側の閉塞領域S3は、両ギア3,4の噛み合いに伴って、両ギア3,4のギア歯同士が互いに接近すると、吐出室6内に、駆動ギア3の歯溝と従動ギア4の歯先との間の空間S6として形成され始める(この状態の空間S6を図5に図示した。)。この形成され始めた空間S6は、駆動ギア3の歯面3bと従動ギア4の歯面4bとが互いに接触するまでは、吐出室6および逃げ溝64に連通しており、逃げ溝64を通じて、空間S6内の作動流体は吐出室6へ戻ることができる。
【0030】
図6に示すように、駆動ギア3と従動ギア4との噛み合い始めには(噛み合い点K1)、駆動ギア側の閉塞領域S3(図6の右側に図示した閉塞領域S3)は、噛み合い点K1によって吐出室6と連通を遮断される。そして、駆動ギア側の閉塞領域S3は、開口81aを通じて流路80と連通する。この状態では、従動ギア側の閉塞領域S5(図6で、駆動ギア側の閉塞領域S3の左側にある閉塞領域)は、駆動ギア側の閉塞領域S3と連通することができる。というのは、駆動ギア3のギア歯3aの反進行方向側の歯面3cと、従動ギア4のギア歯4aの進行方向側の歯面4cとの間には、通常、隙間(バックラッシュ)が生じるためである。従って、従動ギア側の閉塞領域S5内の作動流体も、開口81aを通じて流路80へ流入できる。
【0031】
噛み合いが進行すると、図5に示すように、駆動ギア側の閉塞領域S3は、上述のようにして、噛み合い点K2によって吐出室6と連通を遮断され、且つ開口81aを通じて流路80と連通する。また、従動ギア側の閉塞領域S4は、噛み合い点によって吸込室5との連通を遮断されている。
さらに噛み合いが進行すると、再度図6を参照して、両ギア3,4は噛み合い点K3で噛み合い、駆動ギア側の閉塞領域S3(図6で左側に図示した閉塞領域S3)は、吸込室5および逃げ溝63と連通する。また、駆動ギア側の閉塞領域S3は、噛み合い点K3によって吐出室6と連通を遮断されている。
【0032】
このように、高圧の作動流体を、上述の流路80を通して、支持孔31,41の内周面31a,41aの偏心側嵌合領域Pに供給できる。また、流路82,83は、支持孔31,41内で軸方向の略中央位置に開口しており、この部分に供給された作動流体は、軸方向の両側に均一に流れて支持孔31,41全体を万遍なく潤滑した後、溝65を介して吸込室5側へ回収できる。
【0033】
従って、駆動ギア3と従動ギア4との各噛み合い歯間の閉塞領域に発生する高圧を抑制して、振動や騒音を防止できる。そして、逃げ溝63,64と、流路82,83との組合せにより、閉じ込みによる高圧発生を確実に防止できる。しかも、閉塞領域に閉じ込められようとする高圧作動流体を支持孔31,41へ供給できる結果、支持孔31,41内を潤滑して摩耗発生を防止できる。
【0034】
このように本実施の形態によれば、以下の効果を奏する。すなわち、噛み合いの作用線Lと流路80の閉塞領域側の開口81aとが互いに重なり合うことを回避しているので、噛み合い点K1〜K3の両側にある一対の閉塞領域が開口81aを介して互いに連通することがない。従って、一対の閉塞領域および開口81aを通しての吸込室5と吐出室6との両室の連通を防止でき、その結果、両室が連通することに起因した流量損失の発生を防止できる。
【0035】
また、流路80の開口81aを作用線Lよりも駆動ギア3寄りに配置したので、開口81aは駆動ギア側の閉塞領域S3のみに連通する。この駆動ギア側の閉塞領域S3は上述したように吐出室6との連通が噛み合い点によって確実に阻止されているので、吐出室6から流路80への圧力抜けが生じることを確実に防止できる。しかも、駆動ギア側の閉塞領域S3に閉じ込められた作動流体を流路80を介して支持孔31,41の潤滑に利用できる。
【0036】
これに対して、流路80の開口81aを作用線Lよりも従動ギア4寄りに配置する場合(図8参照)には、開口81aの位置や大きさによっては、従動ギア側の閉塞領域S4が開口81aを通じて流路80に連通し、同時に吐出室6と連通する場合が生じる。このような場合、吐出室6と流路80との連通に起因する圧抜けを生じることが想定される。
【0037】
本実施の形態の効果を具体的に図7のグラフに示す。すなわち、流路の閉塞領域側開口をピッチ点に配置した従来の場合には、吐出圧力が高くなるのに伴って吐出流量が低下していた(この場合を─■─で結ぶ線RAで示した。)。これに対して本実施の形態では、吐出圧力が高くなっても吐出流量をほぼ一定に維持することができている(この場合を─○─で結ぶ線RBで示した。)。
【0038】
なお、上述の実施の形態では、流路80の閉塞領域側開口81aは、凹部81に設けられていたが、これには限定されない。例えば、流路80が直接にギア室14内に開口していてもよい。また、連通路82,83がそれぞれ別々にギア室14内に開口していてもよい。
その他、本発明の要旨を変更しない範囲で種々の設計変更を施すことが可能である。
【0039】
【発明の効果】
請求項1に係る発明によれば、以下の効果を奏する。すなわち、噛み合いの作用線と流路の閉塞領域側の開口とが互いに重なり合うことを回避しているので、噛み合い点の両側にある一対の閉塞領域が開口を介して互いに連通することがない。従って、一対の閉塞領域および開口を通しての吸込室と吐出室との両室の連通を防止でき、その結果、両室が連通することに起因した流量損失の発生を防止できる。
【0040】
請求項2に係る発明によれば、請求項1にかかる発明の効果に加えて、以下の効果を奏する。すなわち、上記一対の閉塞領域は、作用線を挟んだ両側に配置されるのに対して、流路の開口を作用線よりも駆動ギア寄りに配置したので、当該開口は駆動ギア側の閉塞領域のみに連通する。このように、駆動ギア側の閉塞領域に閉じ込められた作動流体を流路を介して支持孔の潤滑に利用でき、しかも、駆動ギア側の閉塞領域は吐出室との連通が噛み合い点によって確実に阻止されているので、吐出室から流路への圧力抜けが生じることを確実に防止できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるギアポンプの断面正面図である。
【図2】図1のギアポンプの断面側面図であり、図1のII─II線に沿う断面図であってハッチングを省略してある。
【図3】サイドプレートの側面図である。
【図4】図3のサイドプレートの断面後面図である。
【図5】駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。
【図6】図5に続く駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。
【図7】本発明のギアポンプの吐出圧力と、吐出流量との関係のグラフである。
【図8】本発明の他の実施形態のギアポンプの、駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。
【図9】従来のギアポンプの、駆動ギアと従動ギアの噛み合いを説明するための、サイドプレートの要部拡大側面図である。
【符号の説明】
1 ハウジング
3 駆動ギア
3a,4a ギア歯
4 従動ギア
5 吸込室
6 吐出室
12 サイドプレート
14 ギア室
30,40 支軸
31,41 支持孔
80 流路
81a 開口
L 噛み合いの作用線
K1〜K3 噛み合い点
S3,S4 閉塞領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear pump that performs pumping action by rotation of a pair of gears that mesh with each other.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, a gear pump has been used in various industrial fields as a small and light pump having a simple structure.
As a structure of this type of gear pump, a pair of side plates are fitted into a cavity inside a housing to define a gear chamber, and a pair of gears meshing with each other are accommodated inside the gear chamber, and a support shaft of each gear is accommodated. A type in which a suction chamber and a discharge chamber for the working fluid are formed inside the gear chamber with the meshing positions of both gears sandwiched between the support holes formed in the side plates.
[0003]
By the way, in the gear pump, if the lubrication in the support hole becomes insufficient, the wear in the support hole is promoted, resulting in a problem that the pump efficiency is eventually lowered.
Further, in the meshing part of the gear of the gear pump, oil is trapped in a closed region formed by each side plate and each gear tooth to be meshed, so that a so-called confinement phenomenon occurs, and the trapped oil is accompanied by the rotation of the gear. When compressed, there is a problem that vibration and noise are generated as a result of extremely high pressure.
[0004]
In response to these problems, the applicant of the present application has proposed a gear pump having a flow path that connects the closed region and the support hole (for example, Japanese Patent Application No. 8-274948). In this gear pump, as shown in FIG. 9, the discharge chamber 90 on the high pressure side and the suction chamber 91 on the low pressure side are partitioned by an engagement point 92 between the drive gear 96 and the driven gear 97. A pair of closed regions 93 and 94 (hatched in FIG. 9) are defined in the vicinity of both sides. The closed region side opening 95 of the flow path was provided to coincide with the pitch point so as to communicate with the pair of closed regions 93 and 94. With this gear pump, it is possible to prevent vibration and noise caused by the confinement, and to realize a gear pump with excellent durability by securing lubrication to the support hole. On the other hand, this gear pump has a tendency that the pump efficiency decreases as the pressure increases.
[0005]
Therefore, the object of the present invention is to solve the above technical problem, to prevent vibration and noise due to the gear pump closing phenomenon, and to prevent wear of the portion supporting the support shaft of the gear, thereby improving durability. An object of the present invention is to provide a gear pump that is excellent and can prevent a decrease in pump efficiency at high pressure.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a gear pump according to a first aspect of the present invention defines a gear chamber by fitting a pair of side plates into a cavity inside a housing, and includes a drive gear and a driven gear meshing with each other inside the gear chamber. The support shaft of each gear is fitted and supported by a support hole formed in each side plate, and a suction chamber and a discharge chamber for working fluid are formed inside the gear chamber with the meshing points of both gears interposed therebetween. In the gear pump, a flow path is formed in the side plate so as to communicate the closed area formed by both side plates and the meshing gear teeth and the support hole, the opening on the closed area side of the flow path, and both gears. The meshing action line is characterized by avoiding overlapping with each other when viewed from the axial direction of the support shaft.
[0007]
Here, the meshing action line is a trajectory where the meshing point between the two gears moves as the gear rotates. A pair of closed areas are defined on both sides of the meshing point of both gears. The pair of closed areas are divided into a suction chamber and a discharge chamber as the meshing point moves along the line of engagement. May communicate with each other. In such a state, if the pair of closed regions communicate with each other through the opening, the suction chamber and the discharge chamber communicate with each other.
[0008]
On the other hand, in the present invention, since the meshing line of action and the opening on the closed region side of the flow path are avoided from overlapping each other, the pair of closed regions on both sides of the meshing point communicate with each other via the openings. There is nothing to do. Therefore, the communication between the suction chamber and the discharge chamber through the pair of closed regions and openings can be prevented, and as a result, the occurrence of a flow loss due to the communication between the chambers can be prevented.
[0009]
By the way, assuming that the above-described opening opens in a closed region in a state where the opening is in communication with the discharge chamber, the working fluid flows from the high-pressure discharge chamber into the flow path, which may cause a flow loss. Therefore, in order to arrange the openings as in claim 1, it is preferable to arrange the openings as in claim 2. That is, the gear pump according to a second aspect of the present invention is the gear pump according to the first aspect, wherein the opening is arranged closer to the drive gear than the action line.
[0010]
According to this structure, in addition to the effect | action of the invention concerning Claim 1, there exists the following effect | action. That is, the pair of closed regions includes a closed region on the drive gear side defined by the bottom of the drive gear and a closed region on the driven gear side defined by the bottom of the driven gear. The closed area on the driven gear side is arranged on both sides of the action line.
[0011]
On the other hand, the meshing point where the drawn locus is the action line is located on the tooth surface of the drive gear on the traveling direction side (that is, the suction chamber side). For this reason, the closed region on the driven gear side is reliably prevented from communicating with the suction chamber by the meshing point, while the closed region on the drive gear side is reliably prevented from communicating with the discharge chamber by the meshing point.
In the present invention, since the opening of the flow path is disposed closer to the drive gear than the action line, the opening communicates only with the closed region on the drive gear side. As described above, the closed region on the drive gear side is reliably prevented from communicating with the discharge chamber by the meshing point. Therefore, it is possible to reliably prevent pressure loss from the discharge chamber to the flow path. Further, the working fluid confined in the closed region on the drive gear side can be used for lubricating the support hole through the flow path.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a front view showing a schematic configuration of a gear pump according to an embodiment of the present invention. FIG. 2 is a cross-sectional side view of the gear pump of FIG. 1, and hatching is omitted.
[0013]
This gear pump includes a housing 1 configured by closing both sides of a main body cylinder 10 having an oval cross-sectional cavity penetrating through a central portion thereof with a pair of cover plates 11 screwed so as to cover the entire surface thereof. ing. Inside the housing 1, a gear chamber 14 is defined between a pair of side plates 12 made of, for example, aluminum alloy, which are fitted from both sides of the hollow portion. The gear chamber 14 is sealed by an O-ring 13 that is interposed between the cover plate 11 and the side plate 12 while being accommodated in the annular groove 66 (see FIG. 4). A drive gear 3 and a driven gear 4 that are paired with each other are disposed in the gear chamber 14.
[0014]
Inside the gear chamber 14, a pair of support shafts 30, 40 that are both supported by support holes 31, 41 formed in pairs on the side plates 12, respectively, have a substantially oval cross section. Are located on the axial centers of the semicircular portions on both sides of the two, and are installed in parallel with each other.
One support shaft 30 supported by the pair of support holes 31 extends through the one cover plate 11 to the outside, and is rotated by a driving force from a power source such as a motor (not shown) transmitted to the extended end. A drive shaft to be driven is configured. The drive gear 3 is mounted on the support shaft 30 so as to be integrally rotatable inside the gear chamber 14. An oil seal 17 is disposed at a portion where the support shaft 30 penetrates the cover plate 11.
[0015]
The other support shaft 40 supported by the pair of support holes 41 constitutes a driven shaft having a shaft end in the support hole 41 of each side plate 12. The driven gear 4 is attached to the support shaft 40 inside the gear chamber 14. The driven gear 4 meshes with the drive gear 3 within a range in the vicinity of the plane including the shaft centers of both the support shafts 30, 40, and is driven to rotate together with the support shaft 40 as the drive gear 3 driven by the support shaft 30 rotates. It is like that.
[0016]
In FIG. 2, the rotation direction of the drive gear 3 and the driven gear 4 interlocked therewith is indicated by an arrow, and on both sides of the meshing position of both the gears 3, 4, the suction chamber 5 is placed on the rotation direction side. However, the discharge chamber 6 is formed on the counter-rotation direction side. The suction chamber 5 and the discharge chamber 6 are respectively connected to a suction destination and a discharge destination (not shown) outside the housing 1 via a suction port 15 and a discharge port 16 that open to corresponding positions of the main body cylinder 10. .
[0017]
With such a configuration, the working fluid introduced into the suction chamber 5 through the suction port 15 is received between the teeth of the drive gear 3 and the driven gear 4 facing the suction chamber 5, and the two gears 3, 4 rotate. Then, it is conveyed in a state of being sealed between the inner peripheral surface of the main body cylinder 10 between the respective teeth, and is sent out to the discharge chamber 6. The drive gear 3 and the driven gear 4 that have finished sending out to the discharge chamber 6 are directed toward the suction chamber 5 through the meshing positions of the two gears 3 and 4, and receive the working fluid in the suction chamber 5 again to discharge the discharge chamber. Acts to send to 6 side.
[0018]
During the operation of the gear pump performed as described above, a pressing force in a direction indicated by a black arrow in FIG. 2 acts on the drive gear 3 and the driven gear 4. As a result, the support shafts 30 and 40 of the drive gear 3 and the driven gear 4 are pressed against the inner peripheral surfaces of the support holes 31 and 41 on the suction chamber 5 side, so that the inner surfaces of the support holes 31 and 41 are worn. It tends to be easy, and this tendency is particularly great under low rotation in which a lubricating oil film is not well formed between the support holes 31 and 41 and the support shafts 30 and 40.
[0019]
On the other hand, in the vicinity of the meshing point between the drive gear 3 and the driven gear 4, the working fluid is confined in a closed region formed between the tooth bottom of one tooth and the tooth tip of the other tooth. As a result, a very high pressure may be generated and vibration and noise may be generated.
In the present embodiment, by providing a flow path 80 for guiding the high-pressure working fluid in the closed region to the support holes 31 and 41, lubrication at the support holes 31 and 41 is improved and prevention of confinement is achieved.
[0020]
FIG. 3 is a side view of the side plate. 4 is a cross-sectional rear view of the side plate of FIG.
A clearance groove 63 extending to the suction chamber 5 side and a clearance groove 64 extending to the discharge chamber 6 side are formed on the gear side surface 12 a of the side plate 12 from the meshing position of both the gears 3 and 4. These escape grooves 63 and 64 are for preventing the occurrence of confinement as will be described later. Further, in order to form the flow path 80, the gear side surface 12a of the side plate 12 is formed with a concave portion 81 at a substantially intermediate position between the escape grooves 63 and 64, and in the side plate 12, A hole-shaped communication path 82 that communicates between the recess 81 and the inside of the support hole 31 and a hole-shaped communication path 83 that communicates between the recess 81 and the inside of the support hole 41 are formed. Further, a groove 65 is formed in the gear side surface 12 a and the counter gear side surface 12 b of the side plate 12.
[0021]
The groove 65 is formed on the eccentric side fitting region P of the inner peripheral surfaces 31a and 41a of the support holes 31 and 41 (in FIG. 3, the suction chamber 5 than the virtual plane 73 including the axes 71 and 72 of the support holes 31 and 41). The end portions of the support holes 31, 41 corresponding to the inner peripheral surfaces 31 a, 41 a of the support holes 31, 41 located on the side are in communication with the suction chamber 5 side.
Both escape grooves 63, 64 are provided so as to avoid the meshing center position K of both gears 3, 4, and a predetermined distance is secured between them. This is for preventing both the escape grooves 63 and 64 from communicating with each other because the suction chamber 5 and the discharge chamber 6 are communicated with each other through the escape grooves 63 and 64 and cannot perform the pump function. . Note that the distance between the clearance grooves 63 and 64 that are spaced apart from each other with the meshing center position K (pitch point) of both gears 3 and 4 in consideration of the dimensional accuracy of each part, the meshing error of both gears 3 and 4, and the like. Is set to be as narrow as possible.
[0022]
The recess 81 is formed in, for example, a conical shape on the gear side surface 12 a of the side plate 12.
One end of each of the communication passages 82 and 83 opens to the inner back portion in the recess 81. The communication passages 82 and 83 open to the eccentric side fitting region P of the inner peripheral surfaces 31 a and 41 a of the support holes 31 and 41. Since the eccentric fitting region P tends to be narrower between the support shafts 30 and 40 at a high pressure, the lubricating fluid is supplied to the eccentric fitting region P of the support holes 31 and 41. Each communication path 82 and 83 is more effective in preventing wear.
[0023]
The flow path 80 is composed of a communication path 82 and a recessed portion 81 to communicate the closed region and the support hole 31, and is composed of a communication passage 83 and a recessed portion 81 to be described later to form the closed region and the support hole 41. A communicating portion. The flow path 80 can flow the working fluid from the recess 81 to the support holes 31 and 41. The opening 81 a on the closed region side of the flow path 80 is formed by an inlet of a recess 81 formed on the gear side surface 12 a of the side plate 12.
[0024]
The opening 81a is a closed region of both gears 3 and 4 and is a region isolated from both escape grooves 63 and 64. The entire opening 81a and the line of action L of engagement between the gears 3 and 4 are avoided from overlapping each other when viewed from the axial direction of the support shaft 30 (support shaft 40 may be used). As a result, the suction chamber 5 and the discharge chamber 6 are prevented from communicating with each other. This is because the closed region where the opening 81a is opened is composed of a pair, and the pair of closed regions is formed in the suction chamber as the meshing points of the gears 3 and 4 move along the meshing action line L. 5 and the discharge chamber 6 may communicate with each other. If the opening 81a and the action line L overlap in this state, the opening 81a and the pair of closed regions communicate with each other, and as a result, the suction chamber 5 and the discharge chamber 6 open to each other. This is because there is a case of communicating through 81a.
[0025]
Here, in order to arrange the opening 81a while avoiding the line of action L as described above, it is conceivable that the recess 81 is disposed closer to the drive gear 3 and the recess 81 is disposed closer to the driven gear 4. . In the present embodiment, as will be described later, the opening 81a is disposed closer to the drive gear 3 than the action line L in order to prevent the occurrence of a flow loss due to the communication between the discharge chamber 6 and the flow path 80. .
[0026]
Further, the opening 81a faces the gear chamber 14, and is formed in a circular shape, for example. The diameter of this circle is made smaller than the tooth thickness of the gear tooth portion passing in front of the opening 81a, so that adjacent tooth spaces are prevented from communicating with each other via the recess 81.
Next, the operation will be described.
FIG. 5 is an enlarged side view of the main part of the side plate for explaining the meshing of the drive gear and the driven gear. FIG. 6 is an enlarged side view of the main part of the side plate for explaining the meshing of the drive gear and the driven gear in the state following FIG.
[0027]
First, the closed area will be described with reference to FIG.
The closed region is defined as a pair with a meshing point K2 that is a contact point between the tooth surfaces of the gears 3 and 4 interposed therebetween.
As the both gears 3 and 4 rotate, the meshing point K2 also moves, and its locus becomes the above-mentioned action line L. The action line L extends in a direction intersecting with the direction in which both gears 3 and 4 are arranged, and the pair of closed regions described above are partitioned on both sides of the action line L.
[0028]
The pair of closed areas includes a drive gear side closed area S3 defined by the tooth bottom of the drive gear 3 and a driven gear side closed area S4 defined by the tooth bottom of the driven gear 4. The closed regions S3 and S4 on the side and the driven gear side are arranged on both sides of the action line L. On the other hand, the meshing point K2 at which the drawn locus becomes the action line L is located on the tooth surface 3b on the traveling direction side (that is, the suction chamber 5 side) of the gear tooth 3a of the drive gear 3. For this reason, the closed region S4 on the driven gear side communicates with the discharge chamber 6 and is reliably prevented from communicating with the suction chamber 5 by the meshing point K2. On the other hand, the closed region S3 on the drive gear side communicates with the suction chamber 5 and is reliably prevented from communicating with the discharge chamber 6 by the meshing point K2.
[0029]
Next, the communication state of the closed area will be described in more detail.
In the closed region S3 on the drive gear side, when the gear teeth of both the gears 3 and 4 approach each other as the gears 3 and 4 are engaged, the tooth groove of the drive gear 3 and the driven gear 4 are brought into the discharge chamber 6. (The space S6 in this state is shown in FIG. 5). The space S6 that has started to form is in communication with the discharge chamber 6 and the escape groove 64 until the tooth surface 3b of the drive gear 3 and the tooth surface 4b of the driven gear 4 come into contact with each other. The working fluid in the space S6 can return to the discharge chamber 6.
[0030]
As shown in FIG. 6, at the start of meshing of the drive gear 3 and the driven gear 4 (meshing point K1), the closed region S3 on the drive gear side (closed region S3 shown on the right side of FIG. 6) is meshed with the meshing point K1. Thus, communication with the discharge chamber 6 is blocked. The closed region S3 on the drive gear side communicates with the flow path 80 through the opening 81a. In this state, the closed region S5 on the driven gear side (the closed region on the left side of the closed region S3 on the drive gear side in FIG. 6) can communicate with the closed region S3 on the drive gear side. This is because there is usually a gap (backlash) between the tooth surface 3c on the side opposite to the traveling direction of the gear tooth 3a of the drive gear 3 and the tooth surface 4c on the traveling direction side of the gear tooth 4a of the driven gear 4. This is because. Therefore, the working fluid in the closed region S5 on the driven gear side can also flow into the flow path 80 through the opening 81a.
[0031]
As the meshing progresses, as shown in FIG. 5, the closed region S3 on the drive gear side is disconnected from the discharge chamber 6 by the meshing point K2 and communicates with the flow path 80 through the opening 81a as described above. . Further, the closed region S4 on the driven gear side is blocked from communicating with the suction chamber 5 by the meshing point.
When the meshing further proceeds, referring again to FIG. 6, both gears 3 and 4 mesh at meshing point K <b> 3, and the closed region S <b> 3 on the drive gear side (closed region S <b> 3 illustrated on the left side in FIG. 6) And communicates with the escape groove 63. The closed region S3 on the drive gear side is blocked from communicating with the discharge chamber 6 by the meshing point K3.
[0032]
Thus, the high-pressure working fluid can be supplied to the eccentric side fitting region P of the inner peripheral surfaces 31a and 41a of the support holes 31 and 41 through the flow path 80 described above. Further, the flow paths 82 and 83 are opened at substantially the center position in the axial direction in the support holes 31 and 41, and the working fluid supplied to this portion flows uniformly on both sides in the axial direction to support the support hole 31. , 41 can be uniformly lubricated and then recovered to the suction chamber 5 side through the groove 65.
[0033]
Therefore, the high pressure generated in the closed region between the meshing teeth of the drive gear 3 and the driven gear 4 can be suppressed, and vibration and noise can be prevented. Further, the combination of the escape grooves 63 and 64 and the flow paths 82 and 83 can reliably prevent generation of high pressure due to confinement. Moreover, as a result of supplying the high-pressure working fluid to be confined in the closed region to the support holes 31 and 41, the inside of the support holes 31 and 41 can be lubricated to prevent the occurrence of wear.
[0034]
Thus, according to the present embodiment, the following effects can be obtained. That is, since the engagement line L and the opening 81a on the closed region side of the flow path 80 are prevented from overlapping each other, the pair of closed regions on both sides of the engagement points K1 to K3 are mutually connected via the opening 81a. There is no communication. Accordingly, the communication between the suction chamber 5 and the discharge chamber 6 through the pair of closed regions and the opening 81a can be prevented, and as a result, the occurrence of a flow loss due to the communication between the two chambers can be prevented.
[0035]
Further, since the opening 81a of the flow path 80 is disposed closer to the drive gear 3 than the action line L, the opening 81a communicates only with the closed region S3 on the drive gear side. Since the closed region S3 on the drive gear side is reliably prevented from communicating with the discharge chamber 6 by the meshing point as described above, it is possible to reliably prevent the pressure release from the discharge chamber 6 to the flow path 80. . In addition, the working fluid confined in the closed region S3 on the drive gear side can be used for lubricating the support holes 31 and 41 via the flow path 80.
[0036]
On the other hand, when the opening 81a of the flow path 80 is disposed closer to the driven gear 4 than the action line L (see FIG. 8), depending on the position and size of the opening 81a, the closed region S4 on the driven gear side. May communicate with the flow path 80 through the opening 81a and at the same time communicate with the discharge chamber 6. In such a case, it is assumed that a pressure drop due to the communication between the discharge chamber 6 and the flow path 80 occurs.
[0037]
The effect of this embodiment is specifically shown in the graph of FIG. In other words, in the conventional case where the closed area side opening of the flow path is arranged at the pitch point, the discharge flow rate has decreased as the discharge pressure has increased (this case is indicated by a line RA connected by ─ ■ ─). .) On the other hand, in the present embodiment, the discharge flow rate can be maintained substantially constant even when the discharge pressure is increased (this case is indicated by a line RB connected by -O-).
[0038]
In the above-described embodiment, the closed region side opening 81a of the flow path 80 is provided in the recess 81, but is not limited thereto. For example, the flow path 80 may open directly into the gear chamber 14. Further, the communication passages 82 and 83 may be opened in the gear chamber 14 separately.
In addition, various design changes can be made without changing the gist of the present invention.
[0039]
【The invention's effect】
The invention according to claim 1 has the following effects. That is, since the engagement line of action and the opening on the closed region side of the flow path are avoided from overlapping each other, the pair of closed regions on both sides of the engagement point do not communicate with each other through the opening. Therefore, the communication between the suction chamber and the discharge chamber through the pair of closed regions and openings can be prevented, and as a result, the occurrence of a flow loss due to the communication between the chambers can be prevented.
[0040]
According to the invention of claim 2, in addition to the effect of the invention according to claim 1, the following effect is produced. That is, the pair of closed areas are arranged on both sides of the action line, whereas the opening of the flow path is arranged closer to the drive gear than the action line. Communicate only with. In this way, the working fluid confined in the closed area on the drive gear side can be used for lubricating the support hole via the flow path, and the closed area on the drive gear side is reliably connected to the discharge chamber by the meshing point. Since it is blocked, it is possible to reliably prevent pressure loss from the discharge chamber to the flow path.
[Brief description of the drawings]
FIG. 1 is a cross-sectional front view of a gear pump according to an embodiment of the present invention.
2 is a cross-sectional side view of the gear pump of FIG. 1, and is a cross-sectional view taken along the line II-II of FIG. 1, with hatching omitted.
FIG. 3 is a side view of a side plate.
4 is a cross-sectional rear view of the side plate of FIG. 3;
FIG. 5 is an enlarged side view of a main part of a side plate for explaining meshing of a drive gear and a driven gear.
6 is an enlarged side view of the main part of the side plate for explaining the meshing of the drive gear and the driven gear subsequent to FIG. 5. FIG.
FIG. 7 is a graph showing the relationship between the discharge pressure and the discharge flow rate of the gear pump of the present invention.
FIG. 8 is an enlarged side view of a main part of a side plate for explaining meshing of a drive gear and a driven gear in a gear pump according to another embodiment of the present invention.
FIG. 9 is an enlarged side view of a main part of a side plate for explaining meshing of a drive gear and a driven gear in a conventional gear pump.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 3 Drive gear 3a, 4a Gear tooth 4 Driven gear 5 Suction chamber 6 Discharge chamber 6 Side chamber 14 Gear chamber 30, 40 Support shaft 31, 41 Support hole 80 Flow path 81a Opening L Engagement action line K1-K3 Engagement point S3, S4 Blocking area

Claims (2)

ハウジング内部の空洞に一対のサイドプレートを嵌め合わせてギア室を区画し、このギア室の内部に互いに噛み合う駆動ギアおよび従動ギアを収容して、各ギアの支軸を各サイドプレートに形成した支持孔によって嵌合支持すると共に、上記ギア室の内部に両ギアの噛み合い点を挟んで作動流体の吸込室および吐出室を形成したギアポンプにおいて、
上記サイドプレートに、両サイドプレートおよび噛合する各ギア歯で形成される閉塞領域と上記支持孔とを連通する流路を形成し、
この流路の閉塞領域側の開口と、両ギアの噛み合いの作用線とは、上記支軸の軸方向からみたときに互いに重なり合うことを回避していることを特徴とするギアポンプ。
A pair of side plates are fitted into a cavity inside the housing to define a gear chamber, and a drive gear and a driven gear that mesh with each other are accommodated inside the gear chamber, and a support shaft for each gear is formed on each side plate. In a gear pump that is fitted and supported by a hole, and forms a suction chamber and a discharge chamber for the working fluid by sandwiching the meshing point of both gears inside the gear chamber,
In the side plate, a flow path that connects the support hole and a closed region formed by both side plates and meshing gear teeth is formed,
A gear pump characterized in that the opening on the closed region side of the flow path and the action line of meshing of both gears are prevented from overlapping each other when viewed from the axial direction of the support shaft.
請求項1に記載のギアポンプにおいて、上記開口は、上記作用線よりも駆動ギア寄りに配置されたことを特徴とするギアポンプ。The gear pump according to claim 1, wherein the opening is disposed closer to the drive gear than the action line.
JP16622597A 1997-06-23 1997-06-23 Gear pump Expired - Fee Related JP3673370B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16622597A JP3673370B2 (en) 1997-06-23 1997-06-23 Gear pump
PCT/JP1998/001791 WO1998059171A1 (en) 1997-06-23 1998-04-16 Gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16622597A JP3673370B2 (en) 1997-06-23 1997-06-23 Gear pump

Publications (2)

Publication Number Publication Date
JPH1113644A JPH1113644A (en) 1999-01-19
JP3673370B2 true JP3673370B2 (en) 2005-07-20

Family

ID=15827439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16622597A Expired - Fee Related JP3673370B2 (en) 1997-06-23 1997-06-23 Gear pump

Country Status (2)

Country Link
JP (1) JP3673370B2 (en)
WO (1) WO1998059171A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830313B2 (en) * 1999-09-06 2006-10-04 株式会社ジェイテクト Gear pump
CN114810584A (en) * 2022-04-21 2022-07-29 河南航天液压气动技术有限公司 Floating shaft sleeve for gear pump and gear pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4715016B1 (en) * 1967-06-20 1972-05-04
JP2603111Y2 (en) * 1993-05-31 2000-02-28 株式会社島津製作所 Gear pump
JP2921419B2 (en) * 1994-11-30 1999-07-19 株式会社島津製作所 Gear pump
JPH09144668A (en) * 1995-11-27 1997-06-03 Shimadzu Corp Gear pump

Also Published As

Publication number Publication date
WO1998059171A1 (en) 1998-12-30
JPH1113644A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP5909949B2 (en) Inscribed gear pump
JP2001153066A (en) Gear pump
JP3830313B2 (en) Gear pump
JPH01247767A (en) Internal contact gear motor
JP2006046283A (en) Inscribed type gear pump
JP3673370B2 (en) Gear pump
CN100383392C (en) Axial housing type gear pump mounted with rolling bearing and gear motor
JP2003176790A (en) Fluid pump
JPH10122160A (en) Gear pump
JP3612393B2 (en) Gear pump
JP6526371B1 (en) Internal gear pump
CA1146808A (en) Reversible gear pump or motor and diverter plates therefor
US6716011B2 (en) Hydraulic pump utilizing floating shafts
JP3746399B2 (en) Gear pump
JP2000009055A (en) Gear pump
JP2009002316A (en) Gear pump or motor
JP3975857B2 (en) Rotary pump and brake device including the rotary pump
JP4061847B2 (en) Gear pump
JP2001099071A (en) Gear pump
JP3691866B2 (en) Internal gear pump
JP3677827B2 (en) Gear pump or motor
JP2003083260A (en) Gear pump
JPS61135993A (en) Rotary gear pump
JP3853939B2 (en) Trochoid pump
JP2003083259A (en) Gear pump

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees