JPH0235213B2 - CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI - Google Patents

CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI

Info

Publication number
JPH0235213B2
JPH0235213B2 JP7058586A JP7058586A JPH0235213B2 JP H0235213 B2 JPH0235213 B2 JP H0235213B2 JP 7058586 A JP7058586 A JP 7058586A JP 7058586 A JP7058586 A JP 7058586A JP H0235213 B2 JPH0235213 B2 JP H0235213B2
Authority
JP
Japan
Prior art keywords
air
low
liquid
temperature
pressure liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7058586A
Other languages
Japanese (ja)
Other versions
JPS62225833A (en
Inventor
Takeshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7058586A priority Critical patent/JPH0235213B2/en
Publication of JPS62225833A publication Critical patent/JPS62225833A/en
Publication of JPH0235213B2 publication Critical patent/JPH0235213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大規模ビルデイングの空調に適用可能
な直接空調式ヒートポンプ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a direct air conditioning heat pump device applicable to air conditioning of large-scale buildings.

(従来の技術) 従来の集中型ビルデイング空調では、地階等の
空調機械室で冷水または温水を製造し、これら冷
水または温水を各空調空間内に設けられた空調器
(フアンコイルユニツト)に供給し空気を冷却ま
たは加熱して空調を行うか、あるいは前記空調機
械室に設けた空調器(エアハンドリングユニツ
ト)で冷風または温風を作り、これら冷風または
温風をダクトにより各空調空間に供給するかの手
段が採られた。しかしこれらの手段においては熱
媒体としての水あるいは空気を搬送するのに多大
なエネルギーを消費し、また水を熱媒体とするの
でフロン冷媒と水、水と空気と、熱交換の機会が
多いためエクセルギー損失を生じ、結局エネルギ
ー効率が悪かつた。
(Conventional technology) In conventional centralized building air conditioning, cold water or hot water is produced in an air conditioning machine room such as a basement, and this cold water or hot water is supplied to air conditioners (fan coil units) installed in each air conditioned space. Either air conditioning is performed by cooling or heating the air, or cold air or hot air is generated by an air conditioner (air handling unit) installed in the air conditioning equipment room, and this cold air or hot air is supplied to each air-conditioned space through ducts. measures were taken. However, these methods consume a large amount of energy to transport water or air as a heat medium, and since water is used as a heat medium, there are many opportunities for heat exchange between fluorocarbon refrigerant and water, and between water and air. Exergy loss occurred, resulting in poor energy efficiency.

そこで近年、家庭用あるいは小規模ビルデイン
グ用として空調空間内に設けた複数の空調器に直
接フロン冷媒を通じ、冷却または加熱を行う所
謂、直接空調式ヒートポンプ装置を採用すること
が多くなつてきた。
Therefore, in recent years, so-called direct air-conditioning heat pump devices have been increasingly used for home use or small-scale buildings, which perform cooling or heating by directly passing a fluorocarbon refrigerant through a plurality of air conditioners installed in an air-conditioned space.

このような直接空調式ヒートポンプ装置は第3
図に系統図で示すように構成される。即ち、1階
に空調器1,2を設置し、2階に空調器3を設置
し、3階に空調器4を設置し、屋上に圧縮機5、
空気熱交換器6、膨張弁7等よりなる室外機8お
よび圧縮機9、空気熱交換器10、膨張弁11等
よりなる室外機12を設置し、冷媒液管13、冷
媒ガス管14で空調器1,2のそれぞれと室外機
8とを接続し、冷媒液管15、冷媒ガス管16で
空調器3,4のそれぞれと室外機12とを接続
し、空調器1,2と室外機8とでA空調帯を形成
し、空調器3,4と室外機12とでB空調帯を形
成し立体的あるいは平面的に分散した多数の空調
器にフロン冷媒を可及的に均等に分配するように
構成したが、第3図に示す直接空調式ヒートポン
プ装置では冷房時においては、圧縮機の吸入管と
なる冷媒ガス管14,16が立ち上がつているた
め油戻りおよび空調器からの未蒸発液の室外機へ
の戻りが不良となり易く、このため空調器内に液
溜りができ、ベーパーロツク(ガス溜り)の原因
をなし、冷媒の均等分配に重大な支障を来たして
いた。
This type of direct air conditioning heat pump equipment is the third
It is configured as shown in the system diagram in the figure. That is, air conditioners 1 and 2 are installed on the first floor, air conditioner 3 is installed on the second floor, air conditioner 4 is installed on the third floor, and compressor 5 is installed on the roof.
An outdoor unit 8 consisting of an air heat exchanger 6, an expansion valve 7, etc., and an outdoor unit 12 consisting of a compressor 9, an air heat exchanger 10, an expansion valve 11, etc. are installed, and air conditioning is performed using a refrigerant liquid pipe 13 and a refrigerant gas pipe 14. The outdoor unit 8 is connected to each of the air conditioners 1 and 2, and the outdoor unit 12 is connected to each of the air conditioners 3 and 4 by a refrigerant liquid pipe 15 and a refrigerant gas pipe 16. The air conditioners 3 and 4 and the outdoor unit 12 form an air conditioning zone B, and the fluorocarbon refrigerant is distributed as evenly as possible to a large number of air conditioners distributed three-dimensionally or two-dimensionally. However, in the direct air conditioning heat pump device shown in Fig. 3, during cooling, the refrigerant gas pipes 14 and 16, which serve as suction pipes for the compressor, stand up, so oil return and unused water from the air conditioner are removed. The return of the evaporated liquid to the outdoor unit tends to be defective, which causes a pool of liquid inside the air conditioner, causing a vapor lock (gas pool) and causing a serious problem in uniform distribution of the refrigerant.

暖房時においては凝縮液が冷媒液管13,15
を立ち上がり、かつ空調器3,4の設置高さの相
異により室外機までのヘツドが異なり、冷媒の戻
り易さ、流れ易さに相異が生じ、流れむらを生じ
る。
During heating, condensate flows through the refrigerant liquid pipes 13 and 15.
The head of the refrigerant to the outdoor unit differs due to the difference in the installation height of the air conditioners 3 and 4, which causes differences in the ease with which the refrigerant returns and flows, resulting in uneven flow.

かかる冷媒流れの不均等は各空調器に設置高さ
の相異がある場合により大きくなるので、単一の
空調帯においては各空調器間の最大高さ差は5m
程度とされ、また前記冷媒の均等分配の困難性の
他に、圧縮機への油戻り、あるいは凝縮液の立ち
上がりのために空調器と室外機との間には高さ制
限があつたので直接空調式ヒートポンプ装置は
中、大規模ビルデイングには適用できないのが現
状であり、しかも室外機と各空調器は冷媒ガス管
と冷媒液管の二管、あるいはこれら二管に再熱器
に利用されるホツトガス管を加えた三管によつて
いたため、冷房期または暖房期のそれぞれに合わ
せて配管系路を切り換え、冷房または暖房の単独
運転を行うもので空調空間毎の要求に応じ、単一
空間帯内において一台の室外機で冷房または暖房
を同時に行う、所謂熱回収運転は不可能であつ
た。
This uneven flow of refrigerant becomes greater when each air conditioner has a different installation height, so the maximum height difference between each air conditioner in a single air conditioning zone is 5 m.
In addition to the difficulty in evenly distributing the refrigerant, there was a height restriction between the air conditioner and the outdoor unit due to the return of oil to the compressor or the rise of condensate. Currently, air-conditioned heat pump equipment cannot be applied to medium-sized or large-scale buildings, and the outdoor unit and each air conditioner have two pipes, a refrigerant gas pipe and a refrigerant liquid pipe, or these two pipes are used as a reheater. Since the system used three pipes, including a hot gas pipe, the piping system was switched depending on the cooling or heating season, and cooling or heating was operated independently. It has been impossible to perform so-called heat recovery operation, in which a single outdoor unit performs cooling or heating at the same time within a spatial zone.

(発明が解決しようとする問題点) 従来の小規模ビルデイング用として採用された
直接空調式ヒートポンプ装置では冷媒の均等分配
の困難性のため、一台の室外機で対応できる空調
器の数、および各空調器間の高さ差にも制限があ
り、さらに圧縮機への油戻り、あるいは凝縮液の
立ち上がりのため空調器と室外機との間にも高さ
制限があつたため大規模ビルデイングに直接空調
式ヒートポンプ装置は適用し得なかつたという問
題点および空調空間の要求に応じ、一台の圧縮
機、一台の空気熱交換器で冷房および暖房を同
時、かつ容易に行うことができなかつたという問
題点があつた。
(Problems to be solved by the invention) Due to the difficulty in evenly distributing the refrigerant in the conventional direct air conditioning heat pump devices adopted for small-scale buildings, it has been difficult to There were also restrictions on the height difference between each air conditioner, and there was also a height restriction between the air conditioner and the outdoor unit due to the return of oil to the compressor or the rise of condensate. Due to the problem that air-conditioned heat pump equipment could not be applied and the requirements for air-conditioned space, it was not possible to simultaneously and easily perform cooling and heating with one compressor and one air heat exchanger. There was a problem.

(問題点を解決するための手段) 本発明は圧縮機と空気熱交換器を分離し、前記
圧縮機を高圧受液器、膨張弁、アキユムレータと
ともにビルデイングの低所に設置し、低圧受液器
をビルデイングの最高所位置にある空調器より高
所に設置してなり、さらに前記圧縮機と空気熱交
換器をガス切換え用電動弁を介し高温ガス供給管
で接続し、この高温ガス供給管を各空調器のそれ
ぞれと接続し、前記高圧受液器と低圧受液器とを
前記膨張弁を介し液管で接続し、前記高圧受液器
と前記空気熱交換器を液切換え用電動弁を介し高
温液戻し管で接続し、この高温液戻し管を各空調
器のそれぞれと接続し、前記低圧受液器の液取出
口と各空調器とを低温液供給管で接続し、前記低
圧受液器のガス取出口と前記圧縮機および各空調
器のそれぞれを低温ガス戻し管で接続してなるこ
とを特徴とする直接空調式ヒートポンプ装置を提
供するものである。
(Means for solving problems) The present invention separates a compressor and an air heat exchanger, installs the compressor together with a high-pressure liquid receiver, an expansion valve, and an accumulator at a low place in a building, and The compressor is installed at a higher place than the air conditioner located at the highest point in the building, and the compressor and air heat exchanger are connected by a high-temperature gas supply pipe via an electric gas switching valve. The high-pressure liquid receiver and the low-pressure liquid receiver are connected to each of the air conditioners by a liquid pipe via the expansion valve, and the high-pressure liquid receiver and the air heat exchanger are connected to each other by a liquid switching electric valve. The high-temperature liquid return pipe is connected to each air conditioner, and the liquid outlet of the low-pressure liquid receiver is connected to each air conditioner with a low-temperature liquid supply pipe. The present invention provides a direct air conditioning heat pump device characterized in that a gas outlet of a liquid container is connected to the compressor and each air conditioner through a low-temperature gas return pipe.

(作用) 冷却を行う空調器に対して低温冷媒液は低温液
供給管を通つて低圧受液器より落差により供給さ
れる。低温冷媒液は空調器入口で落差に相当する
量だけ流量調節弁等により減圧され飽和液となつ
て空調器に入り、周囲空気より熱を奪い、完全に
ガス化し、低温ガス戻し管を通つて圧縮機に吸入
され、圧縮機の吸入管となる低温ガス戻し管では
冷媒の流れが常に下向きとなるため、各空調器か
らの油戻りおよび未蒸発液のアキユムレータへの
戻りを良好にするため冷媒の分配不均等の原因と
なるベーパーロツクを起こすことがない。
(Function) Low-temperature refrigerant liquid is supplied to the air conditioner performing cooling from a low-pressure liquid receiver through a low-temperature liquid supply pipe by a drop. At the inlet of the air conditioner, the low temperature refrigerant liquid is depressurized by a flow control valve, etc. by an amount equivalent to the head, becomes a saturated liquid, enters the air conditioner, absorbs heat from the surrounding air, completely gasifies, and passes through the low temperature gas return pipe. Since the flow of refrigerant is always downward in the low-temperature gas return pipe that is sucked into the compressor and serves as the suction pipe of the compressor, the refrigerant is Vapor lock, which causes uneven distribution of water, does not occur.

一方、加熱を行う空調器に対しては、高温冷媒
ガスは高温ガス供給管より供給され、空調器で周
囲空気に放熱し、凝縮した冷媒液は高温液戻し管
を通つて高圧受液器に戻る。高温液戻し管では冷
媒の流れが常に下向きとなるため、液柱ができ
ず、各空調器からの凝縮液の戻りを容易にするた
め冷媒の流れにむらを生じることがなく、また液
柱により圧縮機に多大な負荷をかけることもな
く、膨張弁の前で液管が立ち上がることもないの
で、液の再蒸発(フラツシユ)現象もなく、した
がつてフラツシユガスによつて膨張弁の機能を損
なうこともない。
On the other hand, for air conditioners that perform heating, high-temperature refrigerant gas is supplied from a high-temperature gas supply pipe, heat is radiated to the surrounding air in the air conditioner, and the condensed refrigerant liquid passes through a high-temperature liquid return pipe to a high-pressure liquid receiver. return. In the high-temperature liquid return pipe, the flow of refrigerant is always downward, preventing the formation of a liquid column.In order to facilitate the return of condensed liquid from each air conditioner, there is no unevenness in the flow of refrigerant. Since there is no heavy load on the compressor and the liquid pipe does not stand up in front of the expansion valve, there is no liquid re-evaporation (flash) phenomenon, and therefore flash gas damages the function of the expansion valve. Not at all.

また、各空調器にはそれぞれ冷却に必要な低温
液供給管および低温ガス戻し管ならびに加熱に必
要な高温ガス供給管および高温液戻し管が電磁弁
を介して接続されているため空調空間の要求に応
じて冷房、暖房、再熱および給湯が常に可能であ
る。
In addition, each air conditioner is connected to a low-temperature liquid supply pipe and a low-temperature gas return pipe necessary for cooling, and a high-temperature gas supply pipe and a high-temperature liquid return pipe necessary for heating through a solenoid valve, so the air conditioning space is required. Cooling, heating, reheating and hot water supply are always possible.

(実施例) 本発明の第1実施例を第1図を参照しながら説
明する。地下1階、地上3階としたビルデイング
17の地階の空調機械室18内に圧縮機19とア
キユムレータ20と高圧受液器21と膨張弁22
とを含む管系を設け、屋上に空気熱交換器23と
低圧受液器24を含む管系を設け、地上各階にそ
れぞれ空調器25a,25b,25cを設けてあ
り、前記圧縮機19と空気熱交換器23とをガス
切換え用電動弁26aを介し高温ガス供給管27
で接続し、さらに前記高温ガス供給管27より分
岐し、電磁弁28a,28b,28cを介して各
空調器25a,25b,25cに接続してある。
また、前記高圧受液器21と低圧受液器24とを
前記膨張弁22を介装した液管29で接続し、前
記高圧受液器21と空気熱交換器23とを液切換
え用電動弁30aを介装した高温液戻し管31で
接続し、さらに高温液戻し管31から分岐し電磁
弁32a,32b,32cを介し各空調器25
a,25b,25cに接続してある。また、前記
低圧受液器24の液取出し口24aと各空調器2
5a,25b,25cとを低温液供給管33を通
じて電磁弁34a,34b,34cおよび流量調
節弁35a,35b,35cを介して接続し、前
記低圧受液器24のガス取出口24bと前記圧縮
機19の吸入側をアキユムレータ20を介して低
温ガス戻し管36で接続し、さらに低温ガス戻し
管36が分岐し、電磁弁37a,37b,37c
を介して各空調器25a,25b,25cに接続
してある。また、再熱器38a,38bおよび給
湯器39は、それぞれ電磁弁40a,40bおよ
び電磁弁41を介して、前記高温ガス供給管27
と接続し、電磁弁42a,42bおよび電磁弁4
3を介して、前記高温液戻し管31と接続してあ
る。また、前記低圧受液器24のガス戻り口24
cと前記空気熱交換器23はガス切換え用電動弁
26bを介してガス戻し管44で接続し、前記低
圧受液器24の液供給口24dと前記空気熱交換
器23は液切換え用電動弁30bを介して液供給
管45で接続してある。図中、符号46は電動弁
であり、除霜時に使用されるものである。
(Example) A first example of the present invention will be described with reference to FIG. A compressor 19, an accumulator 20, a high-pressure liquid receiver 21, and an expansion valve 22 are installed in the air conditioning machine room 18 on the basement floor of the building 17, which has one basement floor and three floors above ground.
A pipe system including an air heat exchanger 23 and a low-pressure liquid receiver 24 is provided on the roof, and air conditioners 25a, 25b, and 25c are provided on each floor above the ground. The heat exchanger 23 is connected to the high temperature gas supply pipe 27 via the gas switching electric valve 26a.
It is further branched from the high temperature gas supply pipe 27 and connected to each air conditioner 25a, 25b, 25c via electromagnetic valves 28a, 28b, 28c.
Further, the high-pressure liquid receiver 21 and the low-pressure liquid receiver 24 are connected by a liquid pipe 29 having the expansion valve 22 interposed therebetween, and the high-pressure liquid receiver 21 and the air heat exchanger 23 are connected to each other by an electric valve for liquid switching. 30a, and is further branched from the high temperature liquid return pipe 31 and connected to each air conditioner 25 via solenoid valves 32a, 32b, and 32c.
It is connected to a, 25b, and 25c. In addition, the liquid outlet 24a of the low pressure liquid receiver 24 and each air conditioner 2
5a, 25b, 25c are connected through a low-temperature liquid supply pipe 33 through electromagnetic valves 34a, 34b, 34c and flow rate control valves 35a, 35b, 35c, and the gas outlet 24b of the low-pressure liquid receiver 24 and the compressor The suction side of No. 19 is connected to a low temperature gas return pipe 36 via an accumulator 20, and the low temperature gas return pipe 36 further branches to solenoid valves 37a, 37b, 37c.
It is connected to each air conditioner 25a, 25b, 25c via. Further, the reheaters 38a, 38b and the water heater 39 are connected to the high temperature gas supply pipe 27 via the solenoid valves 40a, 40b and the solenoid valve 41, respectively.
connected to the solenoid valves 42a, 42b and the solenoid valve 4.
3, it is connected to the high temperature liquid return pipe 31. Further, the gas return port 24 of the low pressure liquid receiver 24
c and the air heat exchanger 23 are connected via a gas return pipe 44 via an electric valve 26b for gas switching, and the liquid supply port 24d of the low pressure liquid receiver 24 and the air heat exchanger 23 are connected to each other via an electric valve 26b for switching gas. A liquid supply pipe 45 is connected via 30b. In the figure, reference numeral 46 is an electric valve used during defrosting.

本発明装置は前記のように構成し、次のように
作動する。
The apparatus of the present invention is constructed as described above and operates as follows.

先ず、冷房主体時の作動について説明する。圧
縮機19により圧縮された高温高圧の冷媒液(フ
ロン)ガスは、高温ガス供給管27を通つて地階
機械室より屋上に導かれ、ガス切換え用電動弁2
6aを通つて空気熱交換器23に導かれる。ここ
で冷媒ガスは凝縮し、液切換え用電動弁30a、
高温液戻し管31を通つて地階機械室の高圧受液
器21に戻る。高圧受液器21内の冷媒液は膨張
弁22により減圧され、低温、低圧の液ガス混合
体となり液管29を通つて屋上の低圧受液器24
に送られる。このとき低圧受液器24の液レベル
は膨張弁22の開度を調整することにより自動制
御される。
First, the operation when the air conditioner is mainly used for cooling will be explained. The high-temperature, high-pressure refrigerant liquid (Freon) gas compressed by the compressor 19 is led from the basement machine room to the rooftop through the high-temperature gas supply pipe 27, and is passed through the electric gas switching valve 2.
6a to the air heat exchanger 23. Here, the refrigerant gas condenses, and the liquid switching electric valve 30a,
The high-temperature liquid returns to the high-pressure liquid receiver 21 in the basement machine room through the high-temperature liquid return pipe 31. The refrigerant liquid in the high-pressure liquid receiver 21 is depressurized by the expansion valve 22 and becomes a low-temperature, low-pressure liquid-gas mixture through the liquid pipe 29 to the low-pressure liquid receiver 24 on the roof.
sent to. At this time, the liquid level in the low-pressure liquid receiver 24 is automatically controlled by adjusting the opening degree of the expansion valve 22.

低圧受液器24内の低温低圧液は低温液供給管
33により各空調器25a,25b,25cに送
られる。このとき前記低温低圧液は低圧受液器2
4と各空調器25a,25b,25cの落差によ
り送られる。空調器25a,25b,25cには
流量調節弁35a,35b,35cが付属してお
り、空調器への冷媒供給量はこれにより制御され
る。流量調節弁35a,35b,35cでは、通
常の冷凍装置の膨張弁の場合と異なり、弁の二次
側でもフラツシユガスは発生しない。しかしその
弁動作は通常の温度式膨張弁と同様、空調器出口
の冷媒ガスが適当な過熱度を持つよう動作する。
空調器25a,25b,25cで低温冷媒液は蒸
発し、室内空気を冷却する。ここで蒸発した低温
低圧の冷媒ガスは電磁弁37a,37b,37c
を通つて低温ガス戻し管36に集合し、アキユム
レータ20を通つて圧縮機19に吸入される。ま
た膨張弁22により減圧され、液管29を通つて
低圧受液器24に送られた低温の液ガス混合体の
内、ガスは前記低温ガス戻し管36を通つて空調
器25a,25b,25cで蒸発したガスと一緒
になつて圧縮機19に吸入される。
The low-temperature low-pressure liquid in the low-pressure liquid receiver 24 is sent to each air conditioner 25a, 25b, 25c through a low-temperature liquid supply pipe 33. At this time, the low-temperature, low-pressure liquid is transferred to the low-pressure liquid receiver 2.
4 and each air conditioner 25a, 25b, 25c. Flow control valves 35a, 35b, 35c are attached to the air conditioners 25a, 25b, 25c, and the amount of refrigerant supplied to the air conditioners is controlled thereby. In the flow control valves 35a, 35b, and 35c, flash gas is not generated on the secondary side of the valves, unlike in the case of expansion valves of ordinary refrigeration equipment. However, the valve operates like a normal thermostatic expansion valve so that the refrigerant gas at the outlet of the air conditioner has an appropriate degree of superheat.
The low-temperature refrigerant liquid evaporates in the air conditioners 25a, 25b, and 25c, cooling the indoor air. The evaporated low-temperature, low-pressure refrigerant gas
The low temperature gas is collected in the return pipe 36 through the accumulator 20 and sucked into the compressor 19. Also, among the low temperature liquid-gas mixture that is depressurized by the expansion valve 22 and sent to the low-pressure liquid receiver 24 through the liquid pipe 29, the gas passes through the low-temperature gas return pipe 36 to the air conditioners 25a, 25b, 25c. The gas is combined with the evaporated gas and sucked into the compressor 19.

高温ガス供給管27より分岐した高温高圧ガス
は空調器25a,25b,25c、再熱器38
a,38bまたは給湯器39にそれぞれ電磁弁2
8a,28b,28c、電磁弁40a,40bま
たは電磁弁41を介して接続されているので、暖
房、再熱あるいは給湯が常時可能であり、暖房を
行うときは暖房要求のある空間の空調器25の電
磁弁28および電磁弁32を開け、再熱を行うと
きは電磁弁40a,40bおよび電磁弁42a,
42bを開け、給湯を行うときは電磁弁41,4
3を開ける。暖房、再熱または給湯運転により空
調器25、再熱器38a,38bまたは給湯器3
9で凝縮した高温高圧の冷媒液は高温液戻し管3
1を通つて高圧受液器21に戻る。
The high temperature and high pressure gas branched from the high temperature gas supply pipe 27 is sent to air conditioners 25a, 25b, 25c and a reheater 38.
a, 38b or water heater 39, respectively, with solenoid valve 2.
8a, 28b, 28c, and are connected via the solenoid valves 40a, 40b or the solenoid valve 41, so that heating, reheating, or hot water supply is always possible, and when performing heating, the air conditioner 25 of the space where heating is required. When reheating is performed by opening the solenoid valves 28 and 32, the solenoid valves 40a, 40b and the solenoid valves 42a,
When opening 42b and supplying hot water, open solenoid valves 41 and 4.
Open 3. Air conditioner 25, reheater 38a, 38b or water heater 3 by heating, reheating or hot water supply operation
The high temperature and high pressure refrigerant liquid condensed in step 9 is sent to the high temperature liquid return pipe 3.
1 and returns to the high pressure liquid receiver 21.

このようにして、冷房主体時、すなわち大半の
空調空間が冷房を行つているときでも、再熱、給
湯はもとより、暖房要求のある空調空間に対して
は空調器25に付属する電磁弁28および32の
操作のみで容易に暖房が可能となつた。
In this way, even when cooling is the main activity, that is, when most of the air-conditioned spaces are being cooled, the solenoid valve 28 attached to the air conditioner 25 and the Heating is now possible with just 32 operations.

次に暖房主体時の作動について説明する。圧縮
機19により圧縮された高温高圧の冷媒ガスは高
温ガス供給管27より電磁弁28a,28b,2
8cを通つて空調器25a,25b,25cに導
かれ、これら空調器25a,25b,25cは室
内空気を加熱して暖房を行う。
Next, the operation when heating is the primary mode will be explained. The high-temperature, high-pressure refrigerant gas compressed by the compressor 19 is supplied to the solenoid valves 28a, 28b, 2 from the high-temperature gas supply pipe 27.
The air is guided to air conditioners 25a, 25b, and 25c through air conditioner 8c, and these air conditioners 25a, 25b, and 25c heat indoor air to perform space heating.

空調器25a,25b,25cで凝縮された冷
媒液は、高温液戻し管31を通つて高圧受液器2
1に戻る。高圧受液器21内の冷媒液は膨張弁2
2により減圧され、低温低圧の液ガス混合体とな
り、液管29を通つて屋上の低圧受液器24に導
かれる。低圧受液器24内の低温液は液供給口2
4dより液供給管45に介装した液切換え用電動
弁30bを通つて低圧受液器24より低所にある
空気熱交換器23に落差で送られる。空気熱交換
器23で周囲空気より熱を奪い、ガス化した冷媒
は、ガス戻し管44に介装したガス切換え用電動
弁26bを通つて低圧受液器24のガス戻り口2
4cに戻る。そして低圧受液器24内の低温低圧
の冷媒ガスは低温ガス戻し管36、アキユムレー
タ20を通つて圧縮機19に吸入される。なお、
ここで液供給管45およびガス戻し管44は低圧
受液器24の代わりにそれぞれ低温液供給管33
および低温ガス戻し管36に接続しても作用効果
は同じである。なぜなら、液供給管45は低温液
供給管33と同じく、低圧受液器24の液部と接
続されており、ガス戻し管44は低温ガス戻し管
36と同じく、低圧受液器24のガス部に接続さ
れているからである。
The refrigerant liquid condensed in the air conditioners 25a, 25b, and 25c passes through the high-temperature liquid return pipe 31 to the high-pressure liquid receiver 2.
Return to 1. The refrigerant liquid in the high-pressure liquid receiver 21 is transferred to the expansion valve 2
2, the liquid gas becomes a low-temperature, low-pressure liquid-gas mixture, and is led to the low-pressure liquid receiver 24 on the rooftop through the liquid pipe 29. The low temperature liquid in the low pressure liquid receiver 24 is supplied to the liquid supply port 2.
4d, the liquid is sent to the air heat exchanger 23 located at a lower location than the low-pressure liquid receiver 24 by a drop through the electric liquid switching valve 30b installed in the liquid supply pipe 45. The air heat exchanger 23 removes heat from the surrounding air and the gasified refrigerant passes through the electric gas switching valve 26b installed in the gas return pipe 44 to the gas return port 2 of the low-pressure liquid receiver 24.
Return to 4c. The low-temperature, low-pressure refrigerant gas in the low-pressure liquid receiver 24 is sucked into the compressor 19 through the low-temperature gas return pipe 36 and the accumulator 20. In addition,
Here, the liquid supply pipe 45 and the gas return pipe 44 are respectively replaced by the low-temperature liquid supply pipe 33 instead of the low-pressure liquid receiver 24.
Even if it is connected to the low temperature gas return pipe 36, the effect is the same. This is because, like the low-temperature liquid supply pipe 33, the liquid supply pipe 45 is connected to the liquid part of the low-pressure liquid receiver 24, and the gas return pipe 44, like the low-temperature gas return pipe 36, is connected to the gas part of the low-pressure liquid receiver 24. This is because it is connected to.

また、低圧受液器24内の低温冷媒液の一部は
低温液供給管33に導かれ、空調空間のうち、冷
房要求のある空間に対して空調器25a,25b
または25cに送液することにより、冷房要求を
満たすことができ、このことは冷房主体時の暖房
要求に応えるのと同様である。
In addition, a part of the low-temperature refrigerant liquid in the low-pressure liquid receiver 24 is guided to the low-temperature liquid supply pipe 33, and air conditioners 25a and 25b are supplied to the air-conditioned space that requires cooling.
Alternatively, by sending liquid to 25c, the cooling request can be satisfied, which is the same as meeting the heating request when cooling is the main activity.

なお、圧縮機19の容量は冷房主体時において
は圧縮機19の吸入圧力を、暖房主体時には圧縮
機19の吐出圧力をそれぞれ一定にするよう制御
される。
Note that the capacity of the compressor 19 is controlled so that the suction pressure of the compressor 19 is constant when the main purpose is cooling, and the discharge pressure of the compressor 19 is constant when the main purpose is heating.

次に除霜時の作動について説明する。暖房主体
時の低圧受液器24、空気熱交換器23回りのバ
ルブの開閉状況は次の通りである。ガス切換え用
電動弁26bが開き、ガス切換え用電動弁26a
が閉じ、液切換え用電動弁30bが開き、液切換
え用電動弁30aが閉じている。また除霜用電動
弁46を閉じている。この状態から除霜を開始す
るよう、先ず液切換え用電動弁30bを閉じ、空
気熱交換器23への給液を停止する。同時に除霜
用電動弁46を開け、この状態で圧縮機19およ
び空気熱交換器23のフアンを運転しながら空気
熱交換器23のコイル内の液冷媒を蒸発、回収
し、回収が終了後ガス切換え用電動弁26bを閉
じ、ガス切換え用電動弁26aを開ける。これに
より圧縮機19より吐出される高温高圧の冷媒ガ
スは高温ガス供給管27、ガス切換え用電動弁2
6aを通つて、空気熱交換器23に導かれ、この
空気熱交換器23のコイルに付着した霜を溶解除
去し、低温低圧のガスとなつて、除霜用電動弁4
6、低圧受液器24、低温ガス戻し管36、アキ
ユムレータ20を経て圧縮機19に戻る。この時
ガス切換え用電動弁26aは空気熱交換器23の
コイル内で冷媒ガスが凝縮しないようにコイル内
冷媒圧力が適当に低くなるよう制御される。即
ち、ガス切換え用電動弁26aは制御弁としても
機能する。従つてこの除霜手段では、圧縮機19
から吐出される冷媒ガスの顕熱のみを除霜用の熱
として利用する。除霜完了後はガス切換え用電動
弁26aおよび除霜用電動弁46を閉じ、ガス切
換え用電動弁26bおよび液切換え用電動弁30
bを開け、除霜前の状態に復帰する。
Next, the operation during defrosting will be explained. The opening/closing status of the valves around the low-pressure liquid receiver 24 and the air heat exchanger 23 during main heating is as follows. The electric gas switching valve 26b opens, and the electric gas switching valve 26a opens.
is closed, the liquid switching electric valve 30b is open, and the liquid switching electric valve 30a is closed. Further, the defrosting electric valve 46 is closed. In order to start defrosting from this state, first, the electric liquid switching valve 30b is closed and the liquid supply to the air heat exchanger 23 is stopped. At the same time, the electric defrosting valve 46 is opened, and while operating the compressor 19 and the fan of the air heat exchanger 23 in this state, the liquid refrigerant in the coil of the air heat exchanger 23 is evaporated and recovered, and after the recovery is completed, the The electric switching valve 26b is closed, and the electric gas switching valve 26a is opened. As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 19 is transferred to the high-temperature gas supply pipe 27 and the gas switching electric valve 2.
6a, the air is guided to the air heat exchanger 23, where the frost adhering to the coil of the air heat exchanger 23 is melted and removed, and the gas becomes a low temperature and low pressure gas, which is then passed through the electric defrosting valve 4.
6. Returns to the compressor 19 via the low-pressure liquid receiver 24, the low-temperature gas return pipe 36, and the accumulator 20. At this time, the electric gas switching valve 26a is controlled so that the refrigerant pressure within the coil is appropriately low so that the refrigerant gas does not condense within the coil of the air heat exchanger 23. That is, the electric gas switching valve 26a also functions as a control valve. Therefore, in this defrosting means, the compressor 19
Only the sensible heat of the refrigerant gas discharged from the refrigerant gas is used as heat for defrosting. After defrosting is completed, the gas switching motorized valve 26a and the defrosting motorized valve 46 are closed, and the gas switching motorized valve 26b and the liquid switching motorized valve 30 are closed.
Open b and return to the state before defrosting.

なお本実施例では、暖房主体時の空気熱交換器
23への給液は低圧受液器24の空気熱交換器2
3の落差によつたが他の手段、例えば液ポンプ等
によつてもよい。
In addition, in this embodiment, liquid is supplied to the air heat exchanger 23 during main heating by the air heat exchanger 2 of the low-pressure liquid receiver 24.
3, but other means, such as a liquid pump, may be used.

さらに空調器25a,25b,25cは各階に
複数あるフアンコイルユニツトでもよく、また各
階ユニツト方式と称するエアハンドリングユニツ
ト一台あるいは複数台でもよい。
Furthermore, the air conditioners 25a, 25b, and 25c may be a plurality of fan coil units on each floor, or may be one or more air handling units called a per-floor unit system.

第2図に示すものは本発明の別の実施例であつ
て、前記実施例における高温ガス供給管27を屋
上の分岐部47で吐出管部27aと供給管部27
bに分け、吐出管部27aはガス切換え用電動弁
26aに接続し、供給管部27bは電磁弁28
a,28b,28cを介して空調器25a,25
b,25cに接続するとともに電磁弁40a,4
0bを介し再熱器38a,38bに接続し、かつ
電磁弁41を介し給湯器39に接続してある。4
8は供給管部27bから高温液戻し管31に油を
戻すための油戻し管である。第2図中、第1図と
同一符号は同一部材、同一部所を示し、第2図に
示す装置の作用、効果は前記実施例と同様であ
る。
What is shown in FIG. 2 is another embodiment of the present invention, in which the high temperature gas supply pipe 27 in the previous embodiment is connected to the discharge pipe section 27a and the supply pipe section 27 at a branch section 47 on the rooftop.
The discharge pipe part 27a is connected to the electric valve 26a for gas switching, and the supply pipe part 27b is connected to the electromagnetic valve 28.
Air conditioners 25a, 25 via a, 28b, 28c
b, 25c and solenoid valves 40a, 4
It is connected to the reheaters 38a and 38b via the valve 0b, and to the water heater 39 via the electromagnetic valve 41. 4
8 is an oil return pipe for returning oil from the supply pipe portion 27b to the high temperature liquid return pipe 31. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same members and parts, and the functions and effects of the apparatus shown in FIG. 2 are the same as those in the previous embodiment.

(発明の効果) 本発明は圧縮機を膨張弁、高圧受液器とともに
地階に設置し、低圧受液器を屋上に設置し、さら
に高温ガス供給管、液管、高温液戻し管、低温液
供給管および低温ガス戻し管をそれぞれ年間を通
じて専用管としたため、各空調器へ冷媒を均等に
分配することができ、凝縮液の立ち上がりがな
く、圧縮機への油戻りを容易とするようにしたた
め、従来は適用が不可能であつた中、大規模ビル
デイングに直接空調式ヒートポンプ装置を適用す
ることができるようになつた。
(Effects of the invention) The present invention installs a compressor together with an expansion valve and a high-pressure liquid receiver in the basement, installs a low-pressure liquid receiver on the roof, and furthermore installs a high-temperature gas supply pipe, a liquid pipe, a high-temperature liquid return pipe, and a low-temperature liquid receiver. Because the supply pipe and low-temperature gas return pipe are dedicated to each pipe throughout the year, refrigerant can be distributed evenly to each air conditioner, there is no rise of condensate, and it is easy to return oil to the compressor. Although this was previously impossible, it has now become possible to apply direct air conditioning heat pump equipment to large-scale buildings.

従来、中、大規模ビルデイングで消費された全
空調動力の20〜40%にもおよぶ水および空気の搬
送動力を皆無とし、あるいは各階ユニツト方式を
採用する場合においても空気の搬送動力を僅少と
なし得、さらに水を介さないため冷凍機の蒸発温
度または凝縮温度を空調空間内の空気温度に接近
させることができ、これによる省エネルギー効果
は冷房で15〜20%程度、暖房で30〜40%程度見込
まれる。
This eliminates the water and air conveyance power, which traditionally accounts for 20 to 40% of the total air conditioning power consumed in medium to large-scale buildings, or minimizes the air conveyance power when adopting a unit system for each floor. Moreover, since no water is involved, the evaporation temperature or condensation temperature of the refrigerator can be brought close to the air temperature in the air-conditioned space, and the energy saving effect is approximately 15-20% for cooling and 30-40% for heating. expected.

また、従来の直接空調式ヒートポンプ装置では
不可能であつた熱回収運転が各端末の電磁弁操作
のみで容易に可能となつたため、ビルデイング全
体の熱エネルギーバランスをフロン冷媒を介して
簡単に行い、過不足分は空気熱交換器を通じて大
気に放熱または大気から吸熱するため、エネルギ
ーの二重投入がなく、最少のエネルギーで空調を
行うことができる。
In addition, heat recovery operation, which was impossible with conventional direct air conditioning heat pump equipment, is now possible simply by operating the solenoid valves at each terminal, so the thermal energy balance of the entire building can be easily balanced using fluorocarbon refrigerant. Heat is radiated to or absorbed from the atmosphere through an air heat exchanger to compensate for excess or deficiency, so there is no double input of energy and air conditioning can be performed with the minimum amount of energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の実施例を示す系統図、第
2図は本発明装置の別の実施例を示す系統図、第
3図は直接空調式ヒートポンプ装置の従来例を示
す系統図である。 19……圧縮機、21……高圧受液器、22…
…膨張弁、23……空気熱交換器、24……低圧
受液器、25a,25b,25c……空調器、2
6a,26b……ガス切換え用電動弁、27……
高温ガス供給管、29……液管、30a,30b
……液切換え用電動弁、31……高温液戻し管、
33……低温液供給管、36……低温ガス戻し
管。
Fig. 1 is a system diagram showing an embodiment of the device of the present invention, Fig. 2 is a system diagram showing another embodiment of the device of the present invention, and Fig. 3 is a system diagram showing a conventional example of a direct air conditioning heat pump device. . 19... Compressor, 21... High pressure liquid receiver, 22...
...Expansion valve, 23...Air heat exchanger, 24...Low pressure receiver, 25a, 25b, 25c...Air conditioner, 2
6a, 26b...Electric valve for gas switching, 27...
High temperature gas supply pipe, 29...liquid pipe, 30a, 30b
...Electric valve for liquid switching, 31...High temperature liquid return pipe,
33...Low temperature liquid supply pipe, 36...Low temperature gas return pipe.

Claims (1)

【特許請求の範囲】 1 平面的に単一もしくは複数の空調器を備え立
体的に分散した多数の空調器にフロン系冷媒を直
接通じて冷暖房を行う直接空調式ヒートポンプ装
置において、最高所位置にある空調器より高所に
低圧受液器を設け、空調されるビルデイングの低
所に高圧受液器、圧縮機および膨張弁を設け、さ
らに前記圧縮機と空気熱交換器をガス切換え用電
動弁を介し高温ガス供給管で接続し、この高温ガ
ス供給管を各空調器のそれぞれと接続し、前記高
圧受液器と前記低圧受液器とを前記膨張弁を介し
液管で接続し、前記高圧受液器と前記空気熱交換
器を液切換え用電動弁を介し高温液戻し管で接続
し、この高温液戻し管を各空調器のそれぞれと接
続し、前記低圧受液器の液取出口と各空調器とを
低温液供給管で接続し、前記低圧受液器のガス取
出口と前記圧縮機および各空調器のそれぞれを低
温ガス戻し管で接続してなることを特徴とする直
接空調式ヒートポンプ装置。 2 前記高温ガス供給管を吐出管部と供給管部に
より形成してなる特許請求範囲第1項記載の直接
空調式ヒートポンプ装置。
[Claims] 1. In a direct air conditioning heat pump device that has a single or multiple air conditioners on a plane and performs heating and cooling by directly passing a fluorocarbon refrigerant to a large number of air conditioners distributed three-dimensionally, A low-pressure liquid receiver is installed at a higher place than a certain air conditioner, a high-pressure liquid receiver, a compressor, and an expansion valve are installed at a lower place in the building to be air-conditioned, and the compressor and air heat exchanger are connected to an electric valve for gas switching. The high-pressure liquid receiver and the low-pressure liquid receiver are connected via a liquid pipe through the expansion valve, and the high-pressure liquid receiver and the low-pressure liquid receiver are connected with a liquid pipe through the expansion valve. The high-pressure liquid receiver and the air heat exchanger are connected by a high-temperature liquid return pipe via an electric valve for liquid switching, and the high-temperature liquid return pipe is connected to each air conditioner, and the liquid outlet of the low-pressure liquid receiver is connected to the air heat exchanger. and each air conditioner are connected by a low-temperature liquid supply pipe, and the gas outlet of the low-pressure liquid receiver is connected to the compressor and each air conditioner by a low-temperature gas return pipe. type heat pump device. 2. The direct air conditioning heat pump device according to claim 1, wherein the high temperature gas supply pipe is formed by a discharge pipe section and a supply pipe section.
JP7058586A 1986-03-28 1986-03-28 CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI Expired - Lifetime JPH0235213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058586A JPH0235213B2 (en) 1986-03-28 1986-03-28 CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058586A JPH0235213B2 (en) 1986-03-28 1986-03-28 CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS62225833A JPS62225833A (en) 1987-10-03
JPH0235213B2 true JPH0235213B2 (en) 1990-08-09

Family

ID=13435779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058586A Expired - Lifetime JPH0235213B2 (en) 1986-03-28 1986-03-28 CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0235213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233923A (en) * 1989-03-06 1990-09-17 Mitsui Ginkou:Kk Central direct expansion air conditioning device
JPH086208Y2 (en) * 1990-08-30 1996-02-21 東京瓦斯株式会社 Direct air conditioning heat pump device
JP2016114308A (en) * 2014-12-16 2016-06-23 東芝キヤリア株式会社 Intermediate pressure receiver and refrigeration cycle device

Also Published As

Publication number Publication date
JPS62225833A (en) 1987-10-03

Similar Documents

Publication Publication Date Title
KR100463548B1 (en) Air conditioner
CN101349456B (en) Air conditioner
US9920963B1 (en) System for conditioning air with temperature and humidity control and heat utilization
CN109163471B (en) Energy-saving comfortable type split heat pump air conditioning system and control method thereof
KR101706865B1 (en) Air conditioning system
CN112460696B (en) Temperature and humidity independent control air conditioning system
JP3259273B2 (en) Air conditioner
CN108106045A (en) A kind of air-conditioning refrigerator combined system of central refrigerating split cooling
JP4647399B2 (en) Ventilation air conditioner
KR100830663B1 (en) Air conditioning device for highstories of a building
JPH04332350A (en) Air conditioner and its operating method
KR101844581B1 (en) Heat source integrated air conditioner
JPH0235213B2 (en) CHOKUSETSUKUCHOSHIKIHIITOHONPUSOCHI
JP2022052743A (en) Multi-air conditioner for heating, cooling and ventilation
JP3481818B2 (en) Absorption cooling and heating system and cooling and heating system
KR20200135089A (en) Air conditioning system
KR100215038B1 (en) Indoor device connection structure of multi-airconditioner
CN214370578U (en) Multi-split air conditioner
CN214249790U (en) Multi-split air conditioner
CN214249789U (en) Multi-split air conditioner
CN213931199U (en) Outdoor heating assembly and multi-split air conditioning system
CN214249792U (en) Multi-split air conditioner
JPH0794936B2 (en) Air conditioner
JPH0620053Y2 (en) Heat pump air conditioner
JPH0127020Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees