JP3669716B2 - Method for manufacturing outer ring for shell type needle bearing - Google Patents

Method for manufacturing outer ring for shell type needle bearing Download PDF

Info

Publication number
JP3669716B2
JP3669716B2 JP07736493A JP7736493A JP3669716B2 JP 3669716 B2 JP3669716 B2 JP 3669716B2 JP 07736493 A JP07736493 A JP 07736493A JP 7736493 A JP7736493 A JP 7736493A JP 3669716 B2 JP3669716 B2 JP 3669716B2
Authority
JP
Japan
Prior art keywords
edge
outer ring
folded portion
needle bearing
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07736493A
Other languages
Japanese (ja)
Other versions
JPH06264930A (en
Inventor
茂一 千葉
且弘 池沢
宏一 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP07736493A priority Critical patent/JP3669716B2/en
Publication of JPH06264930A publication Critical patent/JPH06264930A/en
Application granted granted Critical
Publication of JP3669716B2 publication Critical patent/JP3669716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/466Needle bearings with one row or needles comprising needle rollers and an outer ring, i.e. subunit without inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/588Races of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Description

【0001】
【産業上の利用分野】
この発明は、カークーラ用コンプレッサ、二輪車用サスペンション、ステアリングギヤ等、比較的スラスト方向の力を受ける場合が多いラジアル回転支持部分に組み込むシェル型ニードル軸受用外輪の製造方法に関する。
【0002】
【従来の技術】
例えばカークーラ用コンプレッサのロータには大きなラジアル荷重が加わるので、(玉軸受ではなく)ニードル軸受により、上記ロータを回転自在に支持している。又、上記ロータにはラジアル荷重だけでなく(小さいけれども)スラスト方向の力が加わるので、上記ニードル軸受は、このスラスト荷重に基づいて軌道面とニードルとがずれる事を防止する構造である必要がある。この為従来から、図14〜16に示す様なシェル型ニードル軸受により、上記ロータ等の回転支持部分を構成していた。
【0003】
先ず、図14に示した第1例の構造では、金属板を曲げ形成する事で全体を円筒状とした外輪1の両端を、それぞれ直径方向(図14の上下方向)内側に向け直角に折り曲げて、1対の抑え部2、2を形成している。そして、複数のニードル3を転動自在に保持する保持器4の軸方向(図14の左右方向)両端面と、上記各抑え部2、2の内側面とを近接させている。この様なシェル型ニードル軸受を組み込んだ回転支持部分にスラスト方向の力が作用した場合、上記保持器4の軸方向端縁と何れかの抑え部2の内側面とが摺接して、上記外輪1とニードル3とがずれる事を防止する。
【0004】
又、図15〜16に示した第2例の構造では、金属板を曲げ形成する事で全体を円筒状とした外輪1aの軸方向(図15の左右方向)両端縁部を、それぞれ直径方向(図15の上下方向)内方に向け180度ずつ折り返す事で折り返し部5a、5bとしている。各折り返し部5a、5bの端縁は、それぞれニードル3の端面3a、3aに直接対向させている。従来構造の場合、各折り返し部5a、5bの端縁6、6は、図16(A)(B)に示す様に直角に形成されている。複数のニードル3を転動自在に保持する保持器4は、これら各折り返し部5a、5bの内側に挿入される。この様なシェル型ニードル軸受を組み込んだ回転支持部分にスラスト方向の力が作用した場合、上記複数のニードル3の軸方向端面3a、3aと何れかの折り返し部5a、5bの端縁6、6とが摺接して、上記外輪1とニードル3とがずれる事を防止する。
【0005】
【発明が解決しようとする課題】
ところが、上述の様に構成される従来のシェル型ニードル軸受の場合、スラスト方向の力を受けつつ回転する場合に、摩擦抵抗が大きくなって動力損失が嵩むだけでなく、著しい場合には焼き付きが発生すると言った、解決すべき問題点がある。
【0006】
即ち、スラスト方向の力を受けつつ回転する場合に、図14に示した第1例の構造では、保持器4の一端縁と何れか一方の抑え部2の内側面とが、図15〜16に示した第2例の構造では、各ニードル3の端面3aと何れかの折り返し部5a(又は5b)の端縁6とが、それぞれ摩擦し合う。この摩擦分が動力損失となって、シェル型ニードル軸受を組み込んだ機械装置の性能を悪くする。更に、上記スラスト方向の力が大きく、しかも回転速度が速い場合には、焼き付きを起こす原因となる。
【0007】
特開昭59−106719号公報、実開昭58−22515号公報等には、金属材に鍛造加工や切削加工を施す事により造られた円筒ころ軸受用外輪で、鍔部の内側面を直径方向外側に向かう程軸方向内側に向かう方向に傾斜させた構造が記載されている。この様な構造によれば、鍔部の内側面と円筒ころの端面との間に作用する摩擦を低減して、上記動力損失を低く抑えると共に、焼き付きの発生を抑えられる。但し、金属材に鍛造加工や切削加工を施す事により造られた円筒ころ軸受用外輪は、製作費が嵩むだけでなく、径方向に関する厚さ寸法も大きくなるので、カークーラ用コンプレッサ、二輪車用サスペンション、ステアリングギヤ等の回転支持部分に組む込む事は難しい。これに対して、上記図15〜16に示した様な、金属板を曲げ形成する事で造られたシェル型ニードル軸受用外輪の場合、製作費を低く抑えられる他、径方向に関する厚さ寸法も抑えられる。但し、折り返し部5a(又は5b)の端縁を上記方向に傾斜させる事ができず、動力損失の低減と焼き付き防止の面から改良が望まれている。
本発明のシェル型ニードル軸受用外輪の製造方法は、この様な事情に鑑みて発明したものである。
【0008】
【課題を解決するための手段】
本発明の製造方法により造られるシェル型ニードル軸受用外輪は、前述した従来のシェル型ニードル軸受用外輪と同様に、金属板を曲げ形成する事で全体を円筒状とし、軸方向両端縁部を直径方向内方に向けそれぞれ180度ずつ折り返す事で折り返し部とし、各折り返し部の端縁をそれぞれニードルの端面に直接対向させるものである。
【0009】
特に、本発明の製造方法により造られるシェル型ニードル軸受用外輪は、上記各折り返し部の端縁は、直径方向外側に向かう程軸方向内側に向かう方向に傾斜しており、上記端縁の直径方向外端位置を、外輪の内周面に設けた軌道面位置とほぼ一致させている事を特徴している。
【0010】
この様なシェル型ニードル軸受用外輪を造る、本発明の製造方法は、円筒状に形成された金属板の一端縁部を180度折り返す事で第一の折り返し部を形成した後、この第一の折り返し部の端縁に面押し加工を施す事により、この第一の折り返し部の端縁を直径方向外側に向かう程軸方向内側に向かう方向に傾斜させると共に、この端縁の直径方向外端位置を、外輪の内周面に設けた軌道面位置とほぼ一致させ、次いで、予めその端縁を所定角度に傾斜させた、上記金属板の他端縁部を180度折り返して第二の折り返し部を形成し、この第二の折り返し部の端縁を直径方向外側に向かう程軸方向内側に向かう方向に傾斜させると共に、この端縁の直径方向外端位置を、外輪の内周面に設けた軌道面位置とほぼ一致させる。
【0011】
【作用】
上述の様な本発明の製造方法により造られたシェル型ニードル軸受用外輪の場合、各折り返し部の端縁が、直径方向外側に向かう程軸方向内側に向かう方向に傾斜しており、しかもこの端縁の直径方向外端位置が、外輪の内周面に設けた軌道面位置とほぼ一致している為、上記各折り返し部の端縁とニードルの端面とは、これら端縁及び端面の直径方向外端寄り部分で、互いに当接する。従って、スラスト方向の力が加わった状態でニードルが回転した場合でも、各ニードルの端面と折り返し部の端縁との接触状態が、転がり接触に近い接触状態となる。この結果、摩擦損失の低減と焼き付き防止とを図れる。
しかも、金属板を曲げ形成する事により造られるシェル型ニードル軸受用外輪 は、金属材に鍛造加工や切削加工を施す事により造られるものに比べて、製作費が安く、径方向に関する厚さ寸法も小さく抑えられる。この為、カークーラ用コンプレッサ、二輪車用サスペンション、ステアリングギヤ等の回転支持部に組み込むのに好適な構造を実現できる。
【0012】
【実施例】
図1〜4は、本発明の製造方法により造られるシェル型ニードル軸受用外輪の1例を示している。金属板を曲げ形成する事で全体を円筒状とした外輪1bの軸方向(図1、3の左右方向)両端縁部には、上記円筒状に形成された金属板を直径方向(図1、3の上下方向)内方に向け、それぞれ180度ずつ折り返す事で、折り返し部5a、5bを形成している。各折り返し部5a、5bの曲率半径は十分に小さくして、各折り返し部5a、5bの外周面7、7の位置と、外輪1bの軌道面である内周面8の位置とをほぼ一致させている。そして、各折り返し部5a、5bの端縁6a、6aを、それぞれニードル3の端面3a、3aに直接対向させている。
【0013】
特に、本例のシェル型ニードル軸受用外輪に於いては、上記各折り返し部5a、5bの端縁6a、6aは、図2、4(A)(B)に詳示する様に、直径方向外側(図2、4の下側)に向かう程軸方向内側(図2、4の(A)に於いて右側、図2、4の(B)に於いて左側)に向かう方向に、角度θだけ傾斜している。従って、上記各端縁6a、6aの直径方向外端位置は、上記外輪1bの内周面8である軌道面位置とほぼ一致している。
【0014】
上述の様に構成される本例のシェル型ニードル軸受用外輪の場合、各折り返し部5a、5bの端縁6a、6aと各ニードル3の端面3a、3aとは、端縁6a、6a及び端面3a、3aの直径方向外端寄り部分で、互いに当接する。従って、スラスト方向の力が加わり、何れかの端縁6aと何れかの端面3aとが当接した状態でニードル3が回転した場合でも、各ニードル3の端面3aと折り返し部5a(5b)の端縁6aとの接触状態が、転がり接触に近い接触状態となる。この結果、接触部分に作用する摩擦力が少なくなって、この接触部分での発熱も少なくなり、摩擦損失の低減と焼き付き防止とを図れる。尚、上記各端縁6a、6aの傾斜角度θは、1〜5度程度あれば機能上十分であるが、この角度よりも多少大きくても差し支えない。
【0015】
次に、図5〜10は、上述した様なシェル型ニードル軸受用外輪を造る、本発明の製造方法の実施例を示している。先ず、円筒状に形成された金属板の一端縁部(図5〜6の下端縁部)を180度折り返す事により、第一の折り返し部である折り返し部5aを形成した後、図5〜6に示す様に、この折り返し部5aの端縁6aに面押し加工を施す。即ち、上記折り返し部5aを形成した金属板をダイ9内に保持した状態で、この金属板内にパンチ10を挿入し、このパンチ10に形成した段部11により、上記折り返し部5aの端縁6aを強く押圧して、この端縁6aを前記角度θだけ、直径方向(図5〜6の左右方向)外側(同図の左側)に向かう程軸方向(図5〜6上下方向)内側(同図の上側)に向かう方向に傾斜させる。
【0016】
次いで、図7〜8に示す様に、上記金属板の端縁14を所定方向に所定角度だけ傾斜させる。即ち、上記折り返し部5aを形成した金属板を、この折り返し部5aを受部12に突き当てた状態で、受型13内に保持し、別のパンチ15の先端部を上記金属板の内側に挿入する。そして、このパンチ15の外周面に形成した段部16を上記端縁14に突き当てる事により、この端縁14を傾斜させる。尚、この端縁14の傾斜方向と傾斜角度αとは、次述する第二の折り返し部である折り返し部5b形成後に於ける端縁6aの傾斜角度θが適正値となる様に、実験的に定める。
【0017】
この様にして、上記金属板の端縁14を傾斜させたならば、この端縁14を有する金属板の他端縁部(図7〜8の上端縁部)を、図9に示す状態から図10に示す状態に迄180度折り返して、第二の折り返し部である折り返し部5bを形成する。この状態で、この折り返し部5bの端縁6aは、直径方向(図10の左右方向)外側(同図の右側)に向かう程軸方向(図10の上下方向)内側(同図の下側)に向かう方向に、角度θ(1〜5度)傾斜する。上述の様に構成される本発明の製造方法により造られたシェル型ニードル軸受用外輪の作用は、前述の通りである。
【0018】
尚、各折り返し部5a、5bの端縁6aの形状は、必ずしも単純な摺鉢状である必要はなく、例えば、図11(A)〜(C)に示す様な形状とする事も出来る。先ず(A)に示した第1例は、外周縁部にのみ直角部分を残したもの、(B)に示した第2例は、凸に湾曲させつつ傾斜させたもの、(C)に示した第3例は、凸に湾曲した傾斜面と直角部分とを合わせたものである。何れの形状を採用した場合でも、端縁6aとニードル3の端面3a(図1〜2参照)との接触状態を転がり接触に近く出来る。
【0019】
又、本発明の製造方法により造られるシェル型ニードル軸受用外輪を組み込んで構成されるシェル型ニードル軸受には、必ずしも保持器を設ける必要はなく、図12に示す様な、所謂総ころ型のニードル軸受とする事も出来る。更に、本発明の製造方法により造られるシェル型ニードル軸受用外輪と組み合わされるニードル3の端面3aの形状も、必ずしも平坦である必要はなく、図13に示す様に球面状に膨らんでいても良い。但し、この場合には、各折り返し部5a(5b)の傾斜角度θを少し大きめにする。
【0020】
【発明の効果】
本発明のシェル型ニードル軸受用外輪の製造方法は、以上に述べた通り構成され作用するので、得られたシェル型ニードル軸受を組み込んだ回転支持部分が、スラスト方向の力を受けつつ回転した場合でも、摩擦損失並びに摩擦による発熱を少なく抑える事が出来る。この結果、動力損失の低減と焼き付き防止とを図れ、高性能で信頼性の高い回転支持部分を得られる。
【図面の簡単な説明】
【図1】本発明の製造方法により造られた外輪を組み込んだシェル型ニードル軸受の断面図。
【図2】図1の要部拡大図で、(A)は図1のA部を、(B)は同じくB部を、それぞれ示している。
【図3】外輪のみを取り出して示す断面図。
【図4】図3の要部拡大図で、(A)は図3のA部を、(B)は同じくB部を、それぞれ示している。
【図5】第一の折り返し部の端縁を加工する状態を示す断面図。
【図6】図5のX部拡大図。
【図7】金属板の他端縁を加工する状態を示す断面図。
【図8】図7のY部拡大図。
【図9】端縁を加工された金属板の他端縁部を、折り返し前の状態で示す図。
【図10】この他端縁部を折り返して第二の折り返し部とした状態を示す断面図。
【図11】折り返し部端縁の別形状の3例を示す断面図。
【図12】総ころ型ニードル軸受の半部断面図。
【図13】ニードルの端面を凸面とした、シェル型ニードル軸受の部分断面図。
【図14】従来のシェル型ニードル軸受の第1例を示す半部断面図。
【図15】同第2例を示す半部断面図。
【図16】図15の要部拡大図で、(A)は図15のA部を、(B)は同じくB部を、それぞれ示している。
【符号の説明】
1、1a、1b 外輪
2 抑え部
3 ニードル
3a 端面
4 保持器
5a、5b 折り返し部
6、6a 端縁
7 外周面
8 内周面
9 ダイ
10 パンチ
11 段部
12 受部
13 受型
14 端縁
15 パンチ
16 段部
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing an outer ring for a shell-type needle bearing that is incorporated in a radial rotation support portion that is often subjected to a relatively thrust force, such as a car cooler compressor, a suspension for a two-wheeled vehicle, and a steering gear.
[0002]
[Prior art]
For example, since a large radial load is applied to the rotor of a car cooler compressor, the rotor is rotatably supported by a needle bearing (not a ball bearing). Further, since not only a radial load but also a thrust force is applied to the rotor, the needle bearing needs to have a structure that prevents the raceway surface and the needle from being displaced based on the thrust load. is there. For this reason, conventionally, a rotational support portion such as the rotor has been constituted by a shell type needle bearing as shown in FIGS.
[0003]
First, in the structure of the first example shown in FIG. 14, both ends of the outer ring 1 which is formed into a cylindrical shape by bending a metal plate are bent at right angles toward the inside in the diameter direction (vertical direction in FIG. 14). Thus, a pair of holding portions 2 and 2 are formed. And the axial direction (left-right direction of FIG. 14) both end surfaces of the holder | retainer 4 which hold | maintains the some needle 3 so that rolling is possible, and the inner surface of each said holding | suppressing part 2 and 2 are adjoined. When a thrust force is applied to the rotation support portion incorporating such a shell type needle bearing, the axial end edge of the retainer 4 and the inner side surface of one of the restraining portions 2 are in sliding contact with each other, and the outer ring 1 and needle 3 are prevented from shifting.
[0004]
Further, in the structure of the second example shown in FIGS. 15 to 16, both end edges in the axial direction (left and right direction in FIG. 15) of the outer ring 1a which is formed into a cylindrical shape as a whole by bending a metal plate are respectively in the diameter direction. (Up and down direction in FIG. 15) Folded portions 5a and 5b are formed by folding back 180 degrees inward. The end edges of the folded portions 5a and 5b are directly opposed to the end surfaces 3a and 3a of the needle 3, respectively. In the case of the conventional structure, the end edges 6 and 6 of the folded portions 5a and 5b are formed at right angles as shown in FIGS. A holder 4 that holds a plurality of needles 3 so as to roll freely is inserted inside each of the folded portions 5a and 5b. When a thrust force is applied to the rotation support portion in which such a shell type needle bearing is incorporated, the axial end surfaces 3a and 3a of the needles 3 and the end edges 6 and 6 of any of the folded portions 5a and 5b are provided. Prevents the outer ring 1 and the needle 3 from shifting.
[0005]
[Problems to be solved by the invention]
However, in the case of the conventional shell type needle bearing configured as described above, when rotating while receiving a force in the thrust direction, not only the frictional resistance is increased and the power loss is increased, but also the seizure occurs in a remarkable case. There is a problem that needs to be solved.
[0006]
That is, when rotating while receiving a force in the thrust direction, in the structure of the first example shown in FIG. 14, the one end edge of the cage 4 and the inner side surface of one of the holding portions 2 are the same as those in FIGS. In the structure of the second example shown in FIG. 5, the end surface 3a of each needle 3 and the end edge 6 of any folded portion 5a (or 5b) are rubbed with each other. This frictional component becomes a power loss, which deteriorates the performance of the mechanical device incorporating the shell type needle bearing. Furthermore, if the thrust force is large and the rotational speed is high, it may cause seizing.
[0007]
In JP-A-59-106719, JP-A-58-22515, etc., an outer ring for a cylindrical roller bearing produced by subjecting a metal material to forging or cutting, the inner surface of the collar portion has a diameter. A structure is described that is inclined in the direction toward the inner side in the axial direction toward the outer side in the direction. According to such a structure, the friction acting between the inner surface of the flange and the end surface of the cylindrical roller can be reduced, the power loss can be kept low, and the occurrence of seizure can be suppressed. However, the outer ring for cylindrical roller bearings made by forging or cutting metal materials not only increases the manufacturing cost, but also increases the thickness in the radial direction, so the compressor for car coolers and suspension for motorcycles It is difficult to incorporate it into a rotation support part such as a steering gear. On the other hand, in the case of an outer ring for a shell type needle bearing formed by bending a metal plate as shown in FIGS. 15 to 16, the manufacturing cost can be kept low, and the thickness dimension in the radial direction Is also suppressed. However, the edge of the folded portion 5a (or 5b) cannot be inclined in the above direction, and improvements are desired from the viewpoint of reducing power loss and preventing seizure.
The manufacturing method of the outer ring for shell type needle bearings of the present invention is invented in view of such circumstances .
[0008]
[Means for Solving the Problems]
The outer ring for a shell type needle bearing manufactured by the manufacturing method of the present invention is formed into a cylindrical shape by bending a metal plate in the same manner as the conventional outer ring for a shell type needle bearing described above, and both end edges in the axial direction are formed. Folding portions are formed by folding back 180 degrees inward in the diameter direction, and the end edges of the folded portions are directly opposed to the end surfaces of the needles.
[0009]
Particularly, in the outer ring for a shell type needle bearing manufactured by the manufacturing method of the present invention, the end edge of each folded portion is inclined in the direction toward the inner side in the axial direction toward the outer side in the diameter direction, and the diameter of the end edge is increased. It is characterized in that the direction outer end position is substantially matched with the track surface position provided on the inner peripheral surface of the outer ring.
[0010]
In the manufacturing method of the present invention for producing such an outer ring for a shell needle bearing , the first folded portion is formed by folding one end edge of a cylindrical metal plate 180 degrees, and then the first folded portion is formed. By applying a surface pressing process to the edge of the folded part, the edge of the first folded part is inclined inward in the axial direction as it goes outward in the diameter direction, and the outer edge in the diameter direction of the edge The position of the metal plate is made to substantially coincide with the position of the raceway surface provided on the inner peripheral surface of the outer ring, and then the other end edge of the metal plate, which has been inclined at a predetermined angle in advance, is turned back by 180 degrees. And the edge of the second folded portion is inclined in the direction toward the inside in the axial direction toward the outside in the diametrical direction, and the diametrically outer end position of the end edge is provided on the inner peripheral surface of the outer ring. Almost match the position of the track surface.
[0011]
[Action]
In the case of the outer ring for the shell type needle bearing manufactured by the manufacturing method of the present invention as described above, the edge of each folded portion is inclined in the direction toward the inner side in the axial direction toward the outer side in the diametrical direction. Since the outer edge position in the diameter direction of the end edge substantially coincides with the position of the raceway surface provided on the inner peripheral surface of the outer ring, the end edge of each folded portion and the end face of the needle are the diameter of the end edge and the end face. They are in contact with each other at the outer ends in the direction. Therefore, even when the needle rotates in a state where a force in the thrust direction is applied, the contact state between the end surface of each needle and the end edge of the folded portion becomes a contact state close to rolling contact. As a result, it is possible to reduce friction loss and prevent seizure.
Moreover, shell type needle bearing outer rings made by bending a metal plate are cheaper to manufacture and thicker in the radial direction than those made by forging or cutting metal materials. Can be kept small. For this reason, it is possible to realize a structure suitable for incorporation in a rotation support portion such as a car cooler compressor, a suspension for a two-wheeled vehicle, or a steering gear.
[0012]
【Example】
1 to 4 show an example of an outer ring for a shell type needle bearing manufactured by the manufacturing method of the present invention . The cylindrical metal plate is formed in the diameter direction (FIG. 1, FIG. 1) at both ends in the axial direction (left and right direction in FIGS. 1 and 3) of the outer ring 1b. The folded portions 5a and 5b are formed by folding 180 degrees inwardly (in the vertical direction of 3). The curvature radii of the folded portions 5a and 5b are made sufficiently small so that the positions of the outer peripheral surfaces 7 and 7 of the folded portions 5a and 5b substantially coincide with the positions of the inner peripheral surface 8 that is the raceway surface of the outer ring 1b. ing. The end edges 6a and 6a of the folded portions 5a and 5b are directly opposed to the end surfaces 3a and 3a of the needle 3, respectively.
[0013]
In particular, in the outer ring for the shell type needle bearing of the present example , the end edges 6a and 6a of the folded portions 5a and 5b are arranged in the diametrical direction as shown in detail in FIGS. The angle θ in the direction toward the axially inner side (the right side in FIGS. 2 and 4A, the left side in FIGS. 2 and 4B) as it goes outward (the lower side in FIGS. 2 and 4). Just tilted. Therefore, the diameter direction outer end positions of the end edges 6a, 6a substantially coincide with the track surface position which is the inner peripheral surface 8 of the outer ring 1b.
[0014]
In the case of the outer ring for the shell type needle bearing of this example configured as described above, the end edges 6a, 6a of the folded portions 5a, 5b and the end faces 3a, 3a of the needles 3 are the end edges 6a, 6a and the end faces. The portions 3a and 3a are in contact with each other at the portions near the outer ends in the diameter direction. Therefore, even when a force in the thrust direction is applied and the needle 3 rotates in a state where any one of the end edges 6a and any one of the end faces 3a is in contact, the end face 3a of each needle 3 and the folded portion 5a (5b) The contact state with the edge 6a is a contact state close to rolling contact. As a result, the frictional force acting on the contact portion is reduced, heat generation at the contact portion is reduced, and friction loss can be reduced and seizure prevention can be achieved. The tilt angle θ of each of the end edges 6a, 6a is sufficient in terms of function if it is about 1 to 5 degrees, but may be slightly larger than this angle.
[0015]
Next, FIGS. 5 to 10 show an embodiment of the manufacturing method of the present invention in which an outer ring for a shell type needle bearing as described above is manufactured . First, after one end edge portion (lower end edge portion in FIGS. 5 to 6) of the metal plate formed in a cylindrical shape is turned back by 180 degrees to form the turn-up portion 5a which is the first turn-back portion, FIGS. As shown in FIG. 2, surface pressing is applied to the edge 6a of the folded portion 5a. That is, in a state where the metal plate on which the folded portion 5a is formed is held in the die 9, the punch 10 is inserted into the metal plate, and the edge of the folded portion 5a is formed by the step portion 11 formed on the punch 10. 6a is strongly pressed, and this edge 6a is moved in the axial direction (the vertical direction in FIGS. 5 to 6) toward the outer side (left side in the same figure) in the diameter direction (left and right direction in FIGS. 5 to 6) by the angle θ. It is inclined in the direction toward the upper side of the figure.
[0016]
Next, as shown in FIGS. 7 to 8, the edge 14 of the metal plate is inclined by a predetermined angle in a predetermined direction. That is, the metal plate on which the folded portion 5a is formed is held in the receiving mold 13 with the folded portion 5a being abutted against the receiving portion 12, and the tip of another punch 15 is placed inside the metal plate. insert. Then, the step edge 16 formed on the outer peripheral surface of the punch 15 is abutted against the edge 14 to incline the edge 14. Note that the inclination direction and the inclination angle α of the edge 14 are experimental so that the inclination angle θ of the edge 6a after the formation of the folded portion 5b, which is the second folded portion described below, becomes an appropriate value. Stipulated in
[0017]
In this way, if the edge 14 of the metal plate is inclined, the other end edge of the metal plate having the edge 14 (the upper edge in FIGS. 7 to 8) is removed from the state shown in FIG. The folded portion 5b as the second folded portion is formed by folding back 180 degrees to the state shown in FIG. In this state, the edge 6a of the folded portion 5b is in the axial direction (vertical direction in FIG. 10) inside (lower side in the figure) toward the outer side (right side in the figure) in the diameter direction (left and right direction in FIG. 10). Inclined at an angle θ (1 to 5 degrees) in the direction toward. The action of the outer ring for the shell type needle bearing manufactured by the manufacturing method of the present invention configured as described above is as described above.
[0018]
In addition, the shape of the edge 6a of each folding | returning part 5a, 5b does not necessarily need to be a simple mortar shape, For example, it can also be set as a shape as shown to FIG. 11 (A)-(C). First, the first example shown in (A) is one in which a right-angle portion is left only at the outer peripheral edge, the second example shown in (B) is one that is inclined while being curved convexly, and shown in (C). In the third example, the convexly curved inclined surface and the right-angled portion are combined. In any case, the contact state between the end edge 6a and the end surface 3a of the needle 3 (see FIGS. 1 and 2) can be made close to rolling contact.
[0019]
In addition, a shell-type needle bearing constructed by incorporating an outer ring for a shell-type needle bearing manufactured by the manufacturing method of the present invention does not necessarily have to be provided with a cage. Needle bearings can also be used. Furthermore, the shape of the end surface 3a of the needle 3 combined with the outer ring for the shell type needle bearing manufactured by the manufacturing method of the present invention does not necessarily have to be flat, and may swell in a spherical shape as shown in FIG. . However, in this case, the inclination angle θ of each folded portion 5a (5b) is slightly increased.
[0020]
【The invention's effect】
Since the manufacturing method of the outer ring for the shell type needle bearing of the present invention is configured and operates as described above, the rotation support portion incorporating the obtained shell type needle bearing rotates while receiving the force in the thrust direction. However, friction loss and heat generation due to friction can be reduced. As a result, it is possible to reduce power loss and prevent seizure, and to obtain a high-performance and highly reliable rotation support portion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a shell needle bearing incorporating an outer ring manufactured by the manufacturing method of the present invention.
2 is an enlarged view of a main part of FIG. 1, in which (A) shows the A part of FIG. 1 and (B) shows the B part.
FIG. 3 is a sectional view showing only an outer ring.
4 is an enlarged view of a main part of FIG. 3, in which (A) shows the A part of FIG. 3 and (B) shows the B part.
FIG. 5 is a cross-sectional view showing a state in which the edge of the first folded portion is processed.
6 is an enlarged view of a portion X in FIG.
FIG. 7 is a cross-sectional view showing a state in which the other end edge of the metal plate is processed.
FIG. 8 is an enlarged view of a Y part in FIG.
FIG. 9 is a diagram showing the other end edge portion of the metal plate whose edge has been processed, in a state before being turned back;
FIG. 10 is a cross-sectional view showing a state in which the other end edge portion is folded to form a second folded portion.
FIG. 11 is a cross-sectional view showing three examples of another shape of the folded portion edge.
FIG. 12 is a half sectional view of a full roller needle bearing.
FIG. 13 is a partial cross-sectional view of a shell-type needle bearing having a convex end surface of the needle.
FIG. 14 is a half sectional view showing a first example of a conventional shell type needle bearing.
FIG. 15 is a half sectional view showing the second example.
16 is an enlarged view of a main part of FIG. 15, in which (A) shows the A part of FIG. 15 and (B) shows the B part.
[Explanation of symbols]
1, 1a, 1b Outer ring 2 Holding portion 3 Needle 3a End surface 4 Cage 5a, 5b Folded portion 6, 6a End edge 7 Outer surface 8 Inner surface 9 Die 10 Punch 11 Step portion 12 Receiving portion 13 Receiving die 14 End edge 15 Punch 16 step

Claims (1)

金属板を曲げ形成して成る円筒の軸方向両端縁部を、直径方向内方に向けそれぞれ180度ずつ折り返す事により折り返し部として、各折り返し部の外周面位置と上記円筒の内周面位置とをほぼ一致させ、上記各折り返し部の端縁をそれぞれニードルの端面に直接対向させるシェル型ニードル軸受用外輪の製造方法であって、円筒状に形成された金属板の一端縁部を180度折り返す事で第一の折り返し部を形成した後、この第一の折り返し部の端縁に面押し加工を施す事により、この第一の折り返し部の端縁を直径方向外側に向かう程軸方向内側に向かう方向に傾斜させると共に、この端縁の直径方向外端位置を、外輪の内周面に設けた軌道面位置とほぼ一致させ、次いで、予めその端縁を所定角度に傾斜させた、上記金属板の他端縁部を180度折り返して第二の折り返し部を形成し、この第二の折り返し部の端縁を直径方向外側に向かう程軸方向内側に向かう方向に傾斜させると共に、この端縁の直径方向外端位置を、外輪の内周面に設けた軌道面位置とほぼ一致させるシェル型ニードル軸受用外輪の製造方法。The axial end edges of the cylinder formed by bending the metal plate are folded back 180 degrees each inward in the diametrical direction, thereby turning the outer circumferential surface position of each folded portion and the inner circumferential surface position of the cylinder. In the outer ring for the shell type needle bearing in which the end edges of the folded portions are directly opposed to the end surfaces of the needles, respectively, and the one end edge portion of the cylindrical metal plate is folded back 180 degrees. After forming the first folded portion by this, by applying a surface pressing process to the edge of the first folded portion, the edge of the first folded portion is moved inward in the axial direction toward the outer side in the diameter direction. The metal in which the outer edge position in the diameter direction of the edge is substantially coincided with the position of the raceway surface provided on the inner peripheral surface of the outer ring, and then the edge is inclined in advance at a predetermined angle. The other edge of the plate The second folded portion is formed by folding back at 80 degrees, and the edge of the second folded portion is inclined in the direction toward the inner side in the axial direction toward the outer side in the diameter direction, and the outer end position in the diameter direction of the end edge is set to be inclined. A method of manufacturing an outer ring for a shell type needle bearing that substantially matches the position of the raceway surface provided on the inner peripheral surface of the outer ring.
JP07736493A 1993-03-12 1993-03-12 Method for manufacturing outer ring for shell type needle bearing Expired - Lifetime JP3669716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07736493A JP3669716B2 (en) 1993-03-12 1993-03-12 Method for manufacturing outer ring for shell type needle bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07736493A JP3669716B2 (en) 1993-03-12 1993-03-12 Method for manufacturing outer ring for shell type needle bearing

Publications (2)

Publication Number Publication Date
JPH06264930A JPH06264930A (en) 1994-09-20
JP3669716B2 true JP3669716B2 (en) 2005-07-13

Family

ID=13631857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07736493A Expired - Lifetime JP3669716B2 (en) 1993-03-12 1993-03-12 Method for manufacturing outer ring for shell type needle bearing

Country Status (1)

Country Link
JP (1) JP3669716B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147870B2 (en) * 2002-08-30 2008-09-10 日本精工株式会社 Shell needle roller bearing and shell outer ring manufacturing equipment
JP4457601B2 (en) * 2003-07-30 2010-04-28 日本精工株式会社 Shell needle bearing
JP4552896B2 (en) 2006-05-18 2010-09-29 株式会社ジェイテクト Shell roller bearing
JP5256871B2 (en) * 2008-06-13 2013-08-07 日本精工株式会社 Bottom shell-type full complement roller bearing and universal joint

Also Published As

Publication number Publication date
JPH06264930A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US5007747A (en) Radial roller bearing
JPS5913369Y2 (en) cylindrical roller bearing
JPH08296653A (en) Automatic aligning roller bearing having cage
JP2006322564A (en) Bearing
JP2005256917A (en) Sliding bearing
JP2008175310A (en) Thrust roller bearing cage and thrust roller bearing
JP4326159B2 (en) Ball bearing
JP4527912B2 (en) Roller with cage
JP3669716B2 (en) Method for manufacturing outer ring for shell type needle bearing
JP2019211084A (en) Hub unit bearing and manufacturing method thereof, and automobile and manufacturing method thereof
JP2001173665A (en) Roller bearing
US20200271161A1 (en) Thrust roller bearing
JP3480000B2 (en) Rolling bearing
JPH10508085A (en) How to adjust the clearance of a rolling bearing
JP4090085B2 (en) Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls
JPH09236131A (en) Roller bearing
JP5023980B2 (en) Shield plate fixing method and rolling bearing
JP3649486B2 (en) Sintered bearing and manufacturing method thereof
JP2615959B2 (en) Spherical roller bearing
JP2001241450A (en) Rolling bearing unit for supporting wheel and its manufacturing method
JP2003120684A (en) Thrust roller bearing
JPH0687719U (en) Shell type needle bearing
JPH102326A (en) Composite bearing
JP2006200672A (en) Thrust roller bearing
JP6781920B1 (en) bearing

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

EXPY Cancellation because of completion of term