JP3670126B2 - Vibrating device for buildings against earthquakes - Google Patents

Vibrating device for buildings against earthquakes Download PDF

Info

Publication number
JP3670126B2
JP3670126B2 JP33005997A JP33005997A JP3670126B2 JP 3670126 B2 JP3670126 B2 JP 3670126B2 JP 33005997 A JP33005997 A JP 33005997A JP 33005997 A JP33005997 A JP 33005997A JP 3670126 B2 JP3670126 B2 JP 3670126B2
Authority
JP
Japan
Prior art keywords
vibration
building
building model
seismic isolation
support rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33005997A
Other languages
Japanese (ja)
Other versions
JPH11161148A (en
Inventor
一義 鯵本
宗男 小谷
真吾 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP33005997A priority Critical patent/JP3670126B2/en
Publication of JPH11161148A publication Critical patent/JPH11161148A/en
Application granted granted Critical
Publication of JP3670126B2 publication Critical patent/JP3670126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自分の建物や住宅を建築する住宅建築予定者や、建築学を学ぶ学生や、耐震建築物を研究する学者等が見ることにより、簡単にビルや住宅の耐震性能を体験することの出来る視的確認装置に関する。
【0002】
【従来の技術】
従来から、大型の加振機構の上に、建物を載置して、この中に人を配置して振動することにより、地震の震度を体験する装置等はあったのである。
しかし、免震構造でもなく、制震構造でもない、通常の構造の建物や住宅の地震による振動や、振動と逆に振り子を動かして積極的に振動を制止させようとする、制震構造の建物や建物自体を地震の揺れに対して逆に移動可能とした免震構造等について、視的確認する装置は無かったのである。
【0003】
【発明が解決しようとする課題】
本発明は、実際に振動を身体で体験するのではなくて、建物の高さによる、振動の周期の相違と制震、免震構造を用いた建物の動きを、模型の建物により、目で確認可能とする装置である。
【0004】
【課題を解決するための手段】
本発明が解決しようとする課題は、以上の如くであり、次に該課題を解決する為の手段を説明する。
振動しない部分である振動機構格納箱5の内部に振動機構を格納配置し、該振動機構により振動する振動台1を、前記振動機構格納箱5の上に振動可能に支持し、該振動台1の上には、加速度応答倍率を低くすることにより地震応答を低減する免震構造の建物模型Aと、振動エネルギーを吸収することにより地震応答を低減する制震構造の建物模型Dと、
免震構造も制震構造も施されていない一般構造の建物模型Bとを配置し、前記振動機構格納箱5より支持杆13を突設し、該支持杆13の上に水平支持杆11を突設し、該水平支持杆11の先端に建物に固定目盛6を固定し、該固定目盛6の位置は、それぞれの建物模型の横に移動可能に構成して、該振動台1上に配置した建物模型に発生する振動を視認可能とするものである。
【0005】
【発明の実施の形態】
次に本発明の実施の形態を説明する。
図1は本発明の地震に対する建物の振動視認装置の全体俯瞰図、図2は本発明の地震に対する建物の振動視認装置において配置されている建物模型の形状を示す図面、図3は免震構造建物模型Aと建物に発生する振動を視認可能とする固定目盛6の配置を示す俯瞰図、図4は免震構造建物模型Aの左右摺動可能支持部7’を平行四辺形リンクにより構成した場合の図面、図5は免震構造建物模型Aの左右摺動可能支持部7を回転ローラーにより構成した場合の図面である。
【0006】
図6は振り子を振動と逆の方向に揺動して地震の振動を制止する制震構造の場合の建物の緩やかな連結状態を示す図面、図7は免震構造と一般構造の場合の地面の揺れの周期と建物の揺れの周期を比較する図面、図8は制震構造において、振動台1の揺れの周期を調整して、振り子9が最高に制震作用を行う周期を求める状態を比較した図面、図9は免震構造・制震構造ではない、単なる一般構造の場合において、地震の振動と建物の揺れの周期が一致した場合に、大きな震動が発生する状態を示す図面、図10は免震構造と制震構造と一般構造の場合の揺れを比較した図面、図11と図12は制震構造の構造を示した図面である。
【0007】
図10においては、建物の免震構造と、制震構造と、一般構造の場合の振動の比較を示している。
免震構造は、地震応答を低減するものであり、その方法は、加速度応答倍率を低くすることにより行うものである。この加速度応答倍率を低くする方法としては、比較的剛性の高い建物の基礎部に水平方向に柔らかい部材を導入した構造である。
制震構造は、地震応答を低減するものであり、その方法は振動エネルギーを吸収する構造である。この振動エネルギーの吸収の方法としては、最上階に振り子9のような可動マスを設置し、建物の揺れに応じてマスが動く方法である。
一般構造は、免震構造や制震構造を施さずに、強固な基礎により地面に固定され、地震のエネルギーが建物の周期特性に応じ建物に吸収される構成である。
【0008】
図11と図12においては、制震構造の構成が図示されている。
図11の場合には、最上階に可動マス10を配置して、地震の振動と逆の方向に可動マス10を摺動させるべく構成している。
図12の構成においては、可動マス10をコンピュータ8により制御して、地震の振動と全く逆の方向に可動マス10が移動すべく構成している。
図8においては、制震構造の効果を制震構造建物模型Dにより示す図面であり、地震の振動の周期により、振り子9が十分に応答できない場合があることを図示している。
【0009】
故に、本発明においては、地震に対する建物の振動視認装置の部分に設けられた振動周期調整装置2により、振動台1の振動周期を調整して、どの周期の時に、該振り子9が最も制震効果を発揮するかを視認可能としている。
図8の右側の場合の振動周期では、十分に制震効果が表れておらず、振動台1の振動に対して、制震構造建物模型Dが大きな振幅で、異なる周期で揺動している。
これに対して、右側の制震構造建物模型Dの場合には、振動周期と、振り子9の周期がマッチしており、制震構造建物模型Dの振幅が0となっでいる。
【0010】
図6は制震構造の制震構造建物模型Dにおいて、建物を構成する剛性支持部材にガタを持たせて、制震構造建物模型Dの前端の揺れを容認するようにした構成を図示している。
フック15は振り子9を取り替えて吊り下げ可能とするものである。
図9は免震構造や制震構造が施されていない、一般構造建物模型Eにおいて、左側の場合には、地震の振動が該一般構造建物模型Eと一致していないので、大きな剛性振動が発生していない場合、右側は、地震の振動の周期と一般構造建物模型Eの振動周期が一致して、大きな振幅の振動が発生した場合を示しており、このように同じ一般構造建物模型Eであっても、振動周期調整装置2により振動周期を調整すると、一般構造建物模型Eに倒壊に至るような大きな振動が発生することを再現可能としている。これを視認することが出来るのである。
【0011】
図7は免震構造建物模型Aと、一般構造建物模型Bの場合の建物の振動の比較を示している。
本発明の地震に対する建物の振動視認装置においては、免震構造建物模型Aと一般構造建物模型Bとを並べて配置しており、その横に建物に発生する振動を視認可能とする固定目盛6を建てることにより、オペレーターは、免震構造と一般構造の場合の振動の相違を確認することが出来るのである。
図4においては、免震構造の場合の左右摺動可能支持部7の構造を図示している。また図13と図14においては、左右摺動可能支持部7’の具体的な構成を図示している。
【0012】
本発明は、以上のような、免震構造と、制震構造と、一般構造の建物が存在することを頭にいれて、それぞれの地震に対する揺れの応答を、建物に発生する振動を視認可能とする固定目盛6を介して、オペレーターが理論的に区別して視認することが出来るように配置したものである。
本発明の地震に対する建物の振動視認装置は、図1に示す如く、振動機構格納箱5の上に、振動台1を振動可能に配置している。
そして、該振動台1の上には、前述した免震構造建物模型Aと、一般構造建物模型Bと、制震構造建物模型Dと、一般構造建物模型Eとの他に、一般構造で一般構造建物模型Bよりも高い一般構造建物模型Cと、一般構造高層建物模型Fと、一般構造超高層建物模型Gが配置されている。
高い一般構造建物模型Cは、通常の地震では一般構造建物模型Bよりも大きな振動が発生することを視認することが出来るのである。
【0013】
また、振動しない部分である振動機構格納箱5の部分から支持杆13を突設し、該支持杆13の上に水平支持杆11を突設し、該水平支持杆11の先端に建物に発生する振動を視認可能とする固定目盛6を固定している。
該水平支持杆11と建物に発生する振動を視認可能とする固定目盛6の位置は、免震構造建物模型Aから制震構造超高層建物模型Gの横にそれぞれ移動可能として、それぞれの建物の振動を視認することが出来るように構成している。
該振動機構格納箱5内の振動機構の周期を調整するのが、操作制御部20に設けた振動周期調整装置2であり、また地震の大きさである振幅を調整するのが、振幅調整装置3である。また本装置の電源スイッチ4が設けられている。
【0014】
図3においては、免震構造建物模型Aの側方に、建物に発生する振動を視認可能とする固定目盛6を配置して、該免震構造建物模型Aが如何に振動しないかを視認している状態を図示している。
【0015】
【発明の効果】
本発明は以上の如く構成したので、次のような効果を奏するものである。
振動しない部分である振動機構格納箱5の内部に振動機構を格納配置し、該振動機構に
より振動する振動台1を、前記振動機構格納箱5の上に振動可能に支持し、該振動台1の上には、加速度応答倍率を低くすることにより地震応答を低減する免震構造の建物模型Aと、振動エネルギーを吸収することにより地震応答を低減する制震構造の建物模型Dと、
免震構造も制震構造も施されていない一般構造の建物模型Bとを配置し、前記振動機構格納箱5より支持杆13を突設し、該支持杆13の上に水平支持杆11を突設し、該水平支持杆11の先端に建物に固定目盛6を固定し、該固定目盛6の位置は、それぞれの建物模型の横に移動可能に構成して、該振動台1上に配置した建物模型に発生する振動を視認可能としたので、固定目盛6を動かして、免震構造建物模型Aや一般構造建物模型Bや制震構造建物模型Dの直ぐ横に移動することが出来るので、各建物模型の振動の状態を目で確認することができて、免震構造と制震構造と一般構造の振動の相違等を確実に理解することが出来るのである。
【図面の簡単な説明】
【図1】 本発明の地震に対する建物の振動視認装置の全体俯瞰図。
【図2】 本発明の地震に対する建物の振動視認装置において配置されている建物模型の形状を示す図面。
【図3】 免震構造建物模型Aと建物に発生する振動を視認可能とする固定目盛6の配置を示す俯瞰図。
【図4】 免震構造建物模型Aの左右摺動可能支持部7’を平行四辺形リンクにより構成した場合の図面。
【図5】 免震構造建物模型Aの左右摺動可能支持部7を回転ローラーにより構成した場合の図面

【図6】 振り子を振動と逆の方向に揺動して地震の振動を制止する制震構造の場合の建物の緩やかな連結状態を示す図面。
【図7】 免震構造と一般構造の場合の地面の揺れの周期と建物の揺れの周期を比較する図面。
【図8】 制震構造において、振動台1の揺れの周期を調整して、振り子9が最高に制震作用を行う周期を求める状態を比較した図面。
【図9】 免震構造・制震構造ではない、単なる一般構造の場合において、地震の振動と建物の揺れの周期が一致した場合に、大きな振動が発生する状態を示す図面。
【図10】 免震構造と制震構造と一般構造の場合の揺れを比較した図面。
【図11】 制震構造の機構を示す図面。
【図12】 同じく制震構造の他の機構を示す図面。
【図13】 免震構造建物模型Aの左右摺動可能支持部7’の具体的な構成を示す図面。
【図14】 免震構造建物模型Aの左右摺動可能支持部7’の具体的な構成を示す図面。
【符号の説明】
1 振動台
2 振動周期調整装置
3 振幅調整装置
4 電源スイッチ
5 振動機構格納箱
6 建物に発生する振動を視認可能とする固定目盛
7 左右摺動可能支持部
9 振り子
[0001]
BACKGROUND OF THE INVENTION
The present invention makes it easy to experience the seismic performance of buildings and houses by seeing those who plan to build their own buildings or houses, students studying architecture, scholars studying earthquake-resistant buildings, etc. It relates to a visual confirmation device capable of
[0002]
[Prior art]
Conventionally, there has been a device for experiencing the seismic intensity of an earthquake by placing a building on a large vibration mechanism and placing a person in the building to vibrate.
However, it is not a seismic isolation structure, it is not a seismic control structure, but vibrations caused by earthquakes in buildings and houses with normal structures, or a vibration control structure that actively suppresses vibrations by moving the pendulum against the vibration. There was no device for visually confirming the seismic isolation structure that allowed the building and the building itself to move against earthquake shaking.
[0003]
[Problems to be solved by the invention]
The present invention does not actually experience vibration with the body, but the difference in the period of vibration and the movement of the building using the seismic isolation and seismic isolation structure depending on the height of the building can be visually observed with the model building. It is a device that enables confirmation.
[0004]
[Means for Solving the Problems]
The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
A vibration mechanism is housed and disposed inside a vibration mechanism storage box 5 that does not vibrate, and a vibration table 1 that vibrates by the vibration mechanism is supported on the vibration mechanism storage box 5 so as to be able to vibrate. On top of the above, a building model A having a seismic isolation structure that reduces the seismic response by reducing the acceleration response magnification, and a building model D having a seismic control structure that reduces the seismic response by absorbing vibration energy,
A building model B having a general structure with no seismic isolation structure and no damping structure is arranged, a support rod 13 is projected from the vibration mechanism storage box 5, and a horizontal support rod 11 is mounted on the support rod 13. A fixed scale 6 is fixed to the building at the tip of the horizontal support rod 11, and the position of the fixed scale 6 is configured to be movable to the side of each building model and disposed on the shaking table 1. It is possible to visually recognize the vibration generated in the building model .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
FIG. 1 is an overall bird's-eye view of an apparatus for visually confirming vibration of a building against an earthquake of the present invention, FIG. 2 is a drawing showing the shape of a building model arranged in the apparatus for visually confirming vibration of a building against an earthquake of the present invention, and FIG. 4 is an overhead view showing the arrangement of the building model A and the fixed scale 6 that makes it possible to visually recognize the vibration generated in the building. FIG. 4 shows that the left-right slidable support portion 7 ′ of the seismic isolation structure building model A is constituted by a parallelogram link. FIG. 5 shows a case where the left-right slidable support portion 7 of the base-isolated structure building model A is constituted by a rotating roller.
[0006]
FIG. 6 is a drawing showing a loosely connected state of a building in the case of a seismic control structure in which a pendulum is swung in a direction opposite to that of the vibration to suppress the vibration of the earthquake, and FIG. 7 is a ground surface in the case of a seismic isolation structure and a general structure FIG. 8 shows a state in which the pendulum 9 obtains the maximum vibration control action by adjusting the vibration period of the shaking table 1 in the vibration control structure. Comparison drawing, FIG. 9 is a drawing showing a state in which a large vibration is generated when the period of the vibration of the earthquake coincides with the period of the shaking of the building in the case of a simple structure that is not a seismic isolation structure / damping structure. 10 is a drawing comparing the vibrations of the seismic isolation structure, the damping structure and the general structure, and FIGS. 11 and 12 are drawings showing the structure of the damping structure.
[0007]
FIG. 10 shows a comparison of vibrations in the case of a building seismic isolation structure, a vibration control structure, and a general structure.
The seismic isolation structure reduces the earthquake response, and the method is performed by lowering the acceleration response magnification. As a method of reducing the acceleration response magnification, a structure in which a soft member is introduced in the horizontal direction at the base of a relatively rigid building is used.
The damping structure reduces the seismic response, and the method is a structure that absorbs vibration energy. As a method of absorbing this vibration energy, a movable mass such as a pendulum 9 is installed on the top floor, and the mass moves according to the shaking of the building.
The general structure is a structure that is fixed to the ground with a solid foundation without seismic isolation structure or damping structure, and the energy of the earthquake is absorbed by the building according to the periodic characteristics of the building.
[0008]
In FIG. 11 and FIG. 12, the structure of the damping structure is illustrated.
In the case of FIG. 11, the movable mass 10 is arranged on the top floor, and the movable mass 10 is configured to slide in the direction opposite to the earthquake vibration.
In the configuration of FIG. 12, the movable mass 10 is controlled by the computer 8 so that the movable mass 10 moves in a direction completely opposite to the vibration of the earthquake.
In FIG. 8, it is drawing which shows the effect of a damping structure with the damping structure building model D, and has shown that the pendulum 9 may not fully respond depending on the period of the vibration of an earthquake.
[0009]
Therefore, in the present invention, the vibration period of the vibration table 1 is adjusted by the vibration period adjusting device 2 provided in the part of the building vibration viewing device against an earthquake, and the pendulum 9 is most controlled in any period. It is possible to visually check whether the effect is exhibited.
In the vibration cycle in the case of the right side of FIG. 8, the vibration control effect is not sufficiently exhibited, and the vibration control structure building model D swings with a large amplitude and a different cycle with respect to the vibration of the vibration table 1. .
On the other hand, in the case of the vibration control structure building model D on the right side, the vibration period and the period of the pendulum 9 match, and the vibration control structure building model D has an amplitude of zero.
[0010]
FIG. 6 shows a structure of the damping structure building model D having a damping structure in which the rigid support members constituting the building are given backlash to allow the front end of the damping structure building model D to be allowed to swing. Yes.
The hook 15 can be suspended by replacing the pendulum 9.
FIG. 9 shows a general structural building model E that has no seismic isolation structure or damping structure. In the case of the left side, since the vibration of the earthquake does not coincide with the general structural building model E, there is a large rigid vibration. In the case where it does not occur, the right side shows the case where the vibration period of the earthquake and the vibration period of the general structural building model E coincide with each other to generate a large amplitude vibration. Even so, when the vibration period is adjusted by the vibration period adjusting device 2, it is possible to reproduce the occurrence of a large vibration that would cause the general structural building model E to collapse. This can be visually recognized.
[0011]
FIG. 7 shows a comparison of building vibration in the case of the seismic isolation building model A and the general structure building model B. FIG.
In the vibration monitoring apparatus for buildings against earthquakes according to the present invention, the seismic isolation building model A and the general structure building model B are arranged side by side, and a fixed scale 6 that makes it possible to visually recognize the vibration generated in the building beside the building model A. By building, the operator can confirm the difference in vibration between the base-isolated structure and the general structure.
In FIG. 4, the structure of the left-right slidable support portion 7 in the case of the seismic isolation structure is illustrated. 13 and 14 show a specific configuration of the left / right slidable support portion 7 '.
[0012]
The present invention is capable of visually recognizing the vibration generated in the building and the vibration response to each earthquake, taking into account the existence of the seismic isolation structure, damping structure, and general structure. Is arranged so that the operator can theoretically distinguish and visually recognize through the fixed scale 6.
As shown in FIG. 1, the building vibration visualizing apparatus for an earthquake according to the present invention has a vibration table 1 arranged on a vibration mechanism storage box 5 so as to vibrate.
In addition to the above-described seismic isolation building model A, general structural building model B, seismic control building model D, and general structural building model E, the general structure is generally used. A general structural building model C, a general high-rise building model F, and a general high-rise building model G that are higher than the structural building model B are arranged.
The high general structural building model C can visually recognize that a large vibration is generated in the normal earthquake than the general structural building model B.
[0013]
Further, a support rod 13 protrudes from the portion of the vibration mechanism storage box 5 which is a portion that does not vibrate, and a horizontal support rod 11 protrudes from the support rod 13 and is generated at the tip of the horizontal support rod 11 in the building. The fixed scale 6 which makes it possible to visually recognize the vibration to be fixed is fixed.
The position of the horizontal support rod 11 and the fixed scale 6 that enables the vibration generated in the building to be visually recognized can be moved from the seismic isolation building model A to the side of the seismic control structure high-rise building model G. It is configured so that vibration can be visually recognized.
The vibration mechanism adjusting box 2 provided in the operation control unit 20 adjusts the period of the vibration mechanism in the vibration mechanism storage box 5, and the amplitude adjusting apparatus adjusts the amplitude that is the magnitude of the earthquake. 3. Further, a power switch 4 of the present apparatus is provided.
[0014]
In FIG. 3, a fixed scale 6 is arranged on the side of the seismic isolation building model A so that the vibration generated in the building can be visually recognized, and it is visually confirmed how the seismic isolation building model A does not vibrate. The state is shown.
[0015]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
A vibration mechanism is housed in the vibration mechanism storage box 5 which is a portion that does not vibrate.
A vibration table 1 that vibrates more is supported on the vibration mechanism storage box 5 so as to vibrate. On the vibration table 1, a building having a seismic isolation structure that reduces an earthquake response by lowering an acceleration response magnification. Model A, and building model D with a damping structure that reduces seismic response by absorbing vibration energy,
A building model B having a general structure with no seismic isolation structure and no damping structure is arranged, a support rod 13 is projected from the vibration mechanism storage box 5, and a horizontal support rod 11 is mounted on the support rod 13. A fixed scale 6 is fixed to the building at the tip of the horizontal support rod 11, and the position of the fixed scale 6 is configured to be movable to the side of each building model and disposed on the shaking table 1. Since the vibration generated in the building model can be visually recognized, the fixed scale 6 can be moved so that it can move to the side of the seismic isolation building model A, the general structure building model B, and the damping structure building model D. The state of vibration of each building model can be confirmed visually, and the difference in vibration between the seismic isolation structure, damping structure and general structure can be understood with certainty.
[Brief description of the drawings]
FIG. 1 is an overall overhead view of a device for visually confirming vibration of a building against an earthquake according to the present invention.
FIG. 2 is a view showing the shape of a building model arranged in a building vibration visualizing device against an earthquake according to the present invention.
FIG. 3 is an overhead view showing an arrangement of a seismic isolation building model A and a fixed scale 6 that enables visual recognition of vibrations generated in the building.
FIG. 4 is a drawing when the left-right slidable support portion 7 ′ of the base-isolated building model A is configured by a parallelogram link.
FIG. 5 is a drawing when the left-right slidable support portion 7 of the seismic isolation structure building model A is constituted by a rotating roller.
FIG. 6 is a drawing showing a loosely connected state of a building in the case of a vibration control structure in which a pendulum is swung in a direction opposite to that of the vibration to suppress the vibration of the earthquake.
FIG. 7 is a drawing for comparing the period of ground shaking and the period of building shaking in the case of a base-isolated structure and a general structure.
FIG. 8 is a diagram comparing states in which the pendulum 9 obtains the maximum vibration control action by adjusting the vibration period of the shaking table 1 in the vibration control structure.
FIG. 9 is a diagram showing a state in which a large vibration is generated in the case of a mere general structure that is not a seismic isolation structure or a vibration control structure, when the earthquake vibration and the building vibration period coincide with each other.
FIG. 10 is a drawing comparing shaking in the case of seismic isolation structure, damping structure and general structure.
FIG. 11 is a drawing showing a mechanism of a vibration control structure.
FIG. 12 is also a drawing showing another mechanism of the vibration control structure.
FIG. 13 is a drawing showing a specific configuration of a left-right slidable support portion 7 ′ of a base-isolated building model A.
FIG. 14 is a drawing showing a specific configuration of a left-right slidable support portion 7 ′ of the seismic isolation building model A.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shaking table 2 Vibration period adjusting device 3 Amplitude adjusting device 4 Power switch 5 Vibration mechanism storage box 6 Fixed scale which can visually recognize the vibration which generate | occur | produces in a building 7 Left and right slidable support part 9 Pendulum

Claims (1)

振動しない部分である振動機構格納箱5の内部に振動機構を格納配置し、該振動機構により振動する振動台1を、前記振動機構格納箱5の上に振動可能に支持し、
該振動台1の上には、加速度応答倍率を低くすることにより地震応答を低減する免震構造の建物模型Aと、振動エネルギーを吸収することにより地震応答を低減する制震構造の建物模型Dと、免震構造も制震構造も施されていない一般構造の建物模型Bとを配置し、
前記振動機構格納箱5より支持杆13を突設し、該支持杆13の上に水平支持杆11を突設し、該水平支持杆11の先端に建物に固定目盛6を固定し、該固定目盛6の位置は、それぞれの建物模型の横に移動可能に構成して、該振動台1上に配置した建物模型に発生する振動を視認可能とすることを特徴とする地震に対する建物の振動視認装置。
A vibration mechanism is housed in a vibration mechanism storage box 5 that is a portion that does not vibrate, and a vibration table 1 that vibrates by the vibration mechanism is supported on the vibration mechanism storage box 5 so as to be capable of vibration.
On the shaking table 1, a building model A having a seismic isolation structure that reduces the seismic response by lowering the acceleration response magnification and a building model D having a vibration control structure that reduces the seismic response by absorbing vibration energy. And a building model B with a general structure that is neither seismically isolated nor controlled,
A support rod 13 is projected from the vibration mechanism storage box 5, a horizontal support rod 11 is projected on the support rod 13, and a fixed scale 6 is fixed to the building at the tip of the horizontal support rod 11, The position of the scale 6 is configured to be movable to the side of each building model so that the vibration generated in the building model placed on the shaking table 1 can be visually recognized. apparatus.
JP33005997A 1997-12-01 1997-12-01 Vibrating device for buildings against earthquakes Expired - Fee Related JP3670126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33005997A JP3670126B2 (en) 1997-12-01 1997-12-01 Vibrating device for buildings against earthquakes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33005997A JP3670126B2 (en) 1997-12-01 1997-12-01 Vibrating device for buildings against earthquakes

Publications (2)

Publication Number Publication Date
JPH11161148A JPH11161148A (en) 1999-06-18
JP3670126B2 true JP3670126B2 (en) 2005-07-13

Family

ID=18228327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33005997A Expired - Fee Related JP3670126B2 (en) 1997-12-01 1997-12-01 Vibrating device for buildings against earthquakes

Country Status (1)

Country Link
JP (1) JP3670126B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031981B2 (en) * 2002-12-10 2008-01-09 住友林業株式会社 Natural disaster simulation equipment
CN100375894C (en) * 2004-09-08 2008-03-19 广州大学 Structural dynamic characteristic demonstration model
US7032452B1 (en) * 2004-10-12 2006-04-25 National Kaohsiung University Of Applied Sciences Earthquake simulating vibration table
US7302853B2 (en) * 2004-10-18 2007-12-04 National Kaohsiung University Of Applied Sciences Sliding vibration-resisting building model
KR101124683B1 (en) * 2009-06-12 2012-04-13 배형진 Model apparatus of learning earthquake
CN107833519B (en) * 2017-11-30 2023-09-22 重庆科技学院 Simulation system for simulating earthquake isolation of modern building
CN111554173B (en) * 2020-05-18 2021-08-24 安阳工学院 Sand table display stand for urban and rural planning
CN113539005A (en) * 2021-08-20 2021-10-22 北京星际元会展有限公司 Earthquake-resistant building test interaction device
CN116067604B (en) * 2023-03-14 2023-07-18 中国电建集团西北勘测设计研究院有限公司 Vibration environment simulation device

Also Published As

Publication number Publication date
JPH11161148A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3670126B2 (en) Vibrating device for buildings against earthquakes
JP2017532471A (en) Buildings and other objects with systems for preventing damage from earthquakes
JP2008082936A (en) Vibration testing system
JP2008176182A (en) Vibration control structure experience apparatus
KR102206778B1 (en) An earthquake experience apparatus
JPH086490B2 (en) Building damping device
JP3877276B2 (en) Vibration control structure experience device
JP4070213B2 (en) Vibration control device and long structure
JPH0748922A (en) Base-isolating floor, and device therefor
KR20190077811A (en) An earthquake experience apparatus
JPS6060344A (en) Vibration-control device
JPH07286640A (en) Vibration control method and vibration controller capable of coping with lower order mode vibration and higher order mode vibration
CN210322235U (en) A gallows detection device combats earthquake
CN208315055U (en) Earthquake virtual experience device
JPH0291354A (en) Vibration proofing device
CN107338882B (en) Local sideslip shaking structure
JP3106618U (en) Structure vibration experiment equipment
JPH10183842A (en) Vibration isolation floor
JPH08178792A (en) Rocking vibration tester
JP2877738B2 (en) Rocking device for railway simulator
KR102666222B1 (en) Swichboard
JP2984953B2 (en) Hybrid type vibration damping device
JPH08226252A (en) Vibration control device with movable rigid mechanism for high-rise building
JPH055583Y2 (en)
JP3881093B2 (en) Earthquake experience equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees