JP3671364B2 - Method of assembling and configuring an absorption chiller / heater - Google Patents

Method of assembling and configuring an absorption chiller / heater Download PDF

Info

Publication number
JP3671364B2
JP3671364B2 JP30570599A JP30570599A JP3671364B2 JP 3671364 B2 JP3671364 B2 JP 3671364B2 JP 30570599 A JP30570599 A JP 30570599A JP 30570599 A JP30570599 A JP 30570599A JP 3671364 B2 JP3671364 B2 JP 3671364B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
pair
fixed
cylindrical members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30570599A
Other languages
Japanese (ja)
Other versions
JP2001124438A (en
Inventor
健司 町澤
慶二 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP30570599A priority Critical patent/JP3671364B2/en
Publication of JP2001124438A publication Critical patent/JP2001124438A/en
Application granted granted Critical
Publication of JP3671364B2 publication Critical patent/JP3671364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭化リチュウム吸収冷温水機の構成方法に関するものであって、特に、既設の建造物の中や屋上に吸収冷温水機を組立て構成するに適した構成方法を創作したものである。
【0002】
【従来の技術】
臭化リチュウム吸収冷温水機は、水を冷媒とし、臭化リチュウムを吸収剤として用いた熱サイクル機器であって、主として水の蒸発気化・凝縮液化に伴う潜熱の吸収・発生を利用して、冷,暖房その他に利用される。
同一の機械設備を用いて、熱搬送媒体の流路を切り替えることによって冷房機能を発揮させたり、暖房機能を発揮させたりすることができる。
本発明は、冷・暖両用に構成された冷温水機を適用の対象とするが、暖房機能を利用せずに専ら冷房用として設計,製作された機器であっても、本発明の技術的範囲に属するものである。
臭化リチュウム吸収冷温水機は、主要な構成機器や配管,配線を改造することなく、熱搬送媒体(液体,気体の水、および臭化リチュウム水溶液)の流路を弁手段で切り換えることによって冷,暖の切替運転が可能である。
従って、臭化リチュウム吸収冷温水機を構築する工事においては、当該機器が冷房用の作用をするか暖房用の作用をするかの区分は、あまり意識されることが無い。
そこで本発明において、吸収冷温水機の各構成機器の作用については、主として冷房作動時の作用を述べることとする。例えば次のごとくである。
吸収式冷温水機が冷房(冷却)用として作動するときは、冷水を更に冷却して冷熱負荷機器に循環送給し、該冷熱負荷機器で熱を奪って戻ってきた冷水を、再び更に冷却して送給し、以後、連続的にこれを繰り返す。
【0003】
また、吸収式冷温水機が暖房(加熱)用として作動するときは、温水を更に加熱して熱負荷機器に循環送給する。ここに、上記温水の流路(特に、吸収冷温水機内で通過せしめられる伝熱管)は、前述の冷房作用におけると同一の機器である。上記熱負荷機器から戻ってきた温水は、更に加熱して再び前記熱負荷機器に向けて送出する。
こうした作用に鑑みて、吸収冷温水機における前記の冷水と温水とは、これをひと纏めにして「冷温水」と呼ばれる。ただし、本発明においては上記の冷温水が冷却される機能を主として説明し、紛らわしくない場合にはこれを「冷水」と略称する。なお、「冷水」と別に「冷却水」という語も使用する。これは、例えば冷却タワーなどで常に冷却され(暖房時には使用されない)、冷媒である水の蒸気から液化潜熱を奪って凝縮させたり、臭化リチュウムによる水の吸収熱を奪うなど、専ら冷却の役目を担っている。
【0004】
図5は、臭化リチュウム吸収冷温水機の従来例を示す模式的な配管系統図であって、2個の冷温切換弁が閉塞されて冷房(冷却)作用を果たしている状態を表しており、液状の水(冷媒液)には斑点を付し、臭化リチュウム濃厚水溶液にはクロスハッチング(格子縞模様)を付し、臭化リチュウム稀薄水溶液には平行斜線を付してある。
高温再生器1は加熱源を備えていて、臭化リチュウム水溶液を加熱して水蒸気を発生させる。本例では、上記の加熱源としてバーナー1aが設けられているが、バーナーに代えて蒸気管(過熱蒸気を流通させる伝熱管)を設けたものも有る。純粋に冷暖房機能の理屈だけを考えれば電気ヒーターであっても良いのであるが、実際問題としてはエネルギーコストの関係から電気ヒーターで加熱する方式は採られていない。
前述のようにして水蒸気を発生させた臭化リチュウム水溶液は、煮詰められて濃厚な臭化リチュウム水溶液となる。
これから先の作用は、二つのサイクルに区分して考えることができる。すなわち、発生した水蒸気が凝縮・液化され、減圧・蒸発せしめられ、この時に蒸発熱を奪って冷房(冷却)作用の核心部分を遂行する。この作用については以下に詳しく述べるが、この水(冷媒)の蒸発→凝縮→蒸発だけでは冷房サイクルが回らない。その理由は、高温再生器1の中で煮詰められた濃厚な臭化リチュウム水溶液は、それ以上加熱を続けても水蒸気を発生できなくなってしまうからである。このため、濃縮された臭化リチュウム水溶液に、再び水分を含ませて「加熱によって水蒸気を発生せしめ得る状態」に復元せしめるための、もう一つのサイクルを併行して進めなければならない。
【0005】
先ず、高温再生器1で発生した冷媒蒸気(水蒸気)の行方を追ってみると、低温再生器2を経て(矢印a)、凝縮器3に流入する(矢印b)。このとき、冷温切換弁V1が閉じられているので、蒸発器4には流入しない。
上記の低温再生器2は、当該吸収冷温水機の熱効率を高めるために設けられたもので、その作用の詳細については後に述べる。
前記凝縮器3の中には伝熱管11が設けられて冷却水が矢印c,dのように流通している。この伝熱管11に接触した水蒸気は液化潜熱を奪われて凝縮液化し、液状の水が凝縮器3の底部に溜まる。
凝縮器3の底部に溜まった水は、蒸発器4の頂部に流入して(矢印e)溶液スプレー装置22aからスプレーされる。この蒸発器4内は、次に述べる吸収器8の作用で減圧されているので蒸発気化して水蒸気となる。蒸気し切れずに蒸発器4の底部に溜まった水(斑点)は、冷媒ポンプ7で汲み上げられて該蒸発器4内の頂部空間に設けられた冷媒スプレー装置22bからスプレーされて蒸発せしめられる。
上記の蒸発器4内には伝熱管12が設けられていて、この伝熱管12の中に、冷熱負荷(図外)からの戻り冷温水(この場合は冷水)5が流通している。この冷水は、蒸発した水蒸気に気化潜熱を奪われて冷却され、いっそう低温の冷水6として図外の冷熱負荷に送給される。
上述のようにして冷水を冷却するという核心部分の作用を果たした冷媒(水)は、ミストセパレータ23を通過して矢印fのように吸収器8に流動し、ここで臭化リチュウムに吸収され、水蒸気としての姿を消す。
【0006】
一方、高温再生器1で冷媒蒸気(水蒸気)を発生させて煮詰められた濃厚な臭化リチュウム水溶液(クロスハッチング・格子縞模様)は、熱交換器10を経て吸収器8に送給され、その頂部空間に設けられた溶液スプレー装置22aからスプレーされる(矢印g)。
この臭化リチュウムは著しい潮解性(水蒸気を吸収する性質)を有していて、蒸発器4内で発生した水蒸気を吸収する。水蒸気の吸収によって吸収器8内が減圧されるので、蒸発器4内の水蒸気は矢印f方向に流動せしめられ、これにより蒸発器4内が高真空状態(例えば相対気圧マイナス760ミリメートルHg)となり、送入された冷媒(水)の蒸発が促進される。
このようにして、蒸発器4に連通された吸収器8内の水蒸気を臭化リチュウム濃厚水溶液で吸収して器内を減圧するということは、水を蒸発させて冷水を冷却するという核心的な作用を強力にバックアップしているのである。しかし、それだけではなく、水蒸気を吸収した臭化リチュウム濃厚水溶液(クロスハッチング)が、水を含んで稀釈され、臭化リチュウム稀薄水溶液(平行斜線)に戻るということ、すなわち「加熱されたら水蒸気を発生せしめ得る状態」に復元されることの意義も大きい。
以上に述べたように、冷媒である水が「液状水→水蒸気→液状水→水蒸気」のごとく変化してゆくサイクルと、臭化リチュウム水溶液が「濃厚水溶液→稀薄水溶液→濃厚水溶液→稀薄水溶液」のごとく変化してゆくサイクルとの二つのサイクルが相互にリンクして繰り返されることによって冷房(冷却)機能が発揮される。
【0007】
上記の主要な二つのサイクルに付属するものとして、熱効率向上のために設けられた次のサブサイクルが有る。すなわち、
熱交換器10において、模式的に描かれている左下部分は被加熱側流体の流路であり、右上部分は加熱側流体の流路である。前記高温再生器1内で、バーナー1aが加熱されて生成された臭化リチュウム濃厚水溶液は高温であるから、加熱側流体として利用される。そして、前述したように吸収器8内で生成された臭化リチュウム稀薄水溶液(平行斜線)は、伝熱管13内の冷却水で吸収熱を奪われて降温しているが、これからもう一度加熱されて水蒸気を発生しなければならない段階であるから、前記熱交換器10の被加熱側に導かれて予熱される。
上述のごとく熱交換器10の伝熱管内を流動する臭化リチュウム稀薄水溶液の流路が分岐せしめられ、全流路を流通した臭化リチュウム稀薄水溶液は高温再生器1に送給(矢印h)され、途中で分岐した臭化リチュウム稀薄水溶液は低温再生器2に送給(矢印i)される。
上記低温再生器2の伝熱管14には、高温再生器1で発生した高温の水蒸気が流通しているので、矢印iのように送入された臭化リチュウム稀薄水溶液が加熱を受けて冷媒蒸気(水蒸気)を発生させる。発生した水蒸気は矢印jのごとく凝縮器3の中に流動し、高温再生器1で発生した水蒸気(矢印b)と合流して凝縮液化せしめられる(前述した水・水蒸気のメインサイクルに合流せしめられてリンクする)。
伝熱管14内を流動する水蒸気が、前述のごとく、低温再生器2に送入された臭化リチュウム稀薄水溶液を加熱するので、該伝熱管14内の高温の水蒸気は降温せしめられる。
この高温の水蒸気は、次の行程では凝縮器3内で冷却されて凝縮液化せしめられるべきものであるから、低温再生器2の伝熱管14内で予め降温せしめられることは、熱経済の面からも、冷房能率向上の面からも好都合である。
【0008】
図6は、臭化リチュウム吸収冷温水機を用いた冷暖房設備の模式図であって、前掲の図5に示した臭化リチュウム吸収冷温水機の断面図に、冷却水循環送給系統の配管図と、冷熱負荷機器としてのファンコイルユニットと冷温水循環系統の配管図とを付記した図である。
吸収器8および凝縮器3内の伝熱管に循環送給される冷却水は、冷却水循環ポンプ19によって吸入,吐出され、冷却水送給管17を経て冷却タワー16に送給して降温せしめられ、冷却水戻り管18から返送される(暖房モードで運転される場合は、冷却水循環ポンプ19と冷却タワー18とは休止される)。
冷熱負荷機器であるファンコイルユニット21a〜21eは、相互に並列に配管接続され、冷温水循環ポンプ20が、「冷房モード運転時には冷水を、暖房モード運転時には温水を」それぞれ循環せしめる。
本図6においては建造物の図示を省略してあるが、オフィスビルにおける典型的な形態としては、ファンコイルユニット21a〜21eはそれぞれ各室に配置され、冷却タワー16は屋上に設置される。吸収冷温水機本体は、建造物の機械室に設置される。上記の機械室は、当該オフィスビルの地下室もしくは屋上に配置されるが一般的である。
【0009】
【発明が解決しようとする課題】
ビルの冷暖房用として臭化リチュウム吸収冷温水機を設置する場合は、多くの場合、地下室もしくは屋上に設けられる機械室の中に、前掲の図5に示された構成部分が設置される。
この場合、建屋の構築と吸収冷温水機の設備とは併行して施行され、厳密には吸収冷温水機の設置が若干先行する。すなわち、建屋が完工する以前に吸収冷温水機の構成機器類が設置される。従って、大形の重量機器の搬入も、クレーンを使用するなどして、格別の困難無く遂行される。
ところが、臭化リチュウム吸収冷温水機が設置された後、長期間(例えば十数年間)稼働すると、損耗が進行して更新を必要とするに至る。
更新を必要とする理由を具体的に考察すると、
α.伝熱管の腐食、
β.臭化リチュウム水溶液に接触する面の酸化生成物堆積による流路閉塞、
γ.同上による溶液循環系の流動不良、
δ.鋼製部材の腐食による減肉、
ε.伝熱管内面のスケール付着による伝熱性能の低下。
が挙げられるが、これらの損耗と表裏相対して、
往時に比して、最近の吸収冷温水機の性能向上も見逃せない。
【0010】
そこで、既設の吸収冷温水機を更新しようとした場合、専門の生産工場で製造された吸収冷温水機の構成機器類を、既設の建屋の機械室もしくは屋上の機械置場に搬入することができないという問題に直面する。
【0011】
すなわち、従来技術を適用して、臭化リチュウム吸収冷温水機を構成している機器類を複数個のブロック機器に分割しても、分割されたブロック機器が、既設建屋の出入口や、エレベータや、通路を通過することができない。この場合、エレベータのケージに入らないことが最大の難関となる。
国内規格のエレベータについて、定員人数とケージ内法寸法(単位ミリメートル)との関係を概観すると、
定員 出入口幅 天井高さ 最大奥行
11 800 2100 1430
15 900 2100 1580
これに比して、吸収冷温水機を構成している各ブロック機器の寸法規格は確定していないが、上記のエレベータ内容積に比較すると、冷房能力300RTクラス以上の吸収冷温水器は、これをブロック別に分割してもエレベータに入れることができない。
やむを得ず既設建屋の壁や床を破って吸収冷温水機のブロック機器を搬入すると、破壊と修復に多大の費用を要し、工期が長くなる。その上、工事期間中に当該建屋の居住者に多大の迷惑を与える。
該建屋がオフィスビルであったり、製造工場であったりする場合、工事期間中は建屋使用者の業務を中断しなければならないので、経済的損失が少なくない。
それにも増して、該建屋が集合住宅である場合、居住者が受ける迷惑き計り知れない。
【0012】
図7は、臭化リチュウム吸収冷温水機の公知例における吸収器の模式的に垂直断面図である。ただし、模式化して概要的に描いてあるので、必ずしも写実的に構造を表してはいない。
図の右端に位置している管板・甲24Rと、左端に位置している管板・乙24Rとによって両端を塞がれた形の角筒状の部材が形成されている。この断面には、上記角筒状部分のケーシング頂面板27Rとケーシング底面板27Bとが現れている。なお、上記角筒状の部材は楕円筒状に構成することも可能である。本発明において「角筒状に類似する形状」とは、筒状全般を指す語である。
上記1対の管板・甲,乙24R,24Lの間に、該管板に貫通固着された多数の伝熱管13′が配置されて伝熱管群を形成している。上記管群の両端は、水室ケース28によって緩やから覆われて臭化リチュウム水溶液の流路を形成している。符号26を付して示したのは管群13′の支持板である。
22aはスプレー装置であって、その両端を管板・甲24Rと管板・乙24Lとによって支持されるとともに、その中間の複数の箇所を支持板26によって支持されている。
前記伝熱管13′は、管板に対して気密に固着されるが、これに比してスプレー装置22の両端はスプレー装置支持金具25によって緩やかに支持され、溶接歪みを逃がし得るようになっている。
図8は、公知の臭化リチュウム吸収冷温水機の1例を示し、水平面によって蒸発器および吸収器を切断した状態を模式的に描いてある。ただし、写実的な投影図ではない。
管板・甲24R,管板・乙24L,支持板26,水室ケース28は、前掲の図7に現れていた部材である。
本図8は水平断面であるから、上記1対の管板によって両端が塞がれた角筒状部材の側面板27S,同27S′の断面が現れている。また、本図においては蒸発器内に配置されている伝熱管群12′も現れている。
符号23を付して示したミストセパレータは、前掲の図5(公知例)について説明した部材であって、その両端は管板に対して、ミストセパレータ支持金具29によって緩やかに(熱膨脹差を逃がし得るように)取り付けられている。
上掲の図7,図8から理解されるように、1対の管板と角筒状部材とによって形成されているケーシングは、伝熱管の長さ寸法に対応する長さ寸法を有しているが、高度の気密性(真空保持性能)が要求されるので、例えばパッキンとフランジ継手(図示せず)によって分解組立可能ならしめることは、実用技術としては実施できない。(フランジ継手では気密性の信頼性が低いので、溶接一体形の密閉缶構造であることを要する)。このため、先に述べたようにエレベータのケージの中に収容できない。
【0013】
本発明は上述の事情に鑑みて為されたものであって、ブロック機器に分解してもエレベータに入り切らない大きさの冷房能力を有する臭化リチュウム吸収冷温水機について、エレベータによる建屋内搬入を可能ならしめることを目的とするものである。
これにより、長期間稼働した吸収冷温水機の更新における付帯工事費用(搬入関係費用)が大幅に節減されるとともに、工期の短縮を期待することもできる。なお、既設の吸収冷温水機(老朽機)の搬出については、溶断分割を自由に適用できるから、エレベータの使用が容易に可能である。
【0014】
【課題を解決するための手段】
前記の目的を達成するため、請求項1に係る発明方法は、高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器とを有していて、水を冷媒とし臭化リチュウムを吸収剤とする吸収冷温水機であって、
頂面板と底面板と側面板とより成る角筒状もしくはこれに類似する部材の両端開口部それぞれを覆って1対の管板が固着されたケーシングを具備し、
かつ、上記1対の管板のそれぞれに対して両端を貫通固着された多数の伝熱管より成る伝熱管群が設けられるとともに、
上記伝熱管を挿通せしめる孔を穿たれた支持板が、前記筒状部材に対してほぼ垂直に収納されている臭化リチュウム吸収冷温水機を組み立てて構成する方法において、
凝縮器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、低温再生器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、低温再生器・凝縮器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に2分割した形状の筒状部材を構成し、
2分割された筒状部材それぞれの片方の端に、前記の低温再生器・凝縮器一体管板を固着し、
上記と別体に、蒸発器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、吸収器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、蒸発器・吸収器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に2分割した形状の筒状部材を構成し、
2分割された筒状部材それぞれの片方の端に、前記の蒸発器・吸収器一体管板を固着し、
製造工場またはこれに準じる場所において構成された「1対の、2分割筒状部材を固着された低温再生器・凝縮器一体管板」および「2分割筒状部材を固着された蒸発器・吸収器一体管板」を、当該臭化リチュウム吸収冷温水機の設置現場に搬入し、
前記1対の2分割筒状部材を固着された低温再生器・凝縮器一体管板を同心状に配列して、該1対の2分割筒状部材の、管板を固着されていない側を対向せしめるとともに、それぞれの2分割筒状部材の中に支持板を収納した状態で、該2分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、1対の低温再生器・凝縮器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を上記の一体管板にカシメ付け、
前記1対の2分割筒状部材を固着された蒸発器・吸収器一体管板を同心状に配列して、該1対の2分割筒状部材の、管板を固着されていない側を対向せしめるとともに、それぞれの2分割筒状部材の中に支持板を収納した状態で、該2分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、上記1対の蒸発器・吸収器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を、上記の一体管板にカシメ付け
かつ、前記の支持板のうちの少なくとも1枚を、前記角筒状もしくはこれに類似する筒状部材の断面内周形状よりも大きく構成しておき、
前記の分割された筒状部材を相互に溶接する際、双方の筒状部材によって上記大形支持板の外周部を挟みつけ、該大形支持板を介して溶接固着することを特徴とする。
【0017】
請求項2に係る発明方法の構成は、高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器とを有していて、水を冷媒とし臭化リチュウムを吸収剤とする吸収冷温水機であって、
頂面板と底面板と側面板とより成る角筒状もしくはこれに類似する部材の両端開口部それぞれを覆って1対の管板が固着されたケーシングを具備し、
かつ、上記1対の管板のそれぞれに対して両端を貫通固着された多数の伝熱管より成る伝熱管群が設けられるとともに、
上記伝熱管を挿通せしめる孔を穿たれた支持板が、前記筒状部材に対してほぼ垂直に収納されている臭化リチュウム吸収冷温水機を組み立てて構成する方法において、
凝縮器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、低温再生器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、低温再生器・凝縮器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に3以上の複数個に分割した形状の筒状部材を構成し、
分割された筒状部材の内の2個について、それぞれの片方の端に、前記の低温再生器・凝縮器一体管板を固着し、
上記と別体に、蒸発器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、吸収器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、蒸発器・吸収器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に複数個に分割した形状の筒状部材を構成し、
分割された筒状部材の内の2個について、それぞれの片方の端に、前記の蒸発器・吸収器一体管板を固着し、
製造工場またはこれに準じる場所において構成された「1対の、分割筒状部材を固着された低温再生器・凝縮器一体管板」、および、「分割筒状部材を固着された蒸発器・吸収器一体管板」を、当該臭化リチュウム吸収冷温水機の設置現場に搬入し、
前記1対の分割筒状部材を固着された低温再生器・凝縮器一体管板を、その他の分割筒状部材を介して同心状に配列して、分割筒状部材の中に支持板を収納した状態で、該分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、1対の低温再生器・凝縮器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を上記の一体管板にカシメ付け、
記1対の分割筒状部材を固着された蒸発器・吸収器一体管板を、その他の分割筒状部材を介して同心状に配列して、分割筒状部材の中に支持板を収納した状態で、該分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、上記1対の蒸発器・吸収器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を、上記の一体管板にカシメ付け
かつ、前記の支持板のうちの少なくとも1枚を、前記角筒状もしくはこれに類似する筒状部材の断面内周形状よりも大きく構成しておき、
前記の分割された筒状部材を相互に溶接する際、双方の筒状部材によって上記大形支持板の外周部を挟みつけ、該大形支持板を介して溶接固着することを特徴とする。
【0028】
【発明の実施の形態】
先に図7,図8を参照して説明したように、従来例の臭化リチュウム吸収冷温水機のケーシングは、「1対の管板のそれぞれによって、角筒状部材の両端開口を覆った形状」をなしている。後に詳しく述べるが、この基本構造は本発明において同様である。
図3は、臭化リチュウム吸収冷温水機のケーシングを構成する1対の管板の片方を示し、(A)は従来例の管板の平面図であり、(B)は本発明の実施形態における管板の平面図である。
図3(A)に示した従来例の管板30は、低温再生器の管板と、凝縮器の管板と、蒸発器の管板と、吸収器の管板とを総合して一体に連設したものである(具体的には、大きい1枚の鋼板から切り出されたものである)。
従来例を示した図5における低温再生器の符号にダッシュを付して図3に示した2′は、低温再生器が設けられる位置を示している。その他の3′,4′,8′,22a′,22b′、および23′も同様に設置位置を表している。
本発明においては、上掲の図3(A)に示した低温再生器・凝縮器・蒸発器・吸収器総合一体管板30を2分割して、同図(B)のごとく低温再生器・凝縮器一体管板31と、蒸発器・吸収器一体管板32とを各2枚ずつ構成する。図示を省略するが、管板の分割に伴って、該1対の管板によって両端開口を塞がれている角筒状の部材(例えば図7に現れたケーシング頂面板27R,ケーシング底面板27B、および図8に現れたケーシング側面板27S,27S′によって形成されている四角筒状の部材)も二つになり、これにより2個のケーシングがブロックとして構成される。すなわち、低温再生器・凝縮器ブロックと、蒸発器・吸収器ブロックとが形成される。上述の説明によって理解されるごとく、本発明において特定の1対の管板を構成するとは、該特定の1対の管板によって両端面を塞がれる角筒状の部材が構成されることを含んでいる。
なお、図3には図示されていない高温再生器用の管板も構成されるが、この高温再生器は独立した1個のブロック機器を構成し、かつ、他のブロック機器に比して小形であってエレベータケージに収容することが容易であるから、本発明に係る臭化リチュウム吸収冷温水機の高温再生器は従来例におけると同様ないし類似に構成される。
【0029】
は、本発明方法の適用対象である吸収冷温水機の吸収器の構成および製造工程を表す模式図であって、従来例を表した図7に対応する。
本図において仮想線で描いた伝熱管13は、ケーシングを構成する際に管板および支持板26に挿通する位置を示している。
【0030】
実施形態においては、1対の管板(例えば管板・甲24Rと同・乙24L)によって両端を覆って固着された筒状の部材を、軸心方向(長手方向と同意)に分割する。本図においては頂面板が27R1と同27R2に分割され、底面板が27B1と同27B2とに分割された状態が表されている。
上記の分割に伴って、スプレー装置も22Rと22Lに分割する。
本実施形態においては上記筒状の部材およびスプレー装置をに示したように2分割した(請求項1に対応)。図示を省略するが、同様の技術的思想に基づいて3分割、もしくはそれ以上に分割(請求項2に対応)することもできる。
【0031】
上述のごとく分割されたスプレー装置22R1,22R2は、従来例におけるスプレー装置支持金具25と同様の部材を介して、管板と支持板26とに対して取り付ける。管板に対して取り付けることは公知技術であるが、本実施形態においてはスプレー装置の分割された箇所を、支持板26に対して取り付ける。
本発明方法の特徴は、この取り付け部分に有る。これについては、図1(B)を参照して後に詳しく説明する。
【0032】
は、前掲の図に示した分割構造の筒状部材を相互に溶接した状態を示す断面図であって、(B)は本発明方法の実施形態における溶接部近傍を描いてある。(A)は比較例である。
(A)の比較例では、支持板26を角筒状部材の中へ完全に収納して、分割された頂面板27R1,27R2を相互に突き合わせて溶接してある。符号Wは溶接部が断面に現れたところである。溶接線WLは支持板26と若干離れて形成されている。
(B)の実施例における大形支持板26Lは、前記筒状部材の内周面の断面形状よりも大きく形成されており、分割された筒状部材によって上記大形支持板26Lの周辺部を挟みつけた形で隅肉溶接する。図1(A)の溶接構造に比して図1(B)の溶接構造は、隅肉溶接を用いることができるので溶接施工が容易である。
(A)に示した27R0は、溶接部の近傍に設けた開口である。このような開口を設けておくと、分割スプレー装置22Rの位置決め取付け作業の際に、手や工具を差し入れることができて便利である。この開口は、後に蓋27R3を溶接して気密に開塞される。
伝熱管は、管板および支持板の透孔に挿通され、角筒状部材を溶接した後、管板に対してカシメ付けられる。
図4は、前記比較例(図1(A))における蒸発器・吸収器一体ブロック構造部分の模式的な水平断面図であって、従来例における図8の中央部付近に対応している。ただし、縮尺は同一でない。
ミストセパレータは23Rと23Lとに2分割され、その分割端の部分をミストセパレータ支持金具29により、支持板26に対して位置決め、取付けされている。
【0033】
次に、図6(従来例の冷暖房装置)を援用して、従来例の既設吸収冷温水機より成る冷暖房設備が老朽化した際、本発明を適用して更新した1例について説明する。
図6においては建造物の図示が省略されているが、仮想線で囲んで示された臭化リチュウム吸収冷温水機は建造物の地下機械室に設置され、冷却タワー16は該建造物の屋上に設置され、冷熱負荷機器である多数のファンコイルユニット21a〜21eは該建造物内の各部屋に配置されている。
臭化リチュウム吸収冷温水機は、臭化リチュウム水溶液に接触する上に、バーナー1aによって高熱を受けるので損耗の進行が速く、冷却タワー16やファンコイルユニット21a〜21eの損耗は進行が緩徐である。このため、本例においては冷却タワー16は補修整備して使用を継続し、多数のファンコイルユニットの大部分も残置して使用を継続する(数個は新品と交換した)。
【0034】
既設の吸収冷温水機(仮想線枠内)は、溶断して細分し、建造物外に搬出して廃却した。
既設の吸収冷温水機を搬出した後に、新設の吸収冷温水機を搬入することは、エレベータのケージ寸法の制約を受けるため、従来技術によっては至難であったが、本発明を適用して分割されたブロック構造の構成機器を搬入して、溶接によって組み立て仕上げすることにより、建造物の壁や床を破壊することなく、エレベータを利用して搬入,設置することができた。
【0035】
【発明の効果】
以上に本発明の実施形態を挙げてその構成・機能を明らかならしめたように、請求項1の発明方法によると、従来技術においては一体の大形ブロックとして構成されていた「低温再生器+凝縮機+蒸発器+吸収器」が、先ず「低温再生器+凝縮器」と「蒸発器+吸収器」とに2分割され、さらに、それぞれのブロックのケーシングの角筒状部分が長手方向に関して2個に分割されるので、分割されたそれぞれのブロックは比較的小形になり、エレベータのケージに収容できるようになる。このため、上記小形ブロックを専門工場で製造し、これを臭化リチュウム吸収冷温水機設置現場(建造物内)に搬入することが容易であり、搬入した後に2分割筒状部分を溶接することによって「低温再生器+凝縮器ブロック」と、「蒸発器+吸収器ブロック」とが構成される。
構成されたブロックは、溶接一体構造であるから気密性に優れている。溶接構成されたブロックは相互に配管接続されて、臭化リチュウム吸収冷温水機が形成され、冷,暖房機能を発揮する。
上述の構成・工法において、2分割された筒状部分を溶接する作業が必要である。本発明方法においては、予め大形に形成された支持板を「分割された筒状の部材」で挟みつけるので、溶接作業が容易である。
作業が容易であるということは、単に作業能率が上がって製造コストが低減されるだけでなく、溶接品質を高くすることができる。さらに、溶接作業が容易であることは、間接的ながら労働災害の防止に有効である。
【0036】
請求項2の発明方法によると、従来技術においては一体の大形ブロックとして構成されていた「低温再生器+凝縮器+蒸発器+吸収器」が、先ず「低温再生器+凝縮器」と「蒸発器+吸収器」とに2分割され、さらに、それぞれまブロックのケーシングの角筒状部分が長手方向に関して3以上の複数個に分割されるので、分割されたそれぞれのブロックは比較的小形になり、エレベータのケージに収容できるようになる。このため、上記小形ブロックを専門工場で製造し、これを臭化リチュウム吸収冷温水機設置現場(建造物内)に搬入することが容易であり、搬入した後に分割筒状部分を溶接することによって「低温再生器+凝縮器ブロック」と、「蒸発器+吸収器ブロック」とが構成される。
構成されたブロックは、溶接一体構造であるから気密性に優れている。溶接構成されたブロックは相互に配管接続されて、臭化リチュウム吸収冷温水機が形成され、冷,暖房機能を発揮する。
上述の構成・工法において、3以上の複数個に分割された筒状部分を溶接する作業が必要である。本発明方法においては、予め大形に形成された支持板を「分割された筒状の部材」で挟みつけるので、溶接作業が容易である。
作業が容易であるということは、単に作業能率が上がって製造コストが低減されるだけでなく、溶接品質を高くすることができる。さらに、溶接作業が容易であることは、間接的ながら労働災害の防止に有効である。
【図面の簡単な説明】
【図1】 分割構造の吸収器筒状部材を相互に溶接した状態を示す断面図であって、(B)は本発明方法の実施形態における溶接部近傍を描いてあり、(A)は比較例を描いてある。
【図2】 本発明方法の適用対象である吸収冷温水機の吸収器の構成および製造工程を表す模式図である。
【図3】臭化リチュウム吸収冷温水機のケーシングを構成する1対の管板の片方を示し、(A)は従来例の管板の平面図であり、(B)は本発明の実施形態における管板の平面図である。
【図4】本発明の実施形態における蒸発器・吸収器一体ブロック構造部分の模式的な水平断面図であって、従来例における図8の中央部付近に対応している。ただし縮尺は同一でない。
【図5】臭化リチュウム吸収冷温水機の従来例を示す模式的な配管系統図であって、2個の冷温切換弁が閉塞されて冷房(冷却)作用を果たしている状態を表しており、液状の水(冷媒液)には斑点を付し、臭化リチュウム濃厚水溶液にはクロスハッチング(格子縞模様)を付し、臭化リチュウム稀薄水溶液には平行斜線を付してある。
【図6】臭化リチュウム吸収冷温水機を用いた冷暖房空調設備の模式図であって、前掲の図5に示した臭化リチュウム吸収冷温水機の断面図に、冷却水循環送給系統の配管図と、冷熱負荷機器としてのファンコイルユニットと冷温水循環系統の配管図とを付記した図である。
【図7】臭化リチュウム吸収冷温水機の公知例における吸収器の模式的な垂直断面図である。ただし、模式化して概要的に描いてあるので、必ずしも写実的に模造を表していない。
【図8】公知の臭化リチュウム吸収冷温水機の1例を示し、水平面によって蒸発器および吸収器を切断した状態を模式的に描いてある。ただし、写実的な投影図ではない。
【符号の説明】
22…スプレー装置、22a…溶液スプレー装置、22b…冷媒スプレー装置、23…ミストセパレータ、23L,23R…分割ミストセパレータ、24R…管板・甲、24L…管板・乙、25…スプレー装置支持金具、26…支持板、27R…ケーシング頂面板、27R1,27R2…分割頂面板、27R0…作業用開口、27R3…蓋、27B…ケーシング底面板、27S,27S′…ケーシング側板、27S1,27S′…ケーシング側板、29…ミストセパレータ支持金具、31…低温再生器・凝縮器一体管板、32…蒸発器・吸収器一体管板。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to cold / hot water absorbing lithium bromideMachineThe present invention relates to a configuration method, and in particular, a configuration method suitable for assembling and configuring an absorption chiller / heater in an existing building or on a rooftop.
[0002]
[Prior art]
Lithium bromide absorption chiller / heater is a thermal cycle equipment that uses water as a refrigerant and lithium bromide as an absorbent, mainly utilizing the absorption and generation of latent heat that accompanies evaporation and condensation of water, Used for cooling, heating, etc.
The cooling function can be exhibited or the heating function can be exhibited by switching the flow path of the heat transfer medium using the same mechanical equipment.
The present invention is applied to a chiller / heater configured for both cold and warm use, but even if the device is designed and manufactured exclusively for cooling without using the heating function, the technical It belongs to the range.
Lithium bromide absorption chiller / heaters are cooled by switching the flow path of the heat transfer medium (liquid, gaseous water, and aqueous lithium bromide solution) with valve means without modifying the main components, piping, and wiring. , Warm switching operation is possible.
Therefore, in construction for constructing a lithium bromide absorption chiller / heater, there is not much awareness of whether the equipment functions for cooling or heating.
Therefore, in the present invention, the operation of each component device of the absorption chiller / heater will mainly describe the operation during cooling operation. For example:
When the absorption chiller / heater operates for cooling (cooling), the chilled water is further cooled and circulated to the cold load equipment, and the cold water that has been deprived of heat by the cold load equipment is cooled again. And then repeat this continuously.
[0003]
Further, when the absorption chiller / heater operates for heating (heating), the hot water is further heated and circulated to the heat load device. Here, the flow path of the hot water (particularly, the heat transfer tube allowed to pass through the absorption chiller / heater) is the same device as in the above-described cooling operation. The hot water returned from the heat load device is further heated and sent again toward the heat load device.
In view of such an action, the cold water and hot water in the absorption chiller / heater are collectively referred to as “cold / warm water”. However, in the present invention, the function of cooling the cold / hot water is mainly described, and when not confusing, this is abbreviated as “cold water”. The term “cooling water” is also used separately from “cold water”. For example, it is always cooled in a cooling tower (not used during heating), and it is used only for cooling purposes, such as desorbing latent heat of liquefaction from water vapor, which is a refrigerant, and condensing or desorbing heat absorbed by water from lithium bromide. Is responsible.
[0004]
FIG. 5 is a schematic piping system diagram showing a conventional example of a lithium bromide absorption chiller / heater, and shows a state in which two chiller temperature switching valves are closed to perform a cooling (cooling) action, The liquid water (refrigerant liquid) is spotted, the lithium bromide concentrated aqueous solution is cross-hatched (checkered), and the dilute aqueous solution of lithium bromide is shaded in parallel.
The high temperature regenerator 1 includes a heating source, and heats the aqueous lithium bromide solution to generate water vapor. In this example, the burner 1a is provided as the heating source described above, but there is also a type provided with a steam pipe (a heat transfer pipe for circulating superheated steam) instead of the burner. An electric heater may be used if only the logic of the air conditioning function is considered, but as a practical problem, a method of heating with an electric heater has not been adopted because of energy costs.
The aqueous lithium bromide solution in which water vapor is generated as described above is boiled to become a concentrated aqueous lithium bromide solution.
From now on, the above action can be divided into two cycles. That is, the generated water vapor is condensed and liquefied and reduced in pressure and evaporated. At this time, the heat of evaporation is taken away and the core part of the cooling (cooling) action is performed. Although this action will be described in detail below, the cooling cycle does not rotate only by evaporation → condensation → evaporation of this water (refrigerant). The reason is that the concentrated aqueous lithium bromide solution boiled in the high-temperature regenerator 1 cannot generate water vapor even if it is further heated. For this reason, it is necessary to proceed in parallel with another cycle in which the concentrated aqueous solution of lithium bromide is re-hydrated to restore “a state in which water vapor can be generated by heating”.
[0005]
First, when the direction of the refrigerant vapor (water vapor) generated in the high temperature regenerator 1 is traced, it passes through the low temperature regenerator 2 (arrow a) and flows into the condenser 3 (arrow b). At this time, the temperature switching valve V1Is closed, so it does not flow into the evaporator 4.
The low-temperature regenerator 2 is provided to increase the thermal efficiency of the absorption chiller / heater, and details of its operation will be described later.
A heat transfer tube 11 is provided in the condenser 3 so that cooling water flows as indicated by arrows c and d. The water vapor in contact with the heat transfer tube 11 is deprived of liquefied latent heat to condense and liquefy, and liquid water accumulates at the bottom of the condenser 3.
The water accumulated at the bottom of the condenser 3 flows into the top of the evaporator 4 (arrow e) and is sprayed from the solution spray device 22a. Since the inside of the evaporator 4 is depressurized by the action of the absorber 8 described below, it is evaporated and becomes water vapor. Water (spots) accumulated at the bottom of the evaporator 4 without being completely vaporized is pumped up by the refrigerant pump 7 and sprayed from the refrigerant spray device 22b provided in the top space in the evaporator 4 to be evaporated.
A heat transfer tube 12 is provided in the evaporator 4, and returned cold / hot water (in this case, cold water) 5 from a cold load (not shown) flows through the heat transfer tube 12. This cold water is cooled by the vaporization of the vaporized latent heat, and is cooled, and is supplied to a cold load outside the figure as cold water 6 having a lower temperature.
The refrigerant (water) that has played the core part of cooling the cold water as described above passes through the mist separator 23 and flows to the absorber 8 as indicated by the arrow f, where it is absorbed by the lithium bromide. Disappears as water vapor.
[0006]
On the other hand, a concentrated aqueous solution of lithium bromide (cross-hatching / checkered pattern) boiled and boiled by generating refrigerant vapor (water vapor) in the high-temperature regenerator 1 is fed to the absorber 8 via the heat exchanger 10, and its top It sprays from the solution spray apparatus 22a provided in space (arrow g).
This lithium bromide has remarkable deliquescent properties (a property of absorbing water vapor) and absorbs water vapor generated in the evaporator 4. Since the inside of the absorber 8 is depressurized due to the absorption of water vapor, the water vapor in the evaporator 4 is caused to flow in the direction of the arrow f, whereby the inside of the evaporator 4 is in a high vacuum state (for example, relative atmospheric pressure minus 760 millimeters Hg), Evaporation of the introduced refrigerant (water) is promoted.
Thus, absorbing the water vapor in the absorber 8 communicated with the evaporator 4 with the concentrated aqueous solution of lithium bromide and depressurizing the inside of the absorber means that the water is evaporated and the cold water is cooled. It is a powerful backup of the action. However, not only that, the concentrated aqueous solution of lithium bromide (cross-hatching) that has absorbed water vapor is diluted with water and returned to the dilute aqueous solution of lithium bromide (parallel oblique lines). It is also significant to be restored to a “possible state”.
As described above, the coolant water is changed as "liquid water-> water vapor-> liquid water-> water vapor" and the aqueous solution of lithium bromide is "concentrated aqueous solution-> diluted aqueous solution-> concentrated aqueous solution-> diluted aqueous solution" A cooling function is exhibited by repeating the two cycles, such as the cycle changing as described above, linked to each other.
[0007]
Attached to the two main cycles described above is the next subcycle provided for improving thermal efficiency. That is,
In the heat exchanger 10, the lower left portion schematically illustrated is a flow path of the heated fluid, and the upper right portion is a flow path of the heated fluid. In the high temperature regenerator 1, the concentrated aqueous solution of lithium bromide generated by heating the burner 1 a has a high temperature and is used as a heating side fluid. As described above, the dilute aqueous solution of lithium bromide (parallel oblique lines) generated in the absorber 8 is cooled by the heat absorbed by the cooling water in the heat transfer tube 13, but is heated again from now on. Since it is a stage where water vapor must be generated, it is led to the heated side of the heat exchanger 10 and preheated.
As described above, the flow path of the dilute aqueous solution of lithium bromide flowing in the heat transfer tube of the heat exchanger 10 is branched, and the dilute aqueous solution of lithium bromide flowing through the entire flow path is supplied to the high-temperature regenerator 1 (arrow h). Then, the dilute aqueous solution of lithium bromide branched off is fed to the low temperature regenerator 2 (arrow i).
Since the high-temperature steam generated in the high-temperature regenerator 1 circulates in the heat transfer tube 14 of the low-temperature regenerator 2, the dilute aqueous solution of lithium bromide fed as shown by the arrow i is heated to generate refrigerant vapor. (Water vapor) is generated. The generated water vapor flows into the condenser 3 as indicated by the arrow j, and is combined with the water vapor (arrow b) generated in the high-temperature regenerator 1 to be condensed and liquefied (combined with the aforementioned main cycle of water and water vapor). Link).
As described above, the water vapor flowing in the heat transfer tube 14 heats the dilute aqueous solution of lithium bromide sent to the low temperature regenerator 2, so that the high temperature water vapor in the heat transfer tube 14 is lowered.
Since this high-temperature steam is to be cooled in the condenser 3 to be condensed and liquefied in the next step, it is from the viewpoint of thermal economy that the temperature is lowered in advance in the heat transfer tube 14 of the low-temperature regenerator 2. This is also advantageous from the viewpoint of improving the cooling efficiency.
[0008]
FIG. 6 is a schematic diagram of an air-conditioning system using a lithium bromide absorption chiller / heater, and is a cross-sectional view of the lithium bromide absorption chiller / heater shown in FIG. And a fan coil unit as a cooling / heating load device and a piping diagram of a cold / hot water circulation system.
Cooling water circulated and fed to the heat transfer pipes in the absorber 8 and the condenser 3 is sucked and discharged by the cooling water circulation pump 19 and is sent to the cooling tower 16 through the cooling water feed pipe 17 to be cooled. The refrigerant is returned from the cooling water return pipe 18 (when operated in the heating mode, the cooling water circulation pump 19 and the cooling tower 18 are suspended).
Fan coil units 21a to 21e, which are refrigeration / heat load devices, are connected in parallel to each other, and the chilled / hot water circulation pump 20 circulates “cold water during the cooling mode operation and hot water during the heating mode operation”.
In FIG. 6, illustration of a building is omitted, but as a typical form in an office building, the fan coil units 21 a to 21 e are arranged in the respective rooms, and the cooling tower 16 is installed on the roof. The main body of the absorption chiller / heater is installed in the machine room of the building. The machine room is generally arranged in the basement or rooftop of the office building.
[0009]
[Problems to be solved by the invention]
When installing a lithium bromide absorption chiller / heater for cooling and heating a building, in many cases, the components shown in FIG. 5 are installed in a basement or a machine room provided on the roof.
In this case, the construction of the building and the facilities of the absorption chiller / heater are implemented in parallel, and strictly speaking, the installation of the absorption chiller / heater is slightly advanced. That is, before the building is completed, the components of the absorption chiller / heater are installed. Therefore, large heavy equipment can be carried in without any particular difficulty by using a crane.
However, after the lithium bromide absorption chiller / heater is installed, if it is operated for a long period of time (for example, more than ten years), the wear progresses and requires renewal.
If we specifically consider why we need an update,
α. Corrosion of heat transfer tubes,
β. Channel blockage due to oxidation product deposition on the surface in contact with the aqueous lithium bromide solution,
γ. Flow failure of the solution circulation system due to the same as above,
δ. Thinning due to corrosion of steel parts,
ε. Degradation of heat transfer performance due to scale adhesion on the inner surface of the heat transfer tube.
In contrast to these wear and tear,
Compared to the past, recent improvements in the performance of absorption chiller / heaters cannot be overlooked.
[0010]
Therefore, when an existing absorption chiller / heater is to be renewed, the components of the absorption chiller / heater manufactured in a specialized production factory cannot be carried into the machine room of the existing building or the machine yard on the roof. Face the problem.
[0011]
In other words, even if the conventional technology is applied to divide the devices constituting the lithium bromide absorption chiller / heater into a plurality of block devices, the divided block devices can be used as doorways of existing buildings, elevators, Can not pass through the passage. In this case, the biggest difficulty is not to enter the elevator cage.
For domestic standard elevators, the relationship between the number of passengers and the cage internal dimensions (in millimeters)
Capacity Entrance width Ceiling height Maximum depth
11 800 2100 1430
15 900 2100 1580
Compared to this, the dimensional standard of each block device constituting the absorption chiller / heater is not fixed, but in comparison with the elevator internal volume, an absorption chiller / heater with a cooling capacity of 300 RT class or higher is Can not be put in the elevator even if divided into blocks.
If it is unavoidable to break the walls and floors of the existing building and bring in the block equipment of the absorption chiller / heater, it will take a lot of money to destroy and repair, and the construction period will be longer. In addition, it causes great inconvenience to the residents of the building during the construction period.
When the building is an office building or a manufacturing factory, the work of the building user must be interrupted during the construction period, so there is a considerable economic loss.
In addition, when the building is a housing complex, it is impossible to measure the inconvenience experienced by residents.
[0012]
FIG. 7 is a schematic vertical sectional view of an absorber in a known example of a lithium bromide absorption chiller / heater. However, since it is schematically illustrated and drawn, it does not necessarily represent the structure realistically.
A square tube-shaped member is formed in which both ends are closed by a tube sheet / back 24R located at the right end of the figure and a tube sheet / end 24R located at the left end. In this cross section, the casing top surface plate 27R and the casing bottom surface plate 27B of the rectangular tube portion appear. In addition, the said rectangular tube-shaped member can also be comprised in an elliptical cylinder shape. In the present invention, “a shape similar to a rectangular tube” is a term indicating a general tube.
A large number of heat transfer tubes 13 'penetrating and fixed to the tube plates are arranged between the pair of tube plates / tops and the end members 24R and 24L to form a heat transfer tube group. Both ends of the tube group are gently covered with a water chamber case 28 to form a flow path for the aqueous lithium bromide solution. Reference numeral 26 denotes a support plate for the tube group 13 '.
A spray device 22a is supported at both ends by a tube plate / top 24R and a tube plate / end 24L, and at a plurality of intermediate positions by a support plate 26.
The heat transfer tube 13 ′ is hermetically fixed to the tube plate. However, both ends of the spray device 22 are gently supported by the spray device support bracket 25 so that welding distortion can be released. Yes.
FIG. 8 shows an example of a known lithium bromide absorption chiller / heater, and schematically shows a state in which the evaporator and the absorber are cut by a horizontal plane. However, it is not a realistic projection.
The tube plate / top 24R, the tube plate / end 24L, the support plate 26, and the water chamber case 28 are members that appear in FIG.
Since FIG. 8 is a horizontal cross section, the cross sections of the side plates 27S and 27S ′ of the rectangular tube member whose both ends are closed by the pair of tube plates appear. Moreover, in this figure, the heat exchanger tube group 12 'arrange | positioned in the evaporator also appears.
The mist separator denoted by reference numeral 23 is a member described with reference to FIG. 5 (known example), and both ends of the mist separator are gently released from the tube plate by the mist separator support bracket 29 (releasing the thermal expansion difference). Attached to get).
As understood from FIGS. 7 and 8 above, the casing formed by the pair of tube plates and the rectangular tube member has a length dimension corresponding to the length dimension of the heat transfer tube. However, since a high degree of airtightness (vacuum holding performance) is required, it is not possible as a practical technique to make disassembly and assembly possible with, for example, a packing and a flange joint (not shown). (Because flange joints have low airtight reliability, it is necessary to have a welded integrated sealed can structure). For this reason, as mentioned above, it cannot be accommodated in the elevator cage.
[0013]
The present invention has been made in view of the above-described circumstances, and is used to bring a lithium bromide absorption chiller / heater having a cooling capacity of a size that does not fit into an elevator into a building block into a block device. The purpose is to make it possible.
As a result, incidental construction costs (import-related costs) for the renewal of the absorption chiller / heater that has been operating for a long period of time can be greatly reduced, and the construction period can be shortened. In addition, about the carrying-out of the existing absorption cold / hot water machine (aged machine), since a fusing division can be applied freely, use of an elevator is possible easily.
[0014]
[Means for Solving the Problems]
  To achieve the above purposeThe invention method according to claim 1 has a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, and absorbs water as a refrigerant and lithium bromide as an absorbent. A hot and cold water machine,
  A casing in which a pair of tube plates are fixed to cover both end openings of a rectangular tube shape or a similar member composed of a top plate, a bottom plate and a side plate;
  In addition, a heat transfer tube group including a large number of heat transfer tubes that are penetrated and fixed to both ends with respect to each of the pair of tube plates is provided,
  In the method of assembling and configuring a lithium bromide absorption chiller / heater in which the support plate having a hole through which the heat transfer tube is inserted is accommodated substantially perpendicularly to the tubular member,
  Low-temperature regenerator / condensation with many through holes that pass through and fix the heat transfer tube group arranged in the condenser and many through holes that pass through and fix the heat transfer tube group arranged in the low temperature regenerator A pair of vessel-integrated tube sheets,
  A tubular member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into two in the length direction of the tube,
  The low-temperature regenerator / condenser integrated tube plate is fixed to one end of each of the two divided cylindrical members,
  Separately from the above, a large number of through holes for through-fixing the heat transfer tube group disposed in the evaporator and a large number of through holes for through-fixing the heat transfer tube group disposed in the absorber were drilled. While constituting a pair of evaporator and absorber integrated tube plate,
  A tubular member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into two in the length direction of the tube,
  The evaporator / absorber integrated tube plate is fixed to one end of each of the two divided cylindrical members,
  "A pair of low-temperature regenerator / condenser tube plates fixed with a pair of two-divided cylindrical members" and "Evaporator / absorbers fixed with a two-divided cylindrical members" configured in a manufacturing plant or a place equivalent thereto ”Built-in tube plate” into the installation site of the lithium bromide absorption chiller / heater,
  The low-temperature regenerator / condenser integrated tube plate to which the pair of two-divided cylindrical members are fixed is arranged concentrically, and the side of the pair of two-divided cylindrical members to which the tube plate is not fixed is arranged. While facing each other, with the support plate housed in each of the two-divided cylindrical members, the two-divided cylindrical members are welded to each other,
  Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of low-temperature regenerator / condenser integrated tube plates, and both ends of the heat transfer tubes are crimped to the integrated tube plates after the welding operation. ,
  The evaporator / absorber integrated tube plate to which the pair of two-divided cylindrical members are fixed are arranged concentrically, and the side of the pair of two-divided cylindrical members that are not fixed to the tube plate is opposed. And with the support plate housed in each of the two-divided cylindrical members, the two-divided cylindrical members are welded and fixed to each other.
  Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of evaporator / absorber integrated tube plates, and after the welding operation, both ends of the heat transfer tubes are caulked to the integrated tube plate. Date
  And at least one of the support plates is configured to be larger than the rectangular inner shape or the cross-sectional inner peripheral shape of a cylindrical member similar thereto,
  When the divided cylindrical members are welded to each other, the outer peripheral portion of the large support plate is sandwiched between both cylindrical members, and is welded and fixed via the large support plate.
[0017]
  Invention according to claim 2MethodThe structure of the present invention is an absorption chiller / heater having a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, using water as a refrigerant and lithium bromide as an absorbent. ,
  A casing in which a pair of tube plates are fixed to cover both end openings of a rectangular tube shape or a similar member composed of a top plate, a bottom plate and a side plate;
  And while being provided with the heat exchanger tube group which consists of many heat exchanger tubes penetrated and fixed to both ends with respect to each of the above-mentioned pair of tube plates,
  In the method of assembling and configuring a lithium bromide absorption chiller / heater in which the support plate having a hole through which the heat transfer tube is inserted is accommodated substantially perpendicularly to the tubular member,
  Low-temperature regenerator / condensation with many through holes that pass through and fix the heat transfer tube group arranged in the condenser and many through holes that pass through and fix the heat transfer tube group arranged in the low temperature regenerator A pair of vessel-integrated tube sheets,
  A cylindrical member having a shape obtained by dividing the rectangular cylindrical member or a cylindrical member similar thereto into three or more in the length direction of the cylinder,
  About two of the divided cylindrical members, the low-temperature regenerator / condenser integrated tube plate is fixed to one end of each,
  Separately from the above, a large number of through holes for through-fixing the heat transfer tube group disposed in the evaporator and a large number of through holes for through-fixing the heat transfer tube group disposed in the absorber were drilled. While constituting a pair of evaporator and absorber integrated tube plate,
  A cylindrical member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into a plurality of portions in the length direction of the tube,
  About two of the divided cylindrical members, the evaporator / absorber integrated tube sheet is fixed to one end of each,
  “A pair of low-temperature regenerator / condenser integrated tube plates fixed with a divided cylindrical member” and “Evaporator / absorption fixed with a divided cylindrical member” configured in a manufacturing plant or a place equivalent thereto `` Built-in tube sheet '' is brought into the installation site of the lithium bromide absorption chiller / heater,
  The low-temperature regenerator / condenser integrated tube plate to which the pair of divided cylindrical members are fixed are arranged concentrically via other divided cylindrical members, and the support plate is accommodated in the divided cylindrical members. In this state, the divided cylindrical members are fixed to each other by welding,
  Before and after the welding fixing operation, the heat transfer tube is inserted into the through hole of the pair of low-temperature regenerator / condenser integrated tube plate, and both ends of the heat transfer tube are crimped to the integrated tube plate after the welding operation.The
  PreviousThe evaporator / absorber integrated tube plate to which the pair of divided cylindrical members are fixed is arranged concentrically via the other divided cylindrical members, and the support plate is accommodated in the divided cylindrical members. In this state, the divided cylindrical members are fixed to each other by welding,
  Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of evaporator / absorber integrated tube plates, and after the welding operation, both ends of the heat transfer tubes are caulked to the integrated tube plate. Date
  And at least one of the support plates is configured to be larger than the rectangular inner shape or the cross-sectional inner peripheral shape of a cylindrical member similar thereto,
  When the divided cylindrical members are welded to each other, the outer peripheral portion of the large support plate is sandwiched between the two cylindrical members and welded and fixed via the large support plate.It is characterized by that.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
As described above with reference to FIGS. 7 and 8, the casing of the conventional lithium bromide absorption chiller / heater is described as follows. "Shape". As will be described in detail later, this basic structure is the same in the present invention.
FIG. 3 shows one of a pair of tube sheets constituting a casing of a lithium bromide absorption chiller / heater, (A) is a plan view of a conventional tube sheet, and (B) is an embodiment of the present invention. It is a top view of the tube sheet in.
The tube plate 30 of the conventional example shown in FIG. 3 (A) is formed by integrating the tube plate of the low temperature regenerator, the tube plate of the condenser, the tube plate of the evaporator, and the tube plate of the absorber. They are arranged in series (specifically, they are cut out from one large steel plate).
A reference numeral of the low temperature regenerator in FIG. 5 showing a conventional example is attached with a dash and 2 ′ shown in FIG. 3 indicates a position where the low temperature regenerator is provided. The other 3 ', 4', 8 ', 22a', 22b ', and 23' also indicate the installation positions.
In the present invention, the low-temperature regenerator / condenser / evaporator / absorber integrated tube plate 30 shown in FIG. 3 (A) is divided into two, and the low-temperature regenerator / Two condenser-integrated tube plates 31 and two evaporator / absorber-integrated tube plates 32 are formed. Although not shown in the drawings, as the tube sheets are divided, the rectangular tube-shaped members (for example, the casing top surface plate 27R and the casing bottom surface plate 27B that appear in FIG. 7) are closed at both ends by the pair of tube plates. , And the casing side plates 27S and 27S ′ appearing in FIG. 8 are also formed into two, thereby forming two blocks as blocks. That is, a low-temperature regenerator / condenser block and an evaporator / absorber block are formed. As understood from the above description, the configuration of a specific pair of tube sheets in the present invention means that a rectangular tube-like member whose both end surfaces are blocked by the specific pair of tube sheets is configured. Contains.
Although a tube plate for a high-temperature regenerator not shown in FIG. 3 is also configured, this high-temperature regenerator constitutes an independent block device and is smaller than other block devices. Since it is easy to accommodate in the elevator car, the high temperature regenerator of the lithium bromide absorption chiller / heater according to the present invention is constructed in the same or similar manner as in the prior art.
[0029]
  Figure2Of the method of the present inventionApplicableIt is a schematic diagram showing the structure and manufacturing process of the absorber of an absorption cold / hot water machine, Comprising: It corresponds to FIG. 7 showing the prior art example.
  This figure2The heat transfer tube 13 drawn in imaginary lines in FIG. 2 indicates a position where the tube plate and the support plate 26 are inserted when the casing is formed.
[0030]
  BookIn the embodimentIn this case, a cylindrical member that is fixed so as to cover both ends with a pair of tube plates (for example, the same as tube plate / top 24R / end 24L) is divided in the axial direction (agreeing with the longitudinal direction). This figure2In FIG. 2, the top plate is divided into 27R1 and 27R2, and the bottom plate is divided into 27B1 and 27B2.
  Along with the above division, the spray device is also divided into 22R and 22L.
  In this embodiment, the cylindrical member and the spray device areBookFigure2Divided into two as shown in(Corresponding to claim 1). Although not shown in the figure, it is divided into three or more based on the same technical idea.(Corresponding to claim 2)You can also
[0031]
  The spray devices 22R1 and 22R2 divided as described above are attached to the tube plate and the support plate 26 through the same members as the spray device support fitting 25 in the conventional example. Although it is a known technique to attach to the tube plate, in this embodiment, the divided part of the spray device is attached to the support plate 26.
  The feature of the method according to the invention resides in this attachment part. This will be described in detail later with reference to FIG.
[0032]
  Figure1The figure above2It is sectional drawing which shows the state which welded the cylindrical member of the division structure shown in each,(B) depicts the vicinity of the weld in the embodiment of the method of the present invention. (A) is a comparative example.
  Figure1(A)ComparisonIn the example, the support plate 26 is completely accommodated in the rectangular tube-shaped member, and the divided top surface plates 27R1 and 27R2 are butted against each other and welded. Symbol W is where the weld appears in the cross section. The weld line WL is formed slightly apart from the support plate 26.
  Figure1(B)Large exampleThe support plate 26L is formed larger than the cross-sectional shape of the inner peripheral surface of the cylindrical member, and fillet welding is performed in such a manner that the peripheral portion of the large support plate 26L is sandwiched between the divided cylindrical members. .Compared to the welded structure in FIG. 1A, the welded structure in FIG. 1B can use fillet welding, so that welding is easy.
  Figure127R0 shown in (A) is an opening provided in the vicinity of the weld. If such an opening is provided, a hand or a tool can be used when positioning and attaching the divided spray device 22R.InsertIt can be convenient. This opening is later hermetically opened by welding the lid 27R3.
  The heat transfer tube is inserted into the through holes of the tube plate and the support plate, and after welding the rectangular tubular member, the heat transfer tube is crimped to the tube plate.
  FIG.In the comparative example (FIG. 1 (A))It is a typical horizontal sectional view of an evaporator / absorber integrated block structure portion, and corresponds to the vicinity of the central portion of FIG. 8 in the conventional example. However, the scale is not the same.
  The mist separator is divided into two parts, 23R and 23L, and the divided end portion is positioned and attached to the support plate 26 by a mist separator support fitting 29.
[0033]
Next, with reference to FIG. 6 (conventional cooling / heating device), an example in which the present invention is applied and updated when the cooling / heating equipment including the existing absorption chiller / heater of the conventional example has deteriorated will be described.
Although the illustration of the building is omitted in FIG. 6, the lithium bromide absorption chiller / heater shown surrounded by phantom lines is installed in the underground machine room of the building, and the cooling tower 16 is located on the roof of the building. A large number of fan coil units 21a to 21e that are installed in the building and are cold load devices are arranged in each room in the building.
Since the lithium bromide absorption chiller / heater is in contact with the aqueous solution of lithium bromide and receives high heat from the burner 1a, the progress of wear is fast, and the wear of the cooling tower 16 and the fan coil units 21a to 21e is slow. . For this reason, in this example, the cooling tower 16 is repaired and maintained, and continues to be used, and most of the many fan coil units are left to be used (several are replaced with new ones).
[0034]
  The existing absorption chiller / heater (within the phantom line) was melted and subdivided, and it was taken out of the building and discarded.
  Carrying in a new absorption chiller / heater after unloading an existing absorption chiller / heater is difficult due to the limitations of elevator cage dimensions, but it was difficult to achieve with conventional technology. It is possible to carry in and install using the elevator without destroying the walls and floor of the building by carrying in the assembled block construction equipment and finishing it by welding.It was.
[0035]
【The invention's effect】
  As described above, the configuration and function of the embodiment of the present invention have been clarified, and according to the inventive method of claim 1, according to the prior art, “low temperature regenerator + The “condenser + evaporator + absorber” is first divided into two parts, “low temperature regenerator + condenser” and “evaporator + absorber”. Since it is divided into two, each divided block becomes relatively small and can be accommodated in the elevator car. For this reason, it is easy to manufacture the above small block at a specialized factory and carry it into the lithium bromide absorption chiller / heater installation site (inside the building), and weld the two-part cylindrical part after carrying it in. Constitutes a “low temperature regenerator + condenser block” and an “evaporator + absorber block”.
  Since the constructed block has a welded integrated structure, it is excellent in airtightness. The welded blocks are connected to each other by pipes to form a lithium bromide absorption chiller / heater and perform cooling and heating functions.
  In the above-described configuration / construction method, it is necessary to perform an operation of welding the cylindrical portion divided into two. In the method of the present invention, since the support plate formed in a large size in advance is sandwiched between “divided cylindrical members”, the welding operation is easy.
  The fact that the work is easy not only increases the work efficiency and reduces the manufacturing cost, but also improves the welding quality. Furthermore, the ease of welding work is effective in preventing occupational accidents indirectly.
[0036]
  According to the invention method of claim 2, in the prior art, “low temperature regenerator + condenser + evaporator + absorber”, which is configured as an integral large block, is firstly “low temperature regenerator + condenser” and “ “Evaporator + Absorber” is divided into two parts, and further, the square cylindrical portion of each block casing is divided into three or more in the longitudinal direction, so that each divided block is relatively small. And can be accommodated in the elevator cage. For this reason, it is easy to manufacture the above small block in a specialized factory and carry it into the lithium bromide absorption chiller / heater installation site (inside the building). A “low temperature regenerator + condenser block” and an “evaporator + absorber block” are configured.
  Since the constructed block has a welded integrated structure, it is excellent in airtightness. The welded blocks are connected to each other by pipes to form a lithium bromide absorption chiller / heater and perform cooling and heating functions.
  In the above-described configuration / construction method, it is necessary to perform an operation of welding a cylindrical portion divided into three or more pieces. In the method of the present invention, since the support plate formed in a large size in advance is sandwiched between “divided cylindrical members”, the welding operation is easy.
  The fact that the work is easy not only increases the work efficiency and reduces the manufacturing cost, but also improves the welding quality. Furthermore, the ease of welding work is effective in preventing occupational accidents indirectly.
[Brief description of the drawings]
[Figure 1]It is sectional drawing which shows the state which welded the absorber cylindrical member of the divided structure mutually, (B) is drawing the welding part vicinity in embodiment of this invention method, (A) is drawing a comparative example. is there.
[Figure 2]It is a schematic diagram showing the structure and manufacturing process of the absorber of the absorption cold / hot water machine which is an application object of this invention method.
FIG. 3 shows one of a pair of tube sheets constituting a casing of a lithium bromide absorption chiller / heater, (A) is a plan view of a conventional tube sheet, and (B) is an embodiment of the present invention. It is a top view of the tube sheet in.
4 is a schematic horizontal cross-sectional view of an evaporator / absorber integrated block structure portion according to an embodiment of the present invention, and corresponds to the vicinity of the central portion of FIG. 8 in a conventional example. However, the scale is not the same.
FIG. 5 is a schematic piping system diagram showing a conventional example of a lithium bromide absorption chiller / heater, and shows a state in which two chiller switching valves are closed to perform cooling (cooling) action; The liquid water (refrigerant liquid) is spotted, the lithium bromide concentrated aqueous solution is cross-hatched (checkered), and the dilute aqueous solution of lithium bromide is shaded in parallel.
6 is a schematic diagram of an air-conditioning air conditioning system using a lithium bromide absorption chiller / heater, and is a sectional view of the lithium bromide absorption chiller / heater shown in FIG. It is the figure which added the figure and the piping diagram of the fan coil unit as a cold-heating load apparatus, and a cold / hot water circulation system.
FIG. 7 is a schematic vertical sectional view of an absorber in a known example of a lithium bromide absorption chiller / heater. However, since it is schematically depicted and drawn schematically, imitation is not necessarily represented realistically.
FIG. 8 shows an example of a known lithium bromide absorption chiller / heater, schematically illustrating a state in which the evaporator and the absorber are cut by a horizontal plane. However, it is not a realistic projection.
[Explanation of symbols]
22 ... Spray device, 22a ... Solution spray device, 22b ... Refrigerant spray device, 23 ... Mist separator, 23L, 23R ... Split mist separator, 24R ... Tube plate / top, 24L ... Tube plate / end, 25 ... Spray device support bracket , 26 ... support plate, 27R ... casing top plate, 27R1, 27R2 ... split top plate, 27R0 ... work opening, 27R3 ... lid, 27B ... casing bottom plate, 27S, 27S '... casing side plate, 27S1, 27S' ... casing Side plate, 29 ... Mist separator support fitting, 31 ... Low temperature regenerator / condenser integrated tube plate, 32 ... Evaporator / absorber integrated tube plate.

Claims (2)

高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器とを有していて、水を冷媒とし臭化リチュウムを吸収剤とする吸収冷温水機であって、
頂面板と底面板と側面板とより成る角筒状もしくはこれに類似する部材の両端開口部それぞれを覆って1対の管板が固着されたケーシングを具備し、
かつ、上記1対の管板のそれぞれに対して両端を貫通固着された多数の伝熱管より成る伝熱管群が設けられるとともに、
上記伝熱管を挿通せしめる孔を穿たれた支持板が、前記筒状部材に対してほぼ垂直に収納されている臭化リチュウム吸収冷温水機を組み立てて構成する方法において、
凝縮器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、低温再生器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、低温再生器・凝縮器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に2分割した形状の筒状部材を構成し、
2分割された筒状部材それぞれの片方の端に、前記の低温再生器・凝縮器一体管板を固着し、
上記と別体に、蒸発器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、吸収器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、蒸発器・吸収器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に2分割した形状の筒状部材を構成し、
2分割された筒状部材それぞれの片方の端に、前記の蒸発器・吸収器一体管板を固着し、
製造工場またはこれに準じる場所において構成された「1対の、2分割筒状部材を固着された低温再生器・凝縮器一体管板」および「2分割筒状部材を固着された蒸発器・吸収器一体管板」を、当該臭化リチュウム吸収冷温水機の設置現場に搬入し、
前記1対の2分割筒状部材を固着された低温再生器・凝縮器一体管板を同心状に配列して、該1対の2分割筒状部材の、管板を固着されていない側を対向せしめるとともに、それぞれの2分割筒状部材の中に支持板を収納した状態で、該2分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、1対の低温再生器・凝縮器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を上記の一体管板にカシメ付け、
記1対の2分割筒状部材を固着された蒸発器・吸収器一体管板を同心状に配列して、該1対の2分割筒状部材の、管板を固着されていない側を対向せしめるとともに、それぞれの2分割筒状部材の中に支持板を収納した状態で、該2分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、上記1対の蒸発器・吸収器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を、上記の一体管板にカシメ付け、
かつ、前記支持板のうちの少なくとも1枚を、前記角筒状もしくはこれに類似する筒状部材の断面内周形状よりも大きく構成しておき、
前記の分割された筒状部材を相互に溶接する際、双方の筒状部材によって上記大形支持板の外周部を挟みつけ、該大形支持板を介して溶接固着することを特徴とする、吸収冷温水機を組み立て構成する方法。
An absorption chiller / heater having a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, using water as a refrigerant and lithium bromide as an absorbent,
A casing in which a pair of tube plates are fixed to cover both end openings of a rectangular tube shape or a similar member composed of a top plate, a bottom plate and a side plate;
In addition, a heat transfer tube group including a large number of heat transfer tubes that are penetrated and fixed to both ends with respect to each of the pair of tube plates is provided,
In the method of assembling and configuring a lithium bromide absorption chiller / heater in which the support plate having a hole through which the heat transfer tube is inserted is accommodated substantially perpendicularly to the tubular member,
Low-temperature regenerator / condensation with a large number of through-holes that pass through and fix the heat transfer tubes arranged in the condenser and a large number of through-holes that pass through and fix the heat transfer tubes arranged in the low-temperature regenerator A pair of vessel-integrated tube sheets,
A tubular member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into two in the length direction of the tube,
The low-temperature regenerator / condenser integrated tube plate is fixed to one end of each of the two divided cylindrical members,
Separately from the above, a large number of through holes for through-fixing the heat transfer tube group disposed in the evaporator and a large number of through holes for through-fixing the heat transfer tube group disposed in the absorber were drilled. While constituting a pair of evaporator and absorber integrated tube plate,
A tubular member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into two in the length direction of the tube,
The evaporator / absorber integrated tube plate is fixed to one end of each of the two divided cylindrical members,
“A pair of low-temperature regenerator / condenser integrated tube plates fixed with a pair of two-divided cylindrical members” and “Evaporator / absorption fixed with two-divided cylindrical members” configured in a manufacturing plant or a place equivalent thereto ”Built-in tube plate” into the installation site of the lithium bromide absorption chiller / heater,
The low-temperature regenerator / condenser integrated tube plate to which the pair of two-divided cylindrical members are fixed is arranged concentrically, and the side of the pair of two-divided cylindrical members to which the tube plate is not fixed is arranged. While facing each other, with the support plate housed in each of the two-divided cylindrical members, the two-divided cylindrical members are welded and fixed to each other,
Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of low-temperature regenerator / condenser integrated tube plates, and both ends of the heat transfer tubes are crimped to the integrated tube plates after the welding operation. ,
By arranging the evaporator-absorber integral tube plate which is fixed to 2 split tubular member prior Symbol pair concentrically, the two-piece tubular member of said pair, the side not fixed tubesheet While facing each other, with the support plate housed in each of the two-divided cylindrical members, the two-divided cylindrical members are welded and fixed to each other,
Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of evaporator / absorber integrated tube plates, and after the welding operation, both ends of the heat transfer tubes are caulked to the integrated tube plate. with,
And at least one of the support plates is configured to be larger than the inner circumferential shape of the rectangular tube-like or similar tubular member,
When the divided cylindrical members are welded to each other, the outer peripheral portion of the large support plate is sandwiched by both cylindrical members, and is welded and fixed via the large support plate . A method of assembling and configuring an absorption chiller / heater.
高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器とを有していて、水を冷媒とし臭化リチュウムを吸収剤とする吸収冷温水機であって、
頂面板と底面板と側面板とより成る角筒状もしくはこれに類似する部材の両端開口部それぞれを覆って1対の管板が固着されたケーシングを具備し、
かつ、上記1対の管板のそれぞれに対して両端を貫通固着された多数の伝熱管より成る伝熱管群が設けられるとともに、
上記伝熱管を挿通せしめる孔を穿たれた支持板が、前記筒状部材に対してほぼ垂直に収納されている臭化リチュウム吸収冷温水機を組み立てて構成する方法において、
凝縮器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、低温再生器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、低温再生器・凝縮器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に3以上の複数個に分割した形状の筒状部材を構成し、
分割された筒状部材の内の2個について、それぞれの片方の端に、前記の低温再生器・凝縮器一体管板を固着し、
上記と別体に、蒸発器内に配置される伝熱管群を貫通固着せしめる多数の透孔と、吸収器内に配置される伝熱管群を貫通固着せしめる多数の透孔とを穿たれた、蒸発器・吸収器一体管板の1対を構成するとともに、
前記角筒状もしくはこれに類似した筒状の部材を、筒の長さ方向に複数個に分割した形状の筒状部材を構成し、
分割された筒状部材の内の2個について、それぞれの片方の端に、前記の蒸発器・吸収器一体管板を固着し、
製造工場またはこれに準じる場所において構成された「1対の、分割筒状部材を固着された低温再生器・凝縮器一体管板」、および、「分割筒状部材を固着された蒸発器・吸収器一体管板」を、当該臭化リチュウム吸収冷温水機の設置現場に搬入し、
前記1対の分割筒状部材を固着された低温再生器・凝縮器一体管板を、その他の分割筒状部材を介して同心状に配列して、分割筒状部材の中に支持板を収納した状態で、該分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、1対の低温再生器・凝縮器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を上記の一体管板にカシメ付け、
記1対の分割筒状部材を固着された蒸発器・吸収器一体管板を、その他の分割筒状部材を介して同心状に配列して、分割筒状部材の中に支持板を収納した状態で、該分割筒状部材を相互に溶接固着し、
上記の溶接固着作業に前後して、上記1対の蒸発器・吸収器一体管板の透孔に伝熱管を挿通し、溶接作業の後に上記伝熱管の両端を、上記の一体管板にカシメ付け、
かつ、前記支持板のうちの少なくとも1枚を、前記角筒状もしくはこれに類似する筒状部材の断面内周形状よりも大きく構成しておき、
前記の分割された筒状部材を相互に溶接する際、双方の筒状部材によって上記大形支持板の外周部を挟みつけ、該大形支持板を介して溶接固着することを特徴とする、吸収冷温水機を組み立て構成する方法。
An absorption chiller / heater having a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, using water as a refrigerant and lithium bromide as an absorbent,
A casing in which a pair of tube plates are fixed to cover both end openings of a rectangular tube shape or a similar member composed of a top plate, a bottom plate and a side plate;
In addition, a heat transfer tube group including a large number of heat transfer tubes that are penetrated and fixed to both ends with respect to each of the pair of tube plates is provided,
In the method of assembling and configuring a lithium bromide absorption chiller / heater in which the support plate having a hole through which the heat transfer tube is inserted is accommodated substantially perpendicularly to the tubular member,
Low-temperature regenerator / condensation with a large number of through-holes that pass through and fix the heat transfer tubes arranged in the condenser and a large number of through-holes that pass through and fix the heat transfer tubes arranged in the low-temperature regenerator A pair of vessel-integrated tube sheets,
A cylindrical member having a shape obtained by dividing the rectangular cylindrical member or a cylindrical member similar thereto into three or more in the length direction of the cylinder,
About two of the divided cylindrical members, the low-temperature regenerator / condenser integrated tube plate is fixed to one end of each,
Separately from the above, a large number of through holes for through-fixing the heat transfer tube group disposed in the evaporator and a large number of through holes for through-fixing the heat transfer tube group disposed in the absorber were drilled. While constituting a pair of evaporator and absorber integrated tube plate,
A cylindrical member having a shape obtained by dividing the rectangular tubular member or a tubular member similar thereto into a plurality of portions in the length direction of the tube,
About two of the divided cylindrical members, the evaporator / absorber integrated tube sheet is fixed to one end of each,
“A pair of low-temperature regenerator / condenser integrated tube plates fixed with a divided cylindrical member” and “Evaporator / absorption fixed with a divided cylindrical member” configured in a manufacturing plant or a place equivalent thereto ”Built-in tube plate” into the installation site of the lithium bromide absorption chiller / heater,
The low-temperature regenerator / condenser integrated tube plate to which the pair of divided cylindrical members are fixed are arranged concentrically via other divided cylindrical members, and the support plate is accommodated in the divided cylindrical members. In this state, the divided cylindrical members are fixed to each other by welding,
Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of low-temperature regenerator / condenser integrated tube plates, and both ends of the heat transfer tubes are crimped to the integrated tube plates after the welding operation. ,
The pre-Symbol pair split tubular member anchored evaporator-absorber integral tube plates, are arranged concentrically through the other split tubular member, housing the support plate in a divided tubular member In this state, the divided cylindrical members are fixed to each other by welding,
Before and after the welding fixing operation, the heat transfer tubes are inserted into the through holes of the pair of evaporator / absorber integrated tube plates, and after the welding operation, both ends of the heat transfer tubes are caulked to the integrated tube plate. with,
And at least one of the support plates is configured to be larger than the inner circumferential shape of the rectangular tube-like or similar tubular member,
When the divided cylindrical members are welded to each other, the outer peripheral portion of the large support plate is sandwiched by both cylindrical members, and is welded and fixed via the large support plate . A method of assembling and configuring an absorption chiller / heater.
JP30570599A 1999-10-27 1999-10-27 Method of assembling and configuring an absorption chiller / heater Expired - Fee Related JP3671364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30570599A JP3671364B2 (en) 1999-10-27 1999-10-27 Method of assembling and configuring an absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30570599A JP3671364B2 (en) 1999-10-27 1999-10-27 Method of assembling and configuring an absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2001124438A JP2001124438A (en) 2001-05-11
JP3671364B2 true JP3671364B2 (en) 2005-07-13

Family

ID=17948377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30570599A Expired - Fee Related JP3671364B2 (en) 1999-10-27 1999-10-27 Method of assembling and configuring an absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3671364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146301A (en) * 2007-02-01 2007-06-14 Nippon Light Metal Co Ltd Soft aluminum foil for medium-low pressure electrolytic capacitor to be subjected to ac etching and its production method
JP4928516B2 (en) * 2008-08-28 2012-05-09 株式会社日立ビルシステム Absorption type water heater
JP4928515B2 (en) * 2008-08-28 2012-05-09 株式会社日立ビルシステム Absorption type water heater
JP2010054133A (en) * 2008-08-28 2010-03-11 Hitachi Building Systems Co Ltd Multistage absorption type absorption chiller and heater
JP2015200426A (en) * 2014-04-04 2015-11-12 日立アプライアンス株式会社 Absorption water cooling and heating machine, module coupling type absorption water cooling and heating machine, and carrying-in and installation method thereof

Also Published As

Publication number Publication date
JP2001124438A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP4383902B2 (en) Air conditioning system
PT1488080E (en) Refrigeration power plant
CN101586926A (en) Separation type hot pipe system
JP3671364B2 (en) Method of assembling and configuring an absorption chiller / heater
US3848430A (en) Absorption refrigeration machine with second stage generator
JP2772851B2 (en) Installation and delivery of absorption chillers and water heaters
JPH09126592A (en) Outdoor heat exchanger for heat pump type refrigerating cycle
CN2797983Y (en) Water-ring heat pump three-effect machine
JPH0744916Y2 (en) Arrangement structure of absorption refrigerators installed in parallel
JP2649384B2 (en) Air heat source heat pump whole outside air conditioning unit
JP3577542B2 (en) Method of building absorption chiller / heater in existing building, and absorption chiller / heater
KR100343942B1 (en) One body type air conditioner
CN212538059U (en) Air conditioner
JPH11304198A (en) Air conditioning system
RU100188U1 (en) BUILDING HEAT SUPPLY SYSTEM
KR200260439Y1 (en) Gas engine driven heat pump outdoor unit having pre-heating apparatus and apparatus and removable casing apparatus
JP2001066009A (en) Method for renewing absorption chiller and heater installed in existing building and renewed absorption chiller and heater
KR200184892Y1 (en) Structure for fixing high temperature regenerator
JP2000065444A (en) Waste heat utilization method for refrigerator and refrigerator
KR200259305Y1 (en) freezing circuit saving power by re-heating construction
KR200356264Y1 (en) Outdoor module structure of an air-conditoning apparatus
JPH0452594Y2 (en)
JP2015200426A (en) Absorption water cooling and heating machine, module coupling type absorption water cooling and heating machine, and carrying-in and installation method thereof
CA1313766C (en) Absorption refrigeration and heat pump system
JPH0235213B2 (en) CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees