JP3670824B2 - Fluidized bed height control method for pressurized fluidized bed boiler - Google Patents

Fluidized bed height control method for pressurized fluidized bed boiler Download PDF

Info

Publication number
JP3670824B2
JP3670824B2 JP33364897A JP33364897A JP3670824B2 JP 3670824 B2 JP3670824 B2 JP 3670824B2 JP 33364897 A JP33364897 A JP 33364897A JP 33364897 A JP33364897 A JP 33364897A JP 3670824 B2 JP3670824 B2 JP 3670824B2
Authority
JP
Japan
Prior art keywords
fluidized
storage container
fluidized bed
height control
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33364897A
Other languages
Japanese (ja)
Other versions
JPH11148609A (en
Inventor
幸治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33364897A priority Critical patent/JP3670824B2/en
Publication of JPH11148609A publication Critical patent/JPH11148609A/en
Application granted granted Critical
Publication of JP3670824B2 publication Critical patent/JP3670824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧流動床ボイラの流動床層高制御方法に係り、特に複数の流動材貯蔵容器を具えてなる加圧流動床ボイラの流動床層高制御方法に関する。
【0002】
【従来の技術】
加圧流動床ボイラは一般に加圧流動床ボイラの火炉の容積に比べ、流動材貯蔵容器の容積は小さいため、複数の流動材貯蔵容器を設けている。
かかる加圧流動床ボイラの流動床層高制御系統の概念図を図3に示す。また、従来方式の層高制御設定演算回路を図2に示す。
【0003】
図3に2つの流動材貯蔵容器を設けている本発明の実施形態たる加圧流動床ボイラの構成を示すが、その公知部分について説明するに、図中50は火炉で、その左右両側に貯蔵容器42A、42Bが配設されている。そして両者間に、前記貯蔵容器42A、42B底部と火炉50内の流動床43底部間を連通し、流動材投入用Lバルブ44A、44Bの開閉制御により間欠的に流動材41A、41Bが流動床43内に導入される導入通路55、56と、前記貯蔵容器42A、42B上部と火炉50内の流動床43間を連通し、エジェクタ40A、40Bの吸引制御により流動材が流動床43内より還流される排出通路57、58と、火炉50頂部に開口するエジェクタ出口通路61、62と、前記エジェクタ40A、40B側部より貯蔵容器42A、42B頂部間を連通する負圧通路63、64よりなる。
そして前記流動材投入用Lバルブ44A、44BはLバルブ駆動弁51、52により間欠的に開閉制御され、前記エジェクタ40A、40Bに導入される空気は、エジェクタ流量調節弁53、54の開閉により流量制御され、流動材吸引流量を調節している。
【0004】
次にかかる装置における、流動床層高Hの制御動作は、流動材貯蔵容器42A、42Bと火炉50の間の導入通路55、56と排出通路57、58間で流動材を還流させることにより行われるが、先ず層高上昇する場合は、流動材投入用Lバルブ44A、44Bの駆動弁51、52を間欠的に開/閉動作することでA系及びB系の流動材貯蔵容器42A、42Bより導入通路55、56を介して火炉50へ流動材41A、41Bを移送し、一方層高下降する場合は、流動材吸引用エジェクタ流量調節弁53、54を開とし、エジェクタ40A、40Bによる吸引負圧効果により貯蔵容器42A、42B内を減圧することで火炉50より排出通路57、58を介して貯蔵容器42A、42B内へ流動材を吸引することが出来る。
【0005】
図2はかかる層高制御動作を行うための演算回路を示し、かかる回路において貯蔵容器42A側(A系)と貯蔵容器42B側(B系)夫々に、流動材導入間隔設定の為のLバルブ駆動弁開時間設定回路A1、B1とLバルブ駆動弁閉時間設定回路A2、B2及び前記流動材吸引の為のエジェクタ流量設定回路A3、B3を設ける。
そして夫々の設定回路は同一の回路構成を有し、例えばLバルブ駆動弁開時間設定回路A1について説明するに、ボイラ入力指令値1を入力とする関数発生器4からLバルブ駆動弁開時間基準設定信号4aが第1の乗算器7に出力される。また、出力変化率2を入力とする関数発生器5から出力変化率による開時間補正信号5aが出力され、前記基準設定信号4aと乗算器7にて乗算され、第1の補正基準設定信号7aを第2の乗算器8に出力する。
【0006】
次に層高制御偏差3を入力とする関数発生器6から層高制御偏差による開時間補正信号6aが出力され、該補正信号6aを前記第1の補正基準設定信号7aと第2の乗算器8にて乗算され、この第2の乗算器8より出力される第2の補正基準設定信号9’をLバルブ駆動弁開時間設定信号とする。
尚、他の層高制御設定信号であるLバルブ駆動弁閉時間設定信号及びエジェクタ流量設定信号についても同様に、ボイラ入力指令値による基準設定に出力変化率、層高制御偏差による補正係数を掛けることで設定される。
そして前記各層高制御設定信号の作用として、Lバルブ駆動弁開時間設定時間を増とし、閉時間設定時間を減とすると、流動材投入速度は増加し、一方エジェクタ流量設定時間を増とすると、流動材吸引速度は増加することとなる。
【0007】
【発明が解決しようとする課題】
かかる従来技術はボイラ入力指令、出力変化率及び層高制御偏差の3つの入力信号によって層高制御を行なうものであるために、図3で左右夫々の貯蔵容器42A、42BのLバルブ駆動弁51、52による流動材投入能力に器差がある場合、またエジェクタ流量調節弁53、54による流動材吸引能力に器差がある場合に、各流動材貯蔵容器42A、42B(図3の例ではA系とB系の2容器)内の流動材量が不均等となることとなる。
例えば、A系貯蔵容器42Aの方が流動材投入能力が劣り、流動材吸引能力が勝る場合は、Lバルブ駆動弁51、52及びエジェクタ流量調節弁53、54の動作の度に、A系貯蔵容器42A内流動材量がB系貯蔵容器42B内流動材量に比べて多くなる方向に差が拡大することになり、結果として、A系貯蔵容器42A内の流動材量が過多となった場合に、火炉50の流動床43の層高下降時にエジェクタ流量調節弁53を開作動させてもA系貯蔵容器42Aに流動材41Aを吸引することが不可能になり、またB系貯蔵容器42B内の流動材量が過少となった場合に層高上昇時にLバルブ駆動弁52を開動作させてもB系貯蔵容器42Bより流動材41Bを投入不可能の状態に至る問題点があった。
【0008】
本発明はかかる技術的課題に鑑み、貯蔵容器の流動材投入能力若しくは流動材吸引能力に器差がある場合においても、貯蔵容器内の流動材量が過多や過小になることなく、それぞれの貯蔵容器よりの流動材の吸引(還流)若しくは投入を円滑に行ない得る加圧流動床ボイラの流動床層高制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、複数の流動材貯蔵容器を具えてなる加圧流動床ボイラの流動床層高制御方法において、
前記夫々の流動材貯蔵容器よりボイラの流動床側への流動材投入量若しくは前記流動床より前記夫々の流動材貯蔵容器への流動材還流量を設定する層高制御信号として、前記各貯蔵容器内の流動材重量を計測し、該貯蔵容器間の流動材重量差に基づいて一側貯蔵容器内流動材量が他側貯蔵容器内流動材量に近付く方向に生成した補正信号を乗じて生成した設定信号を用いて、両貯蔵容器内の流動材量が最終的に一致する方向に層高制御することを特徴とする。
【0010】
かかる発明によれば、前記複数の貯蔵容器の各系統の流動材投入能力及び吸引(還流)能力に器差があった場合でも、各貯蔵容器間の流動材重量を均等化することが出来る。
即ち、より具体的には、加圧流動床ボイラの流動床層高制御方法において、ボイラ入力指令値、出力変化率及び層高制御偏差により決定される各層高制御設定信号(Lバルブ駆動弁開/閉時間設定、エジェクタ流量設定の各信号)について、各貯蔵容器内間の流動材重量差を求める手段を設け、該重量差により、前記の各層高制御設定を補正することを特徴ともので、これにより複数の貯蔵容器について、各系統の流動材投入能力及び吸引能力に器差があった場合でも、貯蔵容器間の流動材重量を均等化することを可能とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0012】
図3に2つの流動材貯蔵容器を設けている本発明の実施形態たる加圧流動床ボイラの構成を示す。
前記したように、図中50は火炉で、その左右両側に貯蔵容器42A、42Bが配設されている。そして両者間に、前記貯蔵容器42A、42B底部と火炉50内の流動床43底部間を連通し、流動材投入用Lバルブ44A、44Bの開閉制御により間欠的に流動材41A、41Bが流動床43内に導入される導入通路55、56と、前記貯蔵容器42A、42B上部と火炉50内の流動床43間を連通し、エジェクタ40A、40Bの吸引制御により流動材が流動床43内より還流される排出通路57、58と、火炉50頂部に開口するエジェクタ出口通路61、62と、前記エジェクタ40A、40B側部より貯蔵容器42A、42B頂部間を連通する負圧通路63、64よりなる。
【0013】
そして前記流動材投入用Lバルブ44A、44BはLバルブ駆動弁51、52により間欠的に開閉制御され、前記エジェクタ40A、40Bに導入される空気は、エジェクタ流量調節弁53、54の開閉により流量制御され、流動材吸引流量を調節している。
【0014】
かかる構成は公知部分であることは前記した通りであり、本発明は特に前記夫々の貯蔵容器42A、42Bに、該容器内の流動材の重量を測定する測定器61、62を設け、該測定器より重量発信器59、60を介して夫々の容器42A、42B内の重量を図1に示す演算回路内に送信するように構成している。
【0015】
図1はかかる層高制御動作を行うための本発明の実施形態たる演算回路を示し、かかる回路において貯蔵容器42A側(A系)と貯蔵容器42B側(B系)夫々に、流動材41A、41B導入間隔設定の為のLバルブ駆動弁開時間設定回路A1、B1とLバルブ駆動弁閉時間設定回路A2、B2及び前記流動材吸引の為のエジェクタ流量設定回路A3、B3を設ける点は図2に示す従来の演算回路と同様であるが、特に本実施形態においては図2に示す従来方式に対して、各流動材貯蔵容器42A、42B内の流動材重量の差により層高制御設定を補正する回路20を付加したものである。以下に詳しく説明する。
前記夫々の設定回路A1〜B3は重両偏差が正負反転する他は同一の回路構成を有し、例えばLバルブ駆動弁開時間設定回路A1について説明するに、ボイラ入力指令値1を入力とする関数発生器4からLバルブ駆動弁開時間基準設定信号4aが第1の乗算器7に出力される。また、出力変化率2を入力とする関数発生器5から出力変化率による開時間補正信号5aが出力され、前記基準設定信号4aと乗算器7にて乗算され、第1の補正基準設定信号7aを第2の乗算器8に出力する。
次に層高制御偏差3を入力とする関数発生器6から層高制御偏差による開時間補正信号6aが出力され、該補正信号6aを前記第1の補正基準設定信号7aと第2の乗算器8にて乗算され、この第2の乗算器8より出力される第2の補正基準設定信号9’を第3の乗算器15に出力する。
【0016】
そして、本発明の特徴部分は、図1に示す符号20で示す系統にあり、A系流動材貯蔵容器42A内流動材重量計測値16とB系流動材貯蔵容器42B内流動材重量計測値17は減算器18で、A系重量計測値16を正として、またB系重量計測値17を負として減算してA系とB系の貯蔵容器内流動材重量の差を関数発生器19に入力する。
関数発生器19では前記(A−B)の重量差に基づいてA系流動材投入用Lバルブ駆動弁開時間設定補正信号19aを第3の乗算器15に出力し、該乗算器15で前記補正信号19aを前記第2の補正基準設定信号9’に乗算して、本発明におけるA系流動材投入用Lバルブ駆動弁開時間設定信号9を生成する。
【0017】
この結果前記重量差が正(プラス)の場合、言換えればA系貯蔵容器42Aの重量がB系貯蔵容器42Bの重量より多い場合は、A系流動材投入用Lバルブ駆動弁開時間設定信号9は前記第2の補正基準設定信号より開時間が増える方向に働き、又前記重量差が負(マイナス)の場合、言換えればA系貯蔵容器42Aの重量がB系貯蔵容器42Bの重量より少ない場合は、A系流動材投入用Lバルブ駆動弁開時間設定信号9は前記第2の補正基準設定信号9’より開時間が減少する方向に働き、いずれの場合も結果としてA系貯蔵容器42A内流動材量がB系貯蔵容器42B内流動材量に近付く方向に差が縮まることになり、両貯蔵容器42A、42B内の流動材量が最終的に一致する方向に働く。
【0018】
次にA系貯蔵容器Lバルブ駆動弁閉時間設定回路A2においては、前記とは逆にA系重量計測値16を負として、またB系重量計測値17を正として減算器18にて減算してその重量差(−A+B)に基づいて得られる関数発生器19の補正信号19aは、A系貯蔵容器42Aの重量が多い(少ない)場合は前記第2の補正基準設定値9’より減少する(増える)方向に働くように設定される。
より具体的には、A系貯蔵容器42Aの重量がB系貯蔵容器42Bの重量より多い場合は、A系流動材投入用Lバルブ駆動弁閉時間設定信号10は前記第2の補正基準設定信号10’より閉時間が減少する方向に働き、又A系貯蔵容器42Aの重量がB系貯蔵容器42Bの重量より少ない場合は、A系流動材投入用Lバルブ駆動弁閉時間設定信号10は前記第2の補正基準設定信号10’より閉時間が増える方向に働き、いずれの場合も結果としてA系貯蔵容器42A内流動材量がB系貯蔵容器42B内流動材量に近付く方向に差が縮まることになり、両貯蔵容器42A、42B内の流動材量が最終的に一致する方向に働く。
【0019】
またA系貯蔵容器42Aのエジェクタ流量設定回路A3もA系貯蔵容器Lバルブ駆動弁閉時間設定回路A2と同様に、A系重量計測値16を負として、又B系重量計測値17を正として減算器18にて減算してその重量差(−A+B)に基づいて得られる関数発生器19の補正信号19aをA系貯蔵容器42Aの重量が多い(少ない)場合は、前記第2の補正基準設定値13’より減少する(増える)方向に働くように設定される。
【0020】
B系貯蔵容器42BのLバルブ駆動弁開時間設定回路B1は前記A系(A1)とは逆に、A系重量計測値16を負として、またB系重量計測値17を正として減算器18にて減算し、その重量差(−A+B)に基づいて得られる。
またB系貯蔵容器Lバルブ駆動弁閉時間設定回路B2とエジェクタ流量設定回路B3も前記A系(A2、A3)とは逆にA系重量計測値16を正として、又B系重量計測値を負として減算器にて減算しその重量差(A−B)に基づいて得られるように設定する。
【0021】
従って夫々の層高制御設定演算回路である、A系流動材投入用Lバルブ駆動弁開時間設定回路A1、A系流動材投入用Lバルブ駆動弁閉時間設定回路A2、B系流動材投入用Lバルブ駆動弁開時間設定回路B1、B系流動材投入用Lバルブ駆動弁閉時間設定回路B2、A系流動材吸引用エジェクタ流量設定回路A3、B系流動材吸引用エジェクタ流量設定回路B3のいずれも、A系貯蔵容器42Aの重量とB系貯蔵容器42Aの重量の差((A−B)又は(−A+B))に基づく補正信号19aを生成し、いずれの場合も結果として一側貯蔵容器内流動材量が他側貯蔵容器内流動材量に近付く方向に生成した補正信号を乗じて設定信号を生成する為に、両貯蔵容器内の流動材量が最終的に一致する方向に働く。
【0022】
即ち本発明は貯蔵容器流動材重量差((A−B)又は(−A+B))からの補正信号を乗算することにより、Lバルブ駆動弁による流動材投入能力の器差及びエジェクタ流量調節弁による流動材吸引能力の器差に起因してA系とB系の貯蔵容器42A、42B内流動材重量に差が発生した場合でも、各器差を修正する方向に層高制御設定を補正する(A系流動材重量>B系流動材重量の場合は、A系Lバルブ駆動弁開時間を延長、閉時間を短縮し、A系エジェクタ流量設定を減少させる。一方B系Lバルブ駆動弁開時間を短縮、閉時間を延長し、B系エジェクタ流量設定を増加させる)ことにより、貯蔵容器内流動材重量差を減少させることが出来ることから、従来方式の問題点であった流動材投入能力及び流動材吸引能力の器差による貯蔵容器内流動材重量差拡大の問題を解決できる。
【0023】
【発明の効果】
以上記載のごとく本発明は、貯蔵容器の流動材投入能力若しくは流動材吸引能力に器差がある場合においても、貯蔵容器内の流動材量が過多や過小になることなく、夫々の貯蔵容器よりの流動材の吸引(還流)若しくは投入を円滑に行ない得る。
【図面の簡単な説明】
【図1】本発明の実施例である層高制御設定演算回路を示す図である。
【図2】従来方式の層高制御設定演算回路を示す図である。
【図3】加圧流動床ボイラの流動床層高制御系統の概念図である。
【符号の説明】
1 ボイラ入力指令値
2 出力変化率
3 層高制御偏差
9 A系Lバルブ駆動弁開時間設定
10 A系Lバルブ駆動弁閉時間設定
11 B系Lバルブ駆動弁開時間設定
12 B系Lバルブ駆動弁閉時間設定
13 A系エジェクタ流量設定
14 B系エジェクタ流量設定
16 A系流動材貯蔵容器42A内流動材重量計測値
17 B系流動材貯蔵容器42B内流動材重量計測値
50 火炉
42A、42B 流動材貯蔵容器
41A、41B 流動材
44A、44B 流動材投入用Lバルブ
51、52 Lバルブ駆動弁
53、54 エジェクタ流量調節弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluidized bed bed height control method for a pressurized fluidized bed boiler, and more particularly to a fluidized bed bed height control method for a pressurized fluidized bed boiler comprising a plurality of fluidized material storage containers.
[0002]
[Prior art]
A pressurized fluidized bed boiler is generally provided with a plurality of fluidized material storage containers because the volume of the fluidized material storage container is smaller than the volume of the furnace of the pressurized fluidized bed boiler.
A conceptual diagram of the fluidized bed bed height control system of such a pressurized fluidized bed boiler is shown in FIG. A conventional layer height control setting arithmetic circuit is shown in FIG.
[0003]
FIG. 3 shows the configuration of a pressurized fluidized bed boiler according to an embodiment of the present invention in which two fluidized material storage containers are provided. To explain the known part, 50 is a furnace and is stored on both the left and right sides. Containers 42A and 42B are disposed. Between the two, the bottoms of the storage containers 42A and 42B and the bottom of the fluidized bed 43 in the furnace 50 are communicated, and the fluidized materials 41A and 41B are intermittently fluidized by the opening and closing control of the fluidized material charging L valves 44A and 44B. The passages 55 and 56 introduced into the gas passage 43 are communicated with the upper portions of the storage containers 42A and 42B and the fluidized bed 43 in the furnace 50, and the fluidized material is returned from the fluidized bed 43 by suction control of the ejectors 40A and 40B. The discharge passages 57 and 58, the ejector outlet passages 61 and 62 opened at the top of the furnace 50, and the negative pressure passages 63 and 64 communicating between the tops of the storage containers 42A and 42B from the side portions of the ejectors 40A and 40B.
The fluid supply L valves 44A and 44B are intermittently controlled to open and close by L valve drive valves 51 and 52, and the air introduced into the ejectors 40A and 40B has a flow rate by opening and closing the ejector flow rate adjusting valves 53 and 54. It is controlled and the fluid flow rate is adjusted.
[0004]
Next, the control operation of the fluidized bed bed height H in such an apparatus is performed by returning the fluidized material between the introducing passages 55 and 56 and the discharging passages 57 and 58 between the fluidized material storage containers 42A and 42B and the furnace 50. First, when the bed height rises, the fluidic material storage containers 42A, 42B of the A system and the B system are opened and closed by intermittently opening / closing the drive valves 51, 52 of the fluidic material charging L valves 44A, 44B. When the fluidized materials 41A and 41B are transferred to the furnace 50 through the introduction passages 55 and 56 and the height of the bed is lowered, the fluid material suction ejector flow rate adjusting valves 53 and 54 are opened, and suction by the ejectors 40A and 40B is performed. By reducing the pressure in the storage containers 42A and 42B by the negative pressure effect, the fluid material can be sucked into the storage containers 42A and 42B from the furnace 50 through the discharge passages 57 and 58.
[0005]
FIG. 2 shows an arithmetic circuit for performing such a layer height control operation. In this circuit, an L valve for setting a fluid introduction interval is provided on each of the storage container 42A side (A system) and the storage container 42B side (B system). Drive valve opening time setting circuits A1 and B1, L valve driving valve closing time setting circuits A2 and B2, and ejector flow rate setting circuits A3 and B3 for sucking the fluidized material are provided.
Each setting circuit has the same circuit configuration. For example, the L valve driving valve opening time setting circuit A1 will be described. From the function generator 4 having the boiler input command value 1 as an input, the L valve driving valve opening time reference is set. The setting signal 4 a is output to the first multiplier 7. Also, an open time correction signal 5a based on the output change rate is output from the function generator 5 having the output change rate 2 as an input, multiplied by the reference setting signal 4a and the multiplier 7, and the first correction reference setting signal 7a. Is output to the second multiplier 8.
[0006]
Next, an open time correction signal 6a based on the layer height control deviation is output from the function generator 6 having the layer height control deviation 3 as an input, and the correction signal 6a is used as the first correction reference setting signal 7a and the second multiplier. The second correction reference setting signal 9 ′ multiplied by 8 and output from the second multiplier 8 is used as an L valve drive valve opening time setting signal.
Similarly, for the other valve height control setting signals such as the L valve drive valve closing time setting signal and the ejector flow rate setting signal, the reference setting based on the boiler input command value is multiplied by the output change rate and the correction coefficient based on the layer height control deviation. Is set.
Then, as an action of each layer height control setting signal, when the L valve drive valve opening time setting time is increased and the closing time setting time is decreased, the fluidized material charging speed is increased, while when the ejector flow rate setting time is increased, The fluid material suction speed will increase.
[0007]
[Problems to be solved by the invention]
Since the conventional technique performs the layer height control by three input signals of the boiler input command, the output change rate, and the layer height control deviation, the L valve drive valves 51 of the left and right storage containers 42A and 42B in FIG. , 52 when there is a difference in fluid material charging capacity, and when there is a difference in fluid material suction capacity due to the ejector flow control valves 53, 54, each fluid material storage container 42A, 42B (A in the example of FIG. The amount of fluidized material in the two containers of the system and system B will be uneven.
For example, in the case where the A-system storage container 42A is inferior in the fluid material charging capacity and the fluid material suction capacity is superior, the A-system storage is performed every time the L valve drive valves 51 and 52 and the ejector flow rate control valves 53 and 54 are operated. When the amount of fluidized material in the container 42A is larger than the amount of fluidized material in the B-type storage container 42B, the difference increases, and as a result, the amount of fluidized material in the A-type storage container 42A becomes excessive. Furthermore, even if the ejector flow rate adjustment valve 53 is opened when the fluidized bed 43 of the furnace 50 is lowered, it becomes impossible to suck the fluid 41A into the A-system storage container 42A, and in the B-system storage container 42B. When the amount of the fluidized material is too small, there is a problem that even if the L valve drive valve 52 is opened when the bed height rises, the fluidized material 41B cannot be introduced from the B-system storage container 42B.
[0008]
In view of such technical problems, the present invention provides a storage container in which the amount of fluidizing material in the storage container does not become excessive or small even when there is a difference in the fluidizing material charging capacity or fluidizing material suction capacity of the storage container. It is an object of the present invention to provide a fluidized bed height control method for a pressurized fluidized bed boiler capable of smoothly sucking (refluxing) or charging a fluidized material from a container.
[0009]
[Means for Solving the Problems]
The present invention is a fluidized bed bed height control method of a pressurized fluidized bed boiler comprising a plurality of fluidized material storage containers,
Each storage container as a layer height control signal for setting the fluidized material input amount from the respective fluidized material storage container to the fluidized bed side of the boiler or the fluidized material return amount from the fluidized bed to the respective fluidized material storage container Generated by measuring the weight of the fluid material inside and multiplying by the correction signal generated in the direction in which the fluid material amount in one storage container approaches the fluid material amount in the other storage container based on the fluid material weight difference between the storage containers Using the set signal, the bed height is controlled in the direction in which the amount of fluid material in both storage containers finally matches .
[0010]
According to this invention, even when there are instrumental differences in the flow material charging capacity and suction (reflux) capacity of each system of the plurality of storage containers, the weight of the flow material between the storage containers can be equalized.
More specifically, in the fluidized bed bed height control method for a pressurized fluidized bed boiler, each bed height control setting signal (L valve drive valve opening) determined by the boiler input command value, the output change rate, and the bed height control deviation. For each signal of the closing time setting and ejector flow rate setting), there is provided a means for obtaining a fluid material weight difference between the storage containers, and the respective layer height control settings are corrected by the weight difference. This makes it possible to equalize the weight of the fluid material between the storage containers even when there are differences in the fluid material charging capacity and suction capacity of each system for a plurality of storage containers.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
[0012]
FIG. 3 shows a configuration of a pressurized fluidized bed boiler according to an embodiment of the present invention in which two fluidized material storage containers are provided.
As described above, reference numeral 50 in the figure denotes a furnace, and storage containers 42A and 42B are arranged on both the left and right sides thereof. Between the two, the bottoms of the storage containers 42A and 42B and the bottom of the fluidized bed 43 in the furnace 50 are communicated, and the fluidized materials 41A and 41B are intermittently fluidized by the opening and closing control of the fluidized material charging L valves 44A and 44B. The passages 55 and 56 introduced into the gas passage 43 are communicated with the upper portions of the storage containers 42A and 42B and the fluidized bed 43 in the furnace 50, and the fluidized material is returned from the fluidized bed 43 by suction control of the ejectors 40A and 40B. The discharge passages 57 and 58, the ejector outlet passages 61 and 62 opened at the top of the furnace 50, and the negative pressure passages 63 and 64 communicating between the tops of the storage containers 42A and 42B from the side portions of the ejectors 40A and 40B.
[0013]
The fluid supply L valves 44A and 44B are intermittently controlled to open and close by L valve drive valves 51 and 52, and the air introduced into the ejectors 40A and 40B has a flow rate by opening and closing the ejector flow rate adjusting valves 53 and 54. It is controlled and the fluid flow rate is adjusted.
[0014]
As described above, this configuration is a known part, and in the present invention, the storage containers 42A and 42B are particularly provided with measuring devices 61 and 62 for measuring the weight of the fluidized material in the containers, and the measurement is performed. The weights in the respective containers 42A and 42B are transmitted from the device through the weight transmitters 59 and 60 to the arithmetic circuit shown in FIG.
[0015]
FIG. 1 shows an arithmetic circuit according to an embodiment of the present invention for performing such a layer height control operation. In such a circuit, a fluidized material 41A, a storage container 42A side (A system) and a storage container 42B side (B system) are provided. 41B shows that an L valve driving valve opening time setting circuit A1, B1 and an L valve driving valve closing time setting circuit A2, B2 for setting the introduction interval of 41B and an ejector flow rate setting circuit A3, B3 for sucking the fluidized material are provided. 2 is the same as the conventional arithmetic circuit shown in FIG. 2, but in this embodiment, in particular, the layer height control setting is set according to the difference in the weight of the fluid material in the fluid material storage containers 42A and 42B with respect to the conventional method shown in FIG. A circuit 20 for correction is added. This will be described in detail below.
Each of the setting circuits A1 to B3 has the same circuit configuration except that the double deviation is reversed, and for example, the boiler input command value 1 is input to explain the L valve drive valve opening time setting circuit A1. The function generator 4 outputs an L valve drive valve opening time reference setting signal 4 a to the first multiplier 7. Also, an open time correction signal 5a based on the output change rate is output from the function generator 5 having the output change rate 2 as an input, multiplied by the reference setting signal 4a and the multiplier 7, and the first correction reference setting signal 7a. Is output to the second multiplier 8.
Next, an open time correction signal 6a based on the layer height control deviation is output from the function generator 6 having the layer height control deviation 3 as an input, and the correction signal 6a is used as the first correction reference setting signal 7a and the second multiplier. The second correction reference setting signal 9 ′ multiplied by 8 and output from the second multiplier 8 is output to the third multiplier 15.
[0016]
And the characteristic part of this invention exists in the system | symbol shown by the code | symbol 20 shown in FIG. 1, The fluidized material weight measurement value 16 in A type | system | group fluidized material storage container 42A, and the fluidized material weight measured value 17 in B type | system | group fluidized material storage container 42B. Is a subtractor 18 that subtracts the A system weight measurement value 16 as positive and the B system weight measurement value 17 as negative, and inputs the difference between the fluid material weights in the A system and B system storage containers to the function generator 19. To do.
The function generator 19 outputs an A-system fluidized material L valve drive valve opening time setting correction signal 19a to the third multiplier 15 based on the weight difference (A−B). The correction signal 19 a is multiplied by the second correction reference setting signal 9 ′ to generate the A-system fluidized material L valve drive valve opening time setting signal 9 in the present invention.
[0017]
As a result, when the weight difference is positive (plus), in other words, when the weight of the A-system storage container 42A is larger than the weight of the B-system storage container 42B, the A-system fluidized material L valve drive valve opening time setting signal 9 works in the direction in which the opening time increases from the second correction reference setting signal, and when the weight difference is negative (in other words, the weight of the A system storage container 42A is greater than the weight of the B system storage container 42B). In the case where the amount is small, the L valve drive valve opening time setting signal 9 for introducing the A system fluidizing material works in a direction in which the opening time decreases compared to the second correction reference setting signal 9 '. The difference is reduced in the direction in which the amount of fluidized material in 42A approaches the amount of fluidized material in B-type storage container 42B, and the amount of fluidized material in both storage containers 42A, 42B finally works.
[0018]
Next, in the A system storage container L valve drive valve closing time setting circuit A2, contrary to the above, the A system weight measurement value 16 is made negative, and the B system weight measurement value 17 is made positive and subtracted by the subtracter 18. The correction signal 19a of the function generator 19 obtained based on the weight difference (−A + B) is smaller than the second correction reference set value 9 ′ when the weight of the A-system storage container 42A is large (small). It is set to work in the (increase) direction.
More specifically, when the weight of the A-system storage container 42A is larger than the weight of the B-system storage container 42B, the A-system fluidized material L valve drive valve closing time setting signal 10 is the second correction reference setting signal. When the weight of the A-system storage container 42A is smaller than the weight of the B-system storage container 42B, the A-system fluidized material L valve drive valve closing time setting signal 10 is It works in the direction in which the closing time increases from the second correction reference setting signal 10 ′, and in any case, the difference narrows in the direction in which the amount of fluid material in the A-system storage container 42A approaches the amount of fluid material in the B-system storage container 42B. As a result, the amount of fluidized material in both storage containers 42A and 42B finally works in the same direction.
[0019]
Also, the ejector flow rate setting circuit A3 of the A-system storage container 42A has a negative value of the A-system weight measurement value 16 and a positive value of the B-system weight measurement value 17 in the same manner as the A-system storage container L valve drive valve closing time setting circuit A2. When the weight of the A-system storage container 42A is large (small), the correction signal 19a of the function generator 19 obtained by subtracting by the subtractor 18 based on the weight difference (−A + B) is the second correction reference. It is set to work in the direction of decreasing (increasing) from the set value 13 ′.
[0020]
Contrary to the A system (A1), the L valve drive valve opening time setting circuit B1 of the B system storage container 42B has a negative value for the A system weight measurement value 16 and a subtraction device 18 with the B system weight measurement value 17 as positive. Is obtained based on the weight difference (−A + B).
In addition, the B system storage container L valve drive valve closing time setting circuit B2 and the ejector flow rate setting circuit B3 also have the A system weight measurement value 16 positive and the B system weight measurement value as opposed to the A system (A2, A3). It is set so as to be obtained based on the weight difference (A−B) after being subtracted by a subtracter as negative.
[0021]
Accordingly, each of the bed height control setting calculation circuits, that is, the A system fluidizing material L valve driving valve opening time setting circuit A1, the A system fluidizing material L valve driving valve closing time setting circuit A2, and the B system fluidizing material introduction L valve drive valve opening time setting circuit B1, B system fluid material charging L valve drive valve closing time setting circuit B2, A system fluid material suction ejector flow rate setting circuit A3, B system fluid material suction ejector flow rate setting circuit B3 In either case, the correction signal 19a is generated based on the difference between the weight of the A-system storage container 42A and the weight of the B-system storage container 42A ((A−B) or (−A + B)). In order to generate the setting signal by multiplying the correction signal generated in the direction in which the amount of fluid material in the container approaches the amount of fluid material in the other storage container, the amount of fluid material in both storage containers finally works in the same direction .
[0022]
That is, according to the present invention, by multiplying the correction signal from the storage container fluidized material weight difference ((A−B) or (−A + B)), the difference in fluid material charging capacity due to the L valve driving valve and the ejector flow rate regulating valve. Even when a difference occurs in the weight of the fluidized material in the A-system and B-system storage containers 42A and 42B due to the instrumental difference in the fluid material suction capacity, the bed height control setting is corrected in a direction to correct each instrumental difference ( When A-system fluid weight> B-system fluid weight, the A-system L valve drive valve open time is extended, the close time is shortened, and the A-system ejector flow rate setting is decreased, while the B-system L valve drive valve open time is reduced. The flow rate of the fluidized material in the storage container can be reduced by reducing the flow rate of the fluidized material in the storage container. Storage of fluidized material suction capacity due to instrumental error We can solve the problems of the vessel in the flow material weight difference expansion.
[0023]
【The invention's effect】
As described above, the present invention can be applied to each storage container without excessive or too small amount of fluid material in the storage container even when there is a difference in the fluid charging capacity or fluid material suction capacity of the storage container. The fluid material can be smoothly sucked (refluxed) or charged.
[Brief description of the drawings]
FIG. 1 is a diagram showing a layer height control setting arithmetic circuit according to an embodiment of the present invention.
FIG. 2 is a diagram showing a conventional layer height control setting arithmetic circuit;
FIG. 3 is a conceptual diagram of a fluidized bed bed height control system of a pressurized fluidized bed boiler.
[Explanation of symbols]
1 Boiler input command value 2 Output change rate 3 Layer height control deviation 9 A system L valve drive valve open time setting 10 A system L valve drive valve close time setting 11 B system L valve drive valve open time setting 12 B system L valve drive Valve closing time setting 13 System A ejector flow rate setting 14 System B ejector flow rate setting 16 Fluidized material weight measurement value 17 in System A fluid storage container 42A Fluidity material weight measurement value 50 in system B fluid storage container 42B 50 Furnace 42A, 42B Flow Material storage containers 41A, 41B Fluidic materials 44A, 44B Fluidic material charging L valves 51, 52 L valve drive valves 53, 54 Ejector flow rate adjustment valves

Claims (1)

複数の流動材貯蔵容器を具えてなる加圧流動床ボイラの流動床層高制御方法において、
前記夫々の流動材貯蔵容器よりボイラの流動床側への流動材投入量若しくは前記流動床より前記夫々の流動材貯蔵容器への流動材還流量を設定する層高制御信号として、前記各貯蔵容器内の流動材重量を計測し、該貯蔵容器間の流動材重量差に基づいて一側貯蔵容器内流動材量が他側貯蔵容器内流動材量に近付く方向に生成した補正信号を乗じて生成した設定信号を用いて、両貯蔵容器内の流動材量が最終的に一致する方向に層高制御することを特徴とする流動床層高制御方法。
In a fluidized bed height control method of a pressurized fluidized bed boiler comprising a plurality of fluidized material storage containers,
Each storage container as a layer height control signal for setting the fluidized material input amount from the respective fluidized material storage container to the fluidized bed side of the boiler or the fluidized material return amount from the fluidized bed to the respective fluidized material storage container Generated by measuring the weight of the fluid material inside and multiplying by the correction signal generated in the direction in which the fluid material amount in one storage container approaches the fluid material amount in the other storage container based on the fluid material weight difference between the storage containers A fluidized bed bed height control method, wherein the bed height is controlled in the direction in which the amount of fluidized material in both storage containers finally matches using the set signal .
JP33364897A 1997-11-18 1997-11-18 Fluidized bed height control method for pressurized fluidized bed boiler Expired - Fee Related JP3670824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33364897A JP3670824B2 (en) 1997-11-18 1997-11-18 Fluidized bed height control method for pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33364897A JP3670824B2 (en) 1997-11-18 1997-11-18 Fluidized bed height control method for pressurized fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH11148609A JPH11148609A (en) 1999-06-02
JP3670824B2 true JP3670824B2 (en) 2005-07-13

Family

ID=18268415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33364897A Expired - Fee Related JP3670824B2 (en) 1997-11-18 1997-11-18 Fluidized bed height control method for pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP3670824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948177B1 (en) * 2009-07-16 2011-08-05 Inst Francais Du Petrole CHEMICAL LOOP COMBUSTION PROCESS WITH INDEPENDENT CONTROL OF SOLIDS CIRCULATION

Also Published As

Publication number Publication date
JPH11148609A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US20070122291A1 (en) Liquid chemical supply system having a plurality of pressure detectors
WO1999063412A1 (en) Gas supply equipment with pressure type flow rate control device
JP3670824B2 (en) Fluidized bed height control method for pressurized fluidized bed boiler
KR100989220B1 (en) Vacuum processing apparatus, vacuum processing method and storage medium
CN105390412A (en) Pressure-reducing drying device, substrate processing device and pressure-reducing drying method
CN108304005A (en) Control valve device
JP2018021546A (en) Control over vacuum system with vacuum generating unit
CN110277333A (en) Substrate board treatment and substrate processing method using same
JP2018025186A (en) Controlling vacuum system comprising vacuum generator arrangement
CN101331596A (en) Gas introduction device, method of manufacturing the same, and processing device
KR101781331B1 (en) Load lock chamber, substrate processing system and method for venting
CN113325778A (en) Method for controlling elongation of piezoelectric ceramic
Bigras et al. Nonlinear observer for pneumatic system with non-negligible connection port restriction
JPH09101826A (en) Pressure proportional control valve and method for controlling pressure of the control valve
CN107560323A (en) Boiling method and fluid bed based on fluid bed
IL298433A (en) Method for operating two degasifiers fluidly connected in parallel
EP3996928A1 (en) A contactless liquid application apparatus and method
JP2001318720A (en) Temperature control method and device
JP6227078B2 (en) Pressure release device
JPH09100939A (en) Solenoid proportional valve control device
JP3283856B2 (en) Pressure control valve for vacuum
JPH0647092B2 (en) Drip prevention device
JP2005128816A (en) Fluid regulator
JP7462977B2 (en) Purge Control System
CN114261038B (en) Self-adaptive electric control vacuum chuck manipulator for label-removing waste plastic bottles and control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees