JP3669485B2 - Winding method of flat wire - Google Patents

Winding method of flat wire Download PDF

Info

Publication number
JP3669485B2
JP3669485B2 JP2000381247A JP2000381247A JP3669485B2 JP 3669485 B2 JP3669485 B2 JP 3669485B2 JP 2000381247 A JP2000381247 A JP 2000381247A JP 2000381247 A JP2000381247 A JP 2000381247A JP 3669485 B2 JP3669485 B2 JP 3669485B2
Authority
JP
Japan
Prior art keywords
winding
shaft
core shaft
wire
flat wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000381247A
Other languages
Japanese (ja)
Other versions
JP2002184639A (en
Inventor
純雄 高橋
益一 佐々木
一弘 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000381247A priority Critical patent/JP3669485B2/en
Publication of JP2002184639A publication Critical patent/JP2002184639A/en
Application granted granted Critical
Publication of JP3669485B2 publication Critical patent/JP3669485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coil Winding Methods And Apparatuses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小形、薄型のチョークコイルやトランス等に用いるコイルを作製するための平角線の巻線方法に関する。
【0002】
【従来の技術】
従来から線材を巻線する方法およびその装置について、回転軸にボビンを取り付けて巻線する構成や、固定軸にボビンを取り付けて線材をフライヤーで巻線する構成が知られ、それらの構成において、ボビンに替えて磁性体などの芯材を取り付けて巻線することや、ボビンを用いないで巻線して空芯のコイルを得ることも知られている。それら線材の繰り出しにおいては、線材供給リールを取り付けた回転軸を電動機等でトルク制御し線材に張力を与える構成や、台座に載置した線材供給リールから線材を巻き解しながら引き出し、引き出した線材が巻き付けられたプーリにブレーキ手段を働かせて線材に張力を与え、線材の張力を揺動アーム等で検出してブレーキ手段を制御し線材に所定の張力を与える構成が知られる。
【0003】
そうして、円形のボビンや芯材に巻線したり、円形の空芯になるコイルを巻線すると、1ターンの巻線中における線材の走行速度に急激な変化は生じないが、円形でないボビンや芯材に巻線したり、円形でない空芯になるコイルを巻線すると、1ターンの巻線中における線材の走行速度に繰り返しの変化が生じる。巻線を速くすると線材の走行は振動しているような状態になる。それでも揺動アーム等が緩衝手段として働き、線材の断面が円形の場合は巻かれた線材が崩れないで巻線できるが、条件によっては巻線を速くすると、巻かれた線材が崩れたり断線する。また、線材の断面が角形である平角線や一方が薄い角形である箔のような平角線であると、極端に巻線を遅くすると巻線できても実用的な速さでなく、満足できる状態では巻線ができない。
【0004】
最近は線材の断面が円形の丸線を用いたコイルに比べて、平角線を用いたコイルは導体の占積率が高くなり、平角線を用いたコイルの必要性が高くなってきている。すなわち、丸線を用いたコイルは、所要の巻数を確保するために多層巻きとなるが、接する巻線間で電圧差が大きくなる部分が生じ、層間紙を介在させたりセクション巻きをするので導体の占積率が低くなるが、平角線を用いたコイルは占積率が高く所要の巻数を単層巻きで確保でき、接する巻線間が1巻き相互であり電圧差が大きくなる部分が無く、さらに、コイルの中心軸に対して平角線の長手方向が垂直なエッジワイズ巻きは、コイル径が大きくならない特徴がある。小型化するためにエッジワイズ巻きされたコイルが放電灯のトリガートランス等に適用されている。
【0005】
線材に平角線を用いてエッジワイズ巻きする方法および装置について、なかでも空芯になるコイルを巻線するための巻き取り軸に平角線をエッジワイズ巻きする構成は、巻き取り軸に一体で径が大きいフランジを備え、巻き取り軸に直交するフランジ面でなる支持面に対し、巻き取り軸の軸方向に摺動自在な押さえ駒を備え、その押圧面が押圧し、平角線は支持面と押圧面の間の巻き取り軸に巻かれるが、支持面と押圧面で巻線された平角線を挟持して、巻き取り軸に長手方向が垂直なエッジワイズ巻きをすることが知られている。巻線の進行に伴い押さえ駒が移動して支持面と押圧面の距離が離間する。しかし、いずれも例に示されるコイルは円形の空芯になるコイルであり、1ターンの巻線中における平角線の走行速度に急激な変化は生じないものであるが、巻線を速く確実にすることは丸線の巻線より難しい。しかも、円形でない空芯になるコイルを巻線しようとすると、1ターンの巻線中における平角線の走行速度に繰り返しの変化が生じ、極端に平角線の走行速度を遅くしないと巻線ができないようになり、とても実用的な速さで生産ができる状態ではない。
【0006】
【発明が解決しようとする課題】
本発明は、上記の点に鑑み、線材に平角線を用いてエッジワイズ巻きする方法、なかでも空芯になるコイルを実用的な速さで確実に巻線する方法を提供することを目的とし、とくに、円形でない空芯になるコイルを巻線する方法について、線材の厚みの一方が薄い箔のような平角線を、実用的な速さで確実にエッジワイズ巻きに巻線する平角線の巻線方法を提供することを目的とする。
【0007】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る平角線の巻線方法は、巻芯軸の軸方向にほぼ直交する第1の当接面を有する固定駒を前記巻芯軸と一体に回転するように設け、前記第1の当接面に対面し前記巻芯軸の軸方向にほぼ直交する第2の当接面と前記巻芯軸に嵌合する穴を有する押さえ駒を前記巻芯軸と一体に回転しかつ軸方向に摺動自在に設けて、前記巻芯軸にエッジワイズ巻きする平角線の巻き始め片面が前記第1の当接面に接し、前記押さえ駒を前記軸方向に押圧して前記平角線の他の片面が前記第2の当接面に接するようにし、前記第1の当接面と前記第2の当接面が前記平角線を挟持しながら前記巻芯軸を回転し、前記巻芯軸に前記平角線が巻かれることで前記押さえ駒は前記軸方向に押されて摺動し、前記第1の当接面と前記第2の当接面間にエッジワイズ巻きする場合において、前記巻芯軸の軸方向に直交する所定位置に前記平角線の走行に抵抗を生じるブレーキ手段を備え、
前記ブレーキ手段は前記押さえ駒と一体に前記巻芯軸の軸方向に空気圧シリンダの押圧を用いて移動させ、
前記巻芯軸の軸方向に直交する断面形状が円形でなく1ターンの巻線中における平角線の走行速度が繰り返し変化するエッジワイズ巻きを実行することを特徴としている。
【0018】
【発明の実施の形態】
以下、本発明に係る平角線の巻線方法の実施の形態を図面に従って説明する。
【0019】
図23は、本実施の形態で作製する円形でない空芯になるコイル100であり、同図(A)は斜視図、同図(B)は空芯の方向から見た側面図、同図(C)は空芯に直交する方向から見た正面図、同図(D)は平面図である。同図(B)〜(D)はコイル100を3面から示す各図に寸法を記している。ここでは、線材の平角線10は幅1mmに厚みが0.12mmであり、幅に比べて厚みが薄い平角線と言える。また、円形でない空芯は幅が9.5mmで長さが約17mmであり、長さの両端は半円をなしており、平角線10は幅1mmの方向がコイル100の中心軸に対して垂直なエッジワイズ巻きである。ここに示す寸法は一例であるが、このコイル100について実施の形態を説明する。
【0020】
図2乃至図4は巻線装置の全体を示す外観図である。Fは床面であり、架台1は下面に螺着する脚2で床Fに接し、螺着する脚2の突出を短くするとキャリア3が床Fに接して移動自在にできる。架台1は上板4の上面に巻線装置の主要な機構を固定する。すなわち、巻線機構5、繰り出し機構6、ガイド機構7、切断機構8、操作パネル9であり、これらは、架台1の上面における主要な機構の配置を示す図1、図5乃至図10に詳しく示される。図11及び図12は繰り出し機構6を拡大して示す。図13乃至図15は巻線機構5の巻芯軸11とその周りを示し、図16乃至図18は同様の部分を示すが巻線機構5の一部を変更した変形例である。詳細は後で説明する。図19は巻線機構5における固定駒12及びこれに一体化された保持片110を示し、図20は押さえ駒13の1例を示し、図21は固定駒の当接面を示し、図22は押さえ駒13の押圧面(当接面)が相違するものを示し、詳細は後で説明する。
【0021】
図2乃至図4において主要な機構の概要を説明する。架台1の正面に向かう姿勢で操作者が対面し、その操作者に対面する位置に操作パネル9が配置され、手前より奥に向かって、巻線機構5、ガイド機構7、繰り出し機構6が配置される。平角線10が巻かれたリール20は繰り出し機構6にセットする。リール20から引き出された平角線10はガイド機構7を経由して巻線機構5に至る。
【0022】
図5乃至図10において主要な機構の構成を説明する。巻線機構5では、脚15、16を架台1上面に立設し、脚15,16の上端に板17を架台1上面と平行に固定する。板17の下面に巻芯軸11を回転駆動するためのパルスモータPMが取り付けられる。脚15には穴が設けられ、ころがり軸受が嵌着されている。このころがり軸受は中間軸18を回転自在に軸支する。中間軸18の左端はパルスモータPMの出力回転軸と軸継手Clを介して連結される。また、中間軸18の左側には遮光円板19が嵌着され一体に回転する。脚15に取り付けたフォトセンサHSの検出光を遮光円板19が遮る位置にあり、遮光円板19は一部分に検出光が通過する凹部を備え、中間軸18の回転角度における所定位置をフォトセンサHSが検出する。前記中間軸18の右側の詳細は図13乃至図15又はこの変形例である図16乃至図18において後述する。
【0023】
図1等に示すように前記パルスモータPMや中間軸18の回転中心と平行に架台1上面に直線ガイドレールRlを固定する。レールRlに係合し摺動自在な複数の直線ガイドGlを備え、複数の直線ガイドGlには上に移動台21が載置、固定されて一体にレールRl上を摺動自在である。レールRl右端より右の架台1上面に空圧シリンダSlを取り付け、空圧シリンダSlのピストン軸は継手Tlを介して移動台21の右端に連結され、空圧シリンダSlの駆動によりレールRl上を移動台21が左右に移動する構成である。
【0024】
前記移動台21上のホルダ台22と空圧シリンダS2について説明する。レールRlと平行に移動台21の上面にレールR2を載置し固定する。レールR2に係合し摺動自在な直線ガイドG2を備え、直線ガイドG2には上にホルダ台22が載置し固定され一体にレールR2を摺動自在である。レールR2左端より左の移動台21上面に空圧シリンダS2を取り付け、空圧シリンダS2のピストン軸は継手T2を介してホルダ台22の左端に連結され、空圧シリンダS2の駆動によりレールR2上をホルダ台22が左右に移動する構成である。
【0025】
脚23と接離軸24について説明する。図1のように、移動台21の右側に台25が固定、立設される。台25に脚23が固定されるが、台25に対して脚23の固定位置を変えることがでさる構成である。脚23には穴が設けられころがり軸受が嵌着される。そのころがり軸受は接離軸24を回転自在に軸支する。接離軸24の回転中心はパルスモータPMの出力回転軸と中間軸18と巻芯軸11が共有する回転中心の延長にあり、同じく回転中心を共有する。また、接離軸24は脚23の右側にも突出し、図10のように、突出部分の円周上で所定の位置に凹溝24Aを備える。そうして、脚23の上面に接離軸24と平行に板26を固定する。板26は脚23の右側にはみ出しており、板26のはみ出し部分に設けた穴に接離軸24と直交する空圧シリンダS3を取り付ける。空圧シリンダS3のピストン軸は下方に突出し、突出したピストン軸は凹溝24Aに係合し接離軸24を所定の回転位置で保持する。
【0026】
前記繰り出し機構6について説明する。図5、図7及び図8には架台1上面における位置が示され、図11及び図12には繰り出し機構6の詳細が示される。2個のブロック30は架台1上面に固定、立設される。図11の側面図に示される如くブロック30の上面は段差を有し、ブロック30の低い上面には板31を固定し、板31上面にトルクモータTMが取り付けられる。一方、ブロック30の高い上面には板32を固定し、板32上面に2個の軸受33が取り付けられ、2個の軸受33はリール軸34を回転自在に軸支する。リール軸34の右端はトルクモータTMの出力回転軸と軸継手C2を介して連結される。2個の軸受33に対してリール軸34の左側はリール20を片持ち支持する構成である。軸受33に最も近い例のリール軸34にフランジ35が嵌着する。リール軸34の左端から所定の位置までねじが設けられ、リール軸34をリール20の中心穴に嵌入させてから、押さえナット36をリール軸34のねじに螺着してリール20を固定する。リール軸34によりフランジ35やリール20は一体に回転し、リール軸34とトルクモータTMの出力回転軸も軸継手C2と共に一体に回転する。
【0027】
ガイド機構7は、図4等のように架台1上面に柱立41,42を固定し、柱立41,42で柱43,44を立設する。図2及び図3のように棒45を柱43,44の上部に渡して架台1上面と平行に金具46,47を介して固定する。棒45にプーリ50を回転自在に嵌入し、プーリ50の左右にカラー51,52を嵌着してスラスト方向を固定する。プーリ50の外周には断面半円形あるいは凹形の溝を備える。繰り出し機構6から引き出した平角線10をプーリ50の溝に支持させて案内し、平角線10を巻線機構5に引き回す構成である。
【0028】
図4、図5、図7乃至図9に示すように、前記切断機構8は、架台1上面に台60を固定し、台60上面にレールR3を固定し、レールR3に係合し摺動自在な直線ガイドを備え、該直線ガイドに移動台61を載せて固定し、レールR3に案内されて移動台61が前後に移動自在にできる構造である。移動台61の上部には第1及び第2の空圧ニッパ71,72が載置され固定されている。空圧ニッパ71,72は後部に空圧シリンダを備え、空圧シリンダに空圧を供給すると先端側の一対の刃が接する。この一対の刃の間に平角線10を位置させると、一対の刃は平角線10を挟持して切断できる。移動台61は台60に固定した図示しない空圧シリンダのピストン軸に連結されており、該空圧シリンダの駆動により前後に移動する。
【0029】
図13乃至図15と図19乃至図21において前記巻線機構5の詳細を説明する。図13において、巻芯軸11の左端は中間軸18の右端と固着されている。中間軸18と巻芯軸11は同じ回転中心を共有する。また、右端に接離軸24が示される。接離軸24の左端には固定駒12が固着されている。接離軸24と固定駒12は同じ回転中心を共有する。従って、中間軸18と巻芯軸11と固定駒12と接離軸24は同じ回転中心である。架台1の上板4の上面にレールRlが固定され、レールRlを摺動自在な直線ガイドGl上に移動台21が載置固定されており、移動台21はレールRlを摺動自在であるが、さらに、レールRlと平行に移動台21の上面にレールR2を固定する。レールR2に係合し摺動自在な直線ガイドG2を備え、直線ガイドG2は上にホルダ台22が載置、固定され一体にレールR2を摺動自在である。ホルダ台22の垂直部には、図14のように、凹字形のホルダ板80がボルト止めされている。ホルダ板80はレールR2に直交する方向に立設する。ホルダ81は巻芯軸11の延長方向から見て四辺形で四隅が面取りされた多角形をしており、巻芯軸11に直交する方向から見て所定の厚みを有し、該厚みのほぼ中間で上下方向に凹溝81A,81Bを備える。
【0030】
図14には凹溝81A,81Bの幅方向が示されないが、図5において幅方向が示される。ホルダ81はホルダ板80の凹字形にはまり込むように位置し、さらにホルダ板80の厚みが凹溝81A,81Bの各々にはまりこむ構成である。すなわち、ホルダ板80はホルダ81を巻芯軸11に平行な方向を拘束し、巻芯軸11に直交する方向は凹溝81A,81Bに沿い摺動自在にする構成である。
【0031】
前記ホルダ81は厚み方向に穴を備え、その穴にころがり軸受が嵌着される。ころがり軸受の内輪には押さえ駒13の外周(外径)が嵌着する。押さえ駒13は鍔と止め輪溝を備え、前記ころがり軸受は一方端が鍔に当接し他方が止め輪溝に装着した止め輪で保持されおり、押さえ駒13はホルダ81に嵌着したころがり軸受で回転自在に保持されている。
【0032】
前記押さえ駒13は図20に示される外形をしており、ホルダ81側のころがり軸受による回転中心と同軸に中心に穴13Aを備える。穴13Aは巻芯軸11の外周(外径)に嵌合する。巻芯軸11の外周は円形の中心から等距離に平行面を加えた長円形状にしてあり、穴13Aも円形の中心から等距離に平行面を加えた長円形状にしており、穴13Aと巻芯軸11の嵌合は、巻芯軸11の方向に穴13Aが摺動自在だが回転方向が拘束される関係である。すなわち、押さえ駒13は巻芯軸11の方向に摺動自在であるが回転方向が拘束される。巻芯軸11と押さえ駒13の嵌合精度を高くし、従って、ホルダ81とホルダ板80の係合関係を上述した構成(ホルダ板80はホルダ81を巻芯軸11に平行な方向を拘束し、巻芯軸11に直交する方向は凹溝81A,81Bに沿い摺動自在にする構成)にすることにより、不必要な部分に競り合いを生じないようにしている。
【0033】
図13のように巻芯軸11は、軸芯に直交する方向に穴11Aと、右端に傾斜溝11Cと、傾斜溝11Cの底から穴11Aに至るスリット11Bを備える。これは巻芯軸11において、穴11Aを支点にスリット11Bの両側片が撓むことが可能な構成である。撓む構成は巻芯軸11に平角線10を巻いて取り外すときに用いる。スリット11Bと傾斜溝11Cの役目については後述する。
【0034】
接離軸24の左端は回転中心が同一で外径を細くした突出部24Aを備える。一方、固定駒12は対応する嵌合穴を備え突出部24Aが嵌入し、嵌合穴に直交する方向にねじ穴を設けて止めねじで固定する。接離軸24と固定駒12は回転中心を同じくする回転体であり、一体になり回転自在である。
【0035】
固定駒12の詳細は図21に示すが、図13に示す左端は巻芯軸11の右端が所定のはめ合い精度で嵌合する凹穴部12Aを備える。巻芯軸11と固定駒12と接離軸24は、凹穴部12Aに巻芯軸11の右端が嵌入し、回転中心を同じくして一体になり回転自在の構成である。さらに凹穴部12Aの底面にねじ穴12Bを設け、駒82は中心に穴を備え前記ねじ穴12Bにボルトで固定される。駒82は台形をしており傾斜面が巻芯軸11右端の傾斜溝11Cと所定の精度で嵌合する。傾斜溝11Cに駒82が嵌合すると巻芯軸11の右端が撓まないように保持する(巻芯軸は軸方向に一様な外周形状を保つ)。巻芯軸11に平角線10を巻くときには撓まないように保持して行う。
【0036】
固定駒12の左端面(巻芯軸の軸方向にほぼ直交する当接面)と押さえ駒13の右端面(巻芯軸の軸方向にほぼ直交する当接面)は、巻芯軸11にその左端面と右端面の間で平角線10をエッジワイズ巻きで巻線するとき、その巻線を挟持し、左端面と右端面は共同して平角線が所定の巻線になるように働き、そのために右端面と左端面は対応した形状にしておく。つまり、巻芯軸11にエッジワイズ巻きする平角線10の巻き始め片面が固定駒12側の当接面に接し、平角線の他の片面が押さえ駒13側の当接面に接するようにし、それらの当接面が前記平角線を挟持しながら巻芯軸11を回転駆動することで、巻芯軸11に平角線10が巻かれ、これに伴い押さえ駒13は巻芯軸11の軸方向に押されて摺動、後退するようになっている。
【0037】
図20(A)乃至(C)のように、前記押さえ駒13の右端面(当接面)は、外縁部がなだらかに後退するテーパー面90となっており、その内側は図20(C)の斜線部91を除き平坦面92(最も高い部分)となっている。斜線部91では図20(C)の拡大図のように巻芯軸11の直線部からアール部にかかるところで平角線10の厚さ1枚分だけ高さが低くなる段差があり、略90度回転したところで平坦面92と同じ高さとなるように前記段差位置から徐々に高くなる傾斜面となっている。この理由は、平角線10をエッジワイズ巻きする場合、そのアール部では平角線10の内周側がゆがんだり傾いたりして見かけ上肉厚が増加するからであり、この肉厚の増加を許容できるように平角線のアール部(湾曲部)に対応する部分に前記斜線部91の如く高さの低くなる段差及びこれに続く傾斜面を設けている。この斜線部91のへこみが無いと、平角線10は固定駒12の左端面と押さえ駒13の右端面間からはみ出す現象が発生し易く、実用的な速度での巻線が困難になる。
【0038】
図21(A)のように前記固定駒12の左端面は、外縁部がなだらかに後退するテーパー面105となっており、その内側の先端面の斜線部106に高さが平角線10の厚さ1枚分に相当する分低くなった段差及びこれに続く傾斜面が形成されている。つまり、段差により仮想線で示す平角線10の巻始めが位置するところが平角線10の厚さ1枚分に相当して低くなっており、図21(B)のように1周するのに伴い徐々に高さが高くなるように斜線部106の傾斜面が形成されている。この理由は、巻始めの平角線10に1周巻いた後の平角線10が引っ掛かる問題を回避するためである。
【0039】
図13のように、固定駒12の左側で外径を小さくした部分を設け、図19のように、回転中心に穴を備える外形がZ字形をした保持片110をそこに嵌着する。固定駒12と保持片110は一体になり回転する構成である。保持片110は穴に対して回転対称形である。その一方の端に平角線10の巻線端を保持する蝶ねじ112による保持端113を備える。平角線10の先端を保持端113で挟持してから巻芯軸11を回転させて巻線することになる。保持片110は回転対称形であるため停止した位置を保つ筈であるが、保持端113があることで一方の重量が勝り、そのままにしておくと保持端113が最も下方に位置することになる。従って、保持端113が下方にあることから作業を開始すると位置が一定して都合がよい利点が生じる。
【0040】
図13乃至図15と、その部分の変形例である図16乃至図18とに関し相違点について説明(主にブレーキ手段を説明)する。
【0041】
図13乃至図15において、ホルダ台22の上にL字形の脚114を固定して立設する。脚114の上端に板115をボルトで固定する。ボルト穴は長穴であり固定位置を所定の範囲で変更することが可能である。板115の先端にブレーキの基板116をボルトで固定する。ボルト穴は長穴であり固定位置を所定の範囲で変更することが可能である。基板116はねじ穴を備えブレーキの押板117をボルト117A,117Bで取り付ける。基板116と押板117の対向面には各々ブレーキシートBl,B2を固着してあり、ブレーキシートBlとB2間に平角線10を通す。これらの基板116、押板117、各々ブレーキシートBl,B2、基板116と押板117との締め付け手段がブレーキ手段を構成している。ブレーキシートBl,B2には例えばフエルトシートあるいは皮革シートあるいは合成樹脂シートを用いる。ブレーキシートBl,B2と平角線10が摩擦して走行に抵抗を生じる構成である。介在物がないので直接に平角線10の走行にブレーキ作用を及ぼすことが可能な利点がある。ボルト117A,117Bの締め付け量を加減して基板116に対する押板117の間隔を変更し、ブレーキシートBl,B2が平角線10を挟持する力を加減してブレーキ作用を調節する。
【0042】
図16乃至図18の変形例では、板115の先端にブレーキとガイド溝の基板118をボルトで固定する。ボルト穴は基板116と同様である。基板118は平角線10を挟持する部分を上下に2個所備える。上部はブレーキ手段をなす部分でねじ穴を備え、ブレーキの押板117をボルト117A,117B(図では蝶ねじを用いている)で取り付ける。基板118と基板117の対向面には各々ブレーキシートBl,B2を固着してあり、ブレーキシートBlとB2間に平角線10を通す。ブレーキシートの材質や作用は図13乃至図15の説明と同じである。下部は平角線のガイド手段をなす部分であり、基板118の表面に一部高い面を備え平角線10が通るガイド溝118Aを設ける。ガイド溝118Aの左右にねじ穴を備え、溝のカバー板119をボルト119A,119Bで取り付ける。ガイド溝118Aはカバー板119が覆い蓋をされた状態になる。平角線10は溝118Aを案内されて通り位置が定まることになる。なお、図16乃至図18の変形例において、その他の構成は図13乃至図15と同様であり、同一又は相当部分に同一符号を付して説明を省略する。
【0043】
以上の構成において動作を説明する。始めに、巻芯軸11や中間軸18などパルスモータPMの出力回転軸に連結されている側は、パルスモータPMにより所定の回転位置にあり、他方の接離軸24は拘束されない状態で保持端113の重さが働きこれが下方位置にあり、かつ図10の空圧シリンダS3のピストン軸を出して接離軸24の凹溝24Aに係合し拘束している。また、図1の空圧シリンダSlのピストン軸を出し移動台21が左に移動し、巻芯軸11の右端を固定駒12の左端が押圧する関係になる。回転方向で巻芯軸11と接離軸24は予め所定の位置にあり、接離軸24と固着されて一体の固定駒12も予め回転方向で所定の位置にあり、その所定の位置で巻芯軸11右端は固定駒12の凹穴部12Aに嵌入し、そうして巻芯軸11側と接離軸24側が回転方向で一体になる。続いて、空圧シリンダS2のピストン軸を出しホルダ台22が右に移動し、押さえ駒13は巻芯軸11を摺動し押圧面(当接面)が固定駒12の左端になる押圧面(当接面)に当接する。始めに空圧シリンダSlにより固定駒12は巻芯軸11に押圧されており、固定駒12の押圧面に押さえ駒13の押圧面を当接する圧力は空圧シリンダS2により加減する。
【0044】
固定駒12の押圧面と押さえ駒13の押圧面間に平角線10を挟持し、平角線10を巻芯軸11に巻線することでコイル100が得られるのであるが、巻線された平角線10すなわちコイル100を挟持する押さえ駒13は巻芯軸11を摺動して後退可能であり、押さえ駒13が押圧する力は空圧シリンダS2に加える空圧で生じる。この押圧力は巻芯軸11に平角線10が巻線され押さえ駒13が押されて戻る程度の力に設定する。そうして、ばねによる付勢と異なり、押さえ駒13の位置により押圧力が変化したりすることがなく、押圧力の設定も容易であり、固定駒12の押圧面から押さえ駒13の押圧面は巻線に伴い離間することになる。
【0045】
続いて、図5等のように線材として平角線10が巻かれたリール20をリール軸34にセットし、押さえナット36で固定するとリール20とリール軸34は一体に回転する。トルクモータTMの出力回転軸も一体に回転し、トルクモータTMを制御してリール軸34を正転あるいは逆転するトルク制御ができる。そして、リール20から平角線10を引き出して図3等に示すガイド機構7のプーリ50に懸架する。ガイド機構7に、プーリ50に懸架される平角線10の張力を検出する手段を付加し、検出した張力の信号に対心してトルクモータTMのトルク制御を行い、プーリ50に懸架する平角線10の張力を所定の値にフィードバック制御することも可能である。プーリ50に懸架された平角線10の先端を巻線機構5に導くが、図13乃至図15又はその変形例の図16乃至図18の構成においてはボルト117A,117Bを緩め、押板117を離し、ブレーキシートBl,B2の間に平角線10を挟持させる。さらに図16乃至図18の変形例の構成においてはボルト119A,119Bを緩め、カバー板119を離し、溝118Aに平角線10を通してからボルト119A,119Bを締める。図13乃至図15あるいは図16乃至図18の構成においてボルト117A,117Bを締める強さにより、ブレーキシートBl,B2が平角線10を挟持する圧力を変え、平角線10が走行する摩擦抵抗を変えることができる。
【0046】
ブレーキシートBl,B2を通過した(さらに図16乃至図18の変形例ではガイド溝118Aを通過した)平角線10は巻芯軸11に手前で固定駒12の左端面(当接面)に沿うよう引き下げる。引き下げた平角線10の先端を保持端113で保持片110と蝶ねじ鍔とで挟持して保持する。なお、平角線10の巻始め端を取り付けた後、前記トルクモータTMを一時的に逆転して平角線10に弛みがないように設定しておく。
【0047】
予め空圧シリンダS2に所定の圧力で空圧を供給してあるので、ホルダ台22とそこに取り付けられた一体の部分は右側に押圧しており、押さえ駒13の押圧面は固定駒12の押圧面に平角線10を挟持しながら押し付ける。平角線10はエッジワイズ巻きを始める姿勢に挟持される(平角線の巻き始め片面が固定駒側の当接面に接し、他の片面が押さえ駒側の当接面に接する)。続いて、パルスモータPMにて所定巻数に応じて回転駆動する巻芯軸11に平角線10を巻線する。このとき、固定駒13側の当接面と押さえ駒13側の当接面が平角線10を挟持しながら巻芯軸11は回転し、巻芯軸11に平角線10がエッジワイズに巻かれることで押さえ駒13は巻芯軸11の軸方向に押されて摺動、後退し、両駒の当接面間に巻線が行われていく。所定巻数に達すると保持片110は保持端113が上になる姿勢に巻芯軸11を停止する。この姿勢は始めの姿勢と180度反対である。この状態で切断機構4の移動台61を前に移動する。巻き始めの平角線10を第2の空圧ニッパ72が切断し、巻き終わりの平角線10を第1の空圧ニッパ71が切断する。第1及び第2の空圧ニッパ71,72の間隔は平角線10の厚みと巻数に応じて異なり、予め巻数に対応した所定の間隔に設定しておく。
【0048】
次に、巻芯軸11に巻線された状態のコイル100外周に粘着テープを貼着して形状保持する。その後、操作パネル9の指示ボタンを押すと巻芯軸11からコイル100を取り外す動作が行われ、空圧シリンダS2のピストン軸が引き込み押さえ駒13は左に移動し、続いて、空圧シリンダSlのピストン軸が引き込み移動台21は右に移動する。移動台21の右への移動は巻芯軸11右端と固定駒12左端とを離し、同時に押さえ駒13が巻芯軸11を摺動しながら右端に達する。この過程で巻芯軸11からコイル100が右端に抜き出される。コイル100は巻芯軸11右端と固定駒12左端が離間した空間に抜き出される。この空間の下に受け手段を備えるとコイル100が落下して取り出される。受け手段に替えて作業者が手で受け取ってもよい。コイル100は巻芯軸11に平角線10を巻き付けた状態であり、押さえ駒13が巻芯軸11を摺動するとコイル100が右端に抜き出されるが、そのとき巻芯軸11に設けた穴11Aからスリット11Bが狭くなるよう撓み、巻芯軸11からコイル100が容易に抜き出されるように作用する。
【0049】
この実施の形態によれば、次の通りの効果を得ることができる。
【0050】
(1) 平角線10をエッジワイズ巻きする場合において、巻芯軸11の軸方向にほぼ直交して固定駒12の当接面と押さえ駒13の当接面を備え、両方の当接面の間に平角線10を挟持して巻芯軸11に巻線し、押さえ駒13の当接面が所定の押圧力で平角線10を押さえるが、平角線10が巻線されてコイルの幅に広がりが生じても、押さえ駒13が摺動して所定の押圧を維持できる。さらに、平角線10が巻線されてコイルの幅に広がりが生じるに従い挟持する両方の当接面の間隔が拡がる必要があるが、ここでは固定駒12の当接面を固定し、押さえ駒13の当接面が所定の押圧を維持しながら摺動するようにし、この押さえ駒13の摺動と一体にブレーキ手段が軸方向に移動する。この結果、平角線10を巻芯軸11に巻き込む位置は押さえ駒13の当接面と軸方向で同じ位置関係を保つことになり、常時安定してエッジワイズ巻きを実現できる。
【0051】
なお、ブレーキ手段を平角線10が通過する位置は、押さえ駒13の当接面の略延長面上にあるように設定することがいっそう好ましい。
【0052】
さらに、平角線10を巻芯軸11に巻き込む位置とブレーキ手段までの距離を短くし、巻き込むときの平角線10に必要な張力を充分にブレーキ手段と巻芯軸11で発生する構成とする。この構成はブレーキ手段と巻芯軸間で平角線10が張力的に独立した状態を作り出し、またこの間の平角線は僅かな質量であり、質量に依存する慣性を極端に小さくする。慣性を小さくできる仕組みであることから、巻芯軸11が円形でないエッジワイズ巻きにおいて多大の効果を発揮する。なお、巻芯軸が円形のエッジワイズ巻きにおいては従来にない安定で高速な巻線が可能になる。
【0053】
(2) また、ブレーキ手段はブレーキシートB1,B2間に平角線10を挟持して巻線するときに走行する平角線10に所定の摩擦を付与するものであり、平角線に対して慣性の増大をもたらさない構成であり、平角線に任意の張力を与える手段として究極の効果が得られる。
【0054】
(3) 巻芯軸11は軸受により片持ち支持されて突出し、突出端から支持される方向に向かい軸方向にスリット11Bを備え、押さえ駒13を支持される側から突出端に向かい摺動して、前記巻芯軸11にエッジワイズ巻きされた平角線10のコイル100を抜き取るとき、前記スリット11Bが突出端側で狭まるようにしたので、コイルの抜き取り作業が容易となる。
【0055】
(4) 前記押さえ駒13の当接面は平角線10がエッジワイズ巻きされたときのアール部に対応する位置が少なくとも部分的に低く形成されている(図20の斜線部91)。アール部では平角線10の内周側がゆがんだり傾いたりして見かけ上肉厚が増加するが、その部分に対応して当接面が低くなっていることで、その肉厚の増加を許容でき、巻芯軸11の軸方向に直交する端面が長円形等の円形でないエッジワイズ巻きにおいても実用的な速度で巻線が可能となる。
【0056】
(5) 前記固定駒12の当接面は、図21の斜線部106のように、平角線10の巻き始めが位置する部分が低く形成されているから、平角線の巻き始め部分に1周後の平角線部分が引っ掛かる問題を回避でき、巻線速度の向上を図ることができる。
【0057】
(6) 図16乃至図18の変形例のように、ブレーキ手段に隣接して平角線10を案内するガイド手段(ガイド溝118A及びその周辺)を設けることで、平角線を巻き込む位置をいっそう安定化することができる。
【0058】
(7) ホルダ板80は、図14等に示すように押さえ駒13を回転自在に保持したホルダ81を巻芯軸11に平行な方向を拘束し、巻芯軸11に直交する方向は凹溝81A,81Bに沿い摺動自在にする構成とすることにより、不必要な部分に競り合いを生じないようにしている。
【0059】
(8) 空圧シリンダS2の押圧を微調整することで、コイル100の長さ(図23(C)の38.5mmの部分)を微調整することができる。
【0060】
図22(A)〜(G)は押さえ駒13の当接面の構成の変形例をそれぞれ示すものであり、同図(A)〜(C)は巻芯軸が長円形の場合、同図(D),(E)は巻芯軸が長方円形(丸めを付けた長方形)の場合、同図(F),(G)は巻芯軸が正方円形(丸めを付けた正方形)の場合である。これらの場合、押さえ駒13の右端面(当接面)は、外縁部がなだらかに後退するテーパー面90となっており、その内側は斜線部91を除き平坦面92となっている。斜線部91では巻芯軸11の直線部からアール部にかかるところ(平角線のアール部に対応するところ)で平角線10の厚さ1枚分だけ高さが低くなる段差があって低く形成され、その後徐々に高さは平坦面92に近づくように高くなる傾斜面となっている。この場合の作用効果は図20の場合と同様である。
【0061】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0062】
【発明の効果】
以上説明したように、本発明によれば、平角線をエッジワイズ巻きする場合において、巻芯軸の軸方向に略直交して固定駒の当接面と押さえ駒の当接面を備え、両方の当接面の間に平角線を挟持して前記巻芯軸に巻線し、前記押さえ駒の当接面が所定の押圧力で平角線を押さえるようにしたので、平角線が巻線されてコイルの幅に広がりが生じても、前記押さえ駒が摺動して所定の押圧を維持できる。さらに、平角線が巻線されてコイルの幅に広がりが生じるに従い挟持する両方の当接面の間隔が拡がるが、前記押さえ駒の当接面が所定の押圧を維持しながら摺動すると共に、前記巻芯軸の軸方向に直交する所定位置に前記平角線の走行に抵抗を生じるブレーキ手段を備え、前記押さえ駒の摺動と一体にブレーキ手段が軸方向に移動し、この結果、前記巻芯軸とブレーキ手段までの距離を短くし、ブレーキ手段と前記巻芯軸間で平角線が張力的に独立した状態を作り出し、ブレーキ手段から前記巻芯軸間の平角線に作用する慣性を極端に小さくして、かつ平角線を前記巻芯軸に巻き込む位置は前記押さえ駒の当接面と軸方向で同じ位置関係を保つことにして、常時安定してエッジワイズ巻きを実現できる。
【図面の簡単な説明】
【図1】 本発明に係る平角線の巻線方法の実施の形態であって主要構成の巻線機構を示す正面図である。
【図2】全体構成の正面図である。
【図3】全体構成の側面図である。
【図4】全体構成の平面図である。
【図5】実施の形態における巻線機構、繰り出し機構及び切断機構の配置を示す平面図である。
【図6】前記巻線機構の下部機構の平面図である。
【図7】前記巻線機構、繰り出し機構及び切断機構の配置を示す左側面図である。
【図8】同右側面図である。
【図9】前記巻線機構及び切断機構の配置を示す右側面図である。
【図10】前記巻線機構の右端部における巻芯軸の回転位置を保持する機構を示す右側面図である。
【図11】前記繰り出し機構の一部を断面とした正面図である。
【図12】同じく一部を断面とした平面図である。
【図13】前記巻線機構における固定駒や押さえ駒並びにその周辺の機構を示す正断面図である。
【図14】同じく右側断面図である。
【図15】前記巻線機構における平角線の走行に抵抗を生じるブレーキ手段を示す平面図である。
【図16】巻線機構の変形例であって、その場合における固定駒や押さえ駒並びにその周辺の機構を示す正断面図である。
【図17】同じく右側断面図である。
【図18】前記変形例における平角線の走行に抵抗を生じるブレーキ手段を示す平面図である。
【図19】平角線の巻線端を保持するために固定駒側に設けられた保持片を示す右側面図である。
【図20】前記押さえ駒の構成を示す説明図である。
【図21】前記固定駒の当接面の構成を示す説明図である。
【図22】押さえ駒の変形例における当接面の構成を示す説明図である。
【図23】本発明の実施の形態で作製するコイルの例を示す説明図である。
【符号の説明】
1 架台
4 上板
5 巻線機構
6 繰り出し機構
7 ガイド機構
8 切断機構
9 操作パネル
10 平角線
11 巻芯軸
11A 穴
11B スリット
11C 傾斜溝
12 固定駒
13 押さえ駒
18 中間軸
20 リール
21,61 移動台
22 ホルダ台
24 接離軸
30 ブロック
33 軸受
34 リール軸
41,42 柱立
43,44 柱
45 棒
50 プーリ
71,72 空圧ニッパ
80 ホルダ板
81 ホルダ
81A,81B 凹溝
90,105 テーパー面
91,106 斜線部
100 コイル
110 保持片
113 保持端
116 基板
117 ブレーキの押板
B1,B2 ブレーキシート
G1 直線ガイド
PM パルスモータ
R1,R2,R3 ガイドレール
S1,S2,S3 空圧シリンダ
TM トルクモータ
[0001]
BACKGROUND OF THE INVENTION
  The present invention provides a rectangular wire for producing a small and thin choke coil or a coil used for a transformer or the like.Winding methodRelated.
[0002]
[Prior art]
Conventionally, a method of winding a wire and a device thereof are known in a configuration in which a bobbin is attached to a rotating shaft and wound, and a configuration in which a bobbin is attached to a fixed shaft and a wire is wound by a fryer. It is also known to wind by attaching a core material such as a magnetic body instead of the bobbin, or to obtain an air core coil by winding without using a bobbin. In the feeding of these wire rods, the rotating shaft to which the wire rod supply reel is attached is torque controlled by an electric motor or the like to apply tension to the wire rod, or the wire rod is drawn out and unwound from the wire rod supply reel placed on the pedestal. There is known a configuration in which a brake means is applied to a pulley around which a wire is wound to apply tension to the wire, and the tension of the wire is detected by a swing arm or the like to control the brake means to apply a predetermined tension to the wire.
[0003]
Then, when winding around a circular bobbin or core, or winding a coil that becomes a circular air core, there is no sudden change in the running speed of the wire in one turn, but it is not circular When a coil is wound around a bobbin or a core material or a coil that becomes a non-circular air core is wound, a repetitive change occurs in the traveling speed of the wire during one turn of winding. As the winding speeds up, the wire travels in a vibrating state. Still, the swing arm etc. works as a buffer, and if the cross section of the wire is circular, the wound wire can be wound without breaking, but depending on the conditions, if the winding is made faster, the wound wire breaks or breaks . In addition, if the wire is a rectangular wire with a square cross section or a foil with a thin square on one side, even if the winding is extremely slow, it is not a practical speed and can be satisfied. Winding is not possible in the state.
[0004]
Recently, a coil using a rectangular wire has a higher space factor than a coil using a round wire having a circular cross section, and the need for a coil using a rectangular wire has increased. In other words, a coil using a round wire is a multi-layer winding in order to ensure the required number of turns, but there is a portion where the voltage difference increases between the windings in contact with each other. However, a coil using a rectangular wire has a high space factor and can secure the required number of turns with a single-layer winding, and there is no part where the winding is in contact with each other and the voltage difference is large. Further, edgewise winding in which the longitudinal direction of the flat wire is perpendicular to the central axis of the coil has a feature that the coil diameter does not increase. In order to reduce the size, an edgewise coil is applied to a trigger transformer of a discharge lamp.
[0005]
Regarding the method and apparatus for edgewise winding using a rectangular wire as a wire rod, the configuration in which a rectangular wire is edgewise wound around a winding shaft for winding a coil that becomes an air core is integrated with the winding shaft. Has a large flange, a support surface made of a flange surface perpendicular to the winding shaft is provided with a pressing piece slidable in the axial direction of the winding shaft, the pressing surface is pressed, and the flat wire is connected to the supporting surface. It is wound around the winding shaft between the pressing surfaces, but it is known to sandwich the flat wire wound between the supporting surface and the pressing surface and perform edgewise winding with the longitudinal direction perpendicular to the winding shaft. . As the winding progresses, the holding piece moves and the distance between the support surface and the pressing surface is separated. However, the coil shown in each example is a coil that becomes a circular air core, and there is no sudden change in the traveling speed of the rectangular wire in the winding of one turn. It is more difficult to do than a round wire. Moreover, when trying to wind a coil that has a non-circular air core, a repetitive change occurs in the traveling speed of the rectangular wire in the winding of one turn, and winding cannot be performed unless the traveling speed of the rectangular wire is extremely slowed down. It is not possible to produce at a very practical speed.
[0006]
[Problems to be solved by the invention]
  In view of the above points, the present invention performs edgewise winding on a wire using a flat wire.Method,In particular, the coil that becomes the air core is surely wound at a practical speed.methodFor the purpose of providing, in particular, winding a coil that becomes a non-circular air coreOn the wayThen, a flat wire winding that reliably winds a flat wire like a foil with one thin wire to edgewise winding at a practical speed.methodThe purpose is to provide.
[0007]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0008]
[Means for Solving the Problems]
  To achieve the above objective,The present inventionIn the winding method of the rectangular wire according to the above, a fixed piece having a first contact surface that is substantially orthogonal to the axial direction of the core shaft is provided so as to rotate integrally with the core shaft, and the first contact A pressing piece having a second contact surface facing the surface and substantially perpendicular to the axial direction of the core shaft and a hole fitted into the core shaft rotates together with the core shaft and slides in the axial direction. One side of the flat wire that is movably provided and edgewise wound around the core shaft is in contact with the first contact surface, and the pressing piece is pressed in the axial direction to the other side of the flat wire. In contact with the second contact surface, and the first contact surface and the second contact surface rotate the core shaft while sandwiching the rectangular wire, and When the rectangular wire is wound, the pressing piece is pushed in the axial direction and slides, and edgewise winding is performed between the first contact surface and the second contact surface. In case that, a brake means for producing a resistance to running of the rectangular wire in a predetermined position perpendicular to the axial direction of the winding core shaft,
  The brake means is integrated with the holding piece in the axial direction of the core shaft.Move using the pressure of the pneumatic cylinder,
  Execute edgewise winding in which the cross-sectional shape perpendicular to the axial direction of the core axis is not circular, but the traveling speed of the rectangular wire in a one-turn winding changes repeatedly.It is characterized by that.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, winding of a rectangular wire according to the present inventionWay ofEmbodiments will be described with reference to the drawings.
[0019]
FIG. 23 shows a coil 100 having a non-circular air core manufactured in the present embodiment. FIG. 23 (A) is a perspective view, FIG. 23 (B) is a side view seen from the direction of the air core, and FIG. C) is a front view seen from a direction orthogonal to the air core, and FIG. In FIGS. 5B to 5D, dimensions are shown in the drawings showing the coil 100 from three sides. Here, the flat wire 10 of the wire has a width of 1 mm and a thickness of 0.12 mm, and can be said to be a flat wire having a thickness smaller than the width. The non-circular air core has a width of 9.5 mm and a length of about 17 mm. Both ends of the air core are semicircular, and the flat wire 10 has a width of 1 mm with respect to the central axis of the coil 100. Vertical edgewise winding. Although the dimension shown here is an example, an embodiment of the coil 100 will be described.
[0020]
2 to 4 are external views showing the entire winding device. F denotes a floor surface, and the gantry 1 comes into contact with the floor F with legs 2 screwed to the lower surface, and the carrier 3 comes into contact with the floor F and can move freely by shortening the protrusion of the legs 2 to be screwed. The gantry 1 fixes the main mechanism of the winding device to the upper surface of the upper plate 4. That is, a winding mechanism 5, a feeding mechanism 6, a guide mechanism 7, a cutting mechanism 8, and an operation panel 9, which are shown in detail in FIGS. 1 and 5 to 10 showing the arrangement of main mechanisms on the upper surface of the gantry 1. Indicated. 11 and 12 show the feeding mechanism 6 in an enlarged manner. FIGS. 13 to 15 show the core shaft 11 of the winding mechanism 5 and its surroundings, and FIGS. 16 to 18 show similar parts, but are modified examples in which a part of the winding mechanism 5 is changed. Details will be described later. 19 shows the fixed piece 12 and the holding piece 110 integrated with the winding piece 5, FIG. 20 shows an example of the holding piece 13, FIG. 21 shows the contact surface of the fixed piece, and FIG. The pressing surface (contact surface) of the pressing piece 13 is different, and details will be described later.
[0021]
An outline of main mechanisms will be described with reference to FIGS. The operator faces in the posture toward the front of the gantry 1, the operation panel 9 is arranged at a position facing the operator, and the winding mechanism 5, the guide mechanism 7, and the feeding mechanism 6 are arranged from the front to the back. Is done. The reel 20 around which the flat wire 10 is wound is set in the feeding mechanism 6. The flat wire 10 drawn from the reel 20 reaches the winding mechanism 5 via the guide mechanism 7.
[0022]
The structure of the main mechanism will be described with reference to FIGS. In the winding mechanism 5, the legs 15 and 16 are erected on the upper surface of the gantry 1, and the plate 17 is fixed to the upper ends of the legs 15 and 16 in parallel with the upper surface of the gantry 1. A pulse motor PM for rotationally driving the core shaft 11 is attached to the lower surface of the plate 17. A hole is provided in the leg 15 and a rolling bearing is fitted. This rolling bearing rotatably supports the intermediate shaft 18. The left end of the intermediate shaft 18 is connected to the output rotation shaft of the pulse motor PM via a shaft coupling Cl. A light-shielding disc 19 is fitted on the left side of the intermediate shaft 18 and rotates integrally. The light-shielding disk 19 is in a position where the detection light of the photosensor HS attached to the leg 15 is shielded. The light-shielding disk 19 is provided with a concave portion through which the detection light passes, and a predetermined position at the rotation angle of the intermediate shaft 18 HS detects. Details of the right side of the intermediate shaft 18 will be described later with reference to FIGS. 13 to 15 or FIGS.
[0023]
As shown in FIG. 1 and the like, a linear guide rail Rl is fixed to the upper surface of the gantry 1 in parallel with the rotation center of the pulse motor PM and the intermediate shaft 18. A plurality of linear guides Gl that engage with the rail Rl and are slidable are provided, and the movable table 21 is placed on and fixed to the plurality of linear guides Gl so as to be slidable integrally on the rail Rl. A pneumatic cylinder S1 is mounted on the upper surface of the gantry 1 on the right side from the right end of the rail Rl. The piston shaft of the pneumatic cylinder S1 is connected to the right end of the moving base 21 via a joint Tl. The pneumatic cylinder S1 is driven on the rail Rl. The moving table 21 is configured to move left and right.
[0024]
The holder base 22 and the pneumatic cylinder S2 on the moving base 21 will be described. The rail R2 is placed on and fixed to the upper surface of the movable table 21 in parallel with the rail Rl. A linear guide G2 that engages with the rail R2 and is slidable is provided, and the holder base 22 is placed on the linear guide G2 and fixed, and the rail R2 is slidable integrally. A pneumatic cylinder S2 is mounted on the upper surface of the moving base 21 on the left side of the left end of the rail R2, and the piston shaft of the pneumatic cylinder S2 is connected to the left end of the holder base 22 via a joint T2, and the rail R2 is driven by the pneumatic cylinder S2. The holder base 22 moves left and right.
[0025]
The leg 23 and the contact / separation shaft 24 will be described. As shown in FIG. 1, a table 25 is fixed and erected on the right side of the movable table 21. The leg 23 is fixed to the base 25, but the fixing position of the leg 23 can be changed with respect to the base 25. A hole is provided in the leg 23 to fit a rolling bearing. The rolling bearing rotatably supports the contact / separation shaft 24. The rotation center of the contact / separation shaft 24 is an extension of the rotation center shared by the output rotation shaft of the pulse motor PM, the intermediate shaft 18 and the core shaft 11, and also shares the rotation center. Further, the contact / separation shaft 24 also protrudes to the right side of the leg 23, and is provided with a concave groove 24A at a predetermined position on the circumference of the protruding portion as shown in FIG. Then, the plate 26 is fixed to the upper surface of the leg 23 in parallel with the contact / separation shaft 24. The plate 26 protrudes to the right side of the leg 23, and a pneumatic cylinder S3 orthogonal to the contact / separation shaft 24 is attached to a hole provided in the protruding portion of the plate 26. The piston shaft of the pneumatic cylinder S3 protrudes downward, and the protruded piston shaft engages with the concave groove 24A to hold the contact / separation shaft 24 at a predetermined rotational position.
[0026]
The feeding mechanism 6 will be described. 5, 7 and 8 show the position on the top surface of the gantry 1, and FIGS. 11 and 12 show the details of the feeding mechanism 6. FIG. The two blocks 30 are fixed and erected on the upper surface of the gantry 1. As shown in the side view of FIG. 11, the upper surface of the block 30 has a step, the plate 31 is fixed to the lower upper surface of the block 30, and the torque motor TM is attached to the upper surface of the plate 31. On the other hand, a plate 32 is fixed to the high upper surface of the block 30, and two bearings 33 are attached to the upper surface of the plate 32, and the two bearings 33 rotatably support the reel shaft 34. The right end of the reel shaft 34 is connected to the output rotation shaft of the torque motor TM via a shaft coupling C2. The left side of the reel shaft 34 with respect to the two bearings 33 is configured to support the reel 20 in a cantilever manner. The flange 35 is fitted to the reel shaft 34 of the example closest to the bearing 33. A screw is provided from the left end of the reel shaft 34 to a predetermined position, and after the reel shaft 34 is fitted into the center hole of the reel 20, the holding nut 36 is screwed onto the screw of the reel shaft 34 to fix the reel 20. The reel 35 rotates the flange 35 and the reel 20 integrally, and the reel shaft 34 and the output rotation shaft of the torque motor TM also rotate together with the shaft coupling C2.
[0027]
As shown in FIG. 4 and the like, the guide mechanism 7 fixes the column stands 41 and 42 on the upper surface of the gantry 1 and erected the columns 43 and 44 by the column stands 41 and 42. As shown in FIGS. 2 and 3, the bar 45 is passed over the columns 43 and 44 and fixed in parallel with the upper surface of the gantry 1 via the metal fittings 46 and 47. A pulley 50 is rotatably fitted to the rod 45, and collars 51 and 52 are fitted to the left and right sides of the pulley 50 to fix the thrust direction. A groove having a semicircular or concave cross section is provided on the outer periphery of the pulley 50. The rectangular wire 10 pulled out from the feeding mechanism 6 is supported and guided by the groove of the pulley 50, and the rectangular wire 10 is drawn around the winding mechanism 5.
[0028]
As shown in FIGS. 4, 5, and 7 to 9, the cutting mechanism 8 fixes the base 60 on the upper surface of the gantry 1, fixes the rail R <b> 3 on the upper surface of the pedestal 60, and engages and slides on the rail R <b> 3. A movable linear guide is provided, a movable table 61 is mounted on the linear guide and fixed, and the movable table 61 can be moved back and forth by being guided by a rail R3. First and second pneumatic nippers 71 and 72 are placed on and fixed to the upper part of the moving table 61. The pneumatic nippers 71 and 72 are provided with a pneumatic cylinder at the rear, and when a pneumatic pressure is supplied to the pneumatic cylinder, a pair of blades on the tip side come into contact with each other. When the flat wire 10 is positioned between the pair of blades, the pair of blades can be cut while sandwiching the flat wire 10. The moving table 61 is connected to a piston shaft of a pneumatic cylinder (not shown) fixed to the table 60, and moves back and forth by driving the pneumatic cylinder.
[0029]
Details of the winding mechanism 5 will be described with reference to FIGS. 13 to 15 and FIGS. 19 to 21. In FIG. 13, the left end of the core shaft 11 is fixed to the right end of the intermediate shaft 18. The intermediate shaft 18 and the core shaft 11 share the same center of rotation. In addition, a contact / separation shaft 24 is shown at the right end. The fixed piece 12 is fixed to the left end of the contact / separation shaft 24. The contact / separation shaft 24 and the fixed piece 12 share the same center of rotation. Therefore, the intermediate shaft 18, the core shaft 11, the fixed piece 12, and the contact / separation shaft 24 are the same center of rotation. A rail Rl is fixed to the upper surface of the upper plate 4 of the gantry 1, and a movable table 21 is mounted and fixed on a linear guide Gl that can slide the rail Rl. The movable table 21 is slidable on the rail Rl. However, the rail R2 is fixed to the upper surface of the movable table 21 in parallel with the rail Rl. The linear guide G2 is slidably engaged with the rail R2, and the holder base 22 is placed and fixed on the linear guide G2 so that the rail R2 can be slid integrally. A concave holder plate 80 is bolted to the vertical portion of the holder base 22 as shown in FIG. The holder plate 80 is erected in a direction orthogonal to the rail R2. The holder 81 has a quadrangular shape with four corners chamfered when viewed from the extending direction of the core shaft 11, has a predetermined thickness when viewed from the direction orthogonal to the core shaft 11, and is substantially equal to the thickness. It has concave grooves 81A and 81B in the middle in the vertical direction.
[0030]
Although the width direction of the concave grooves 81A and 81B is not shown in FIG. 14, the width direction is shown in FIG. The holder 81 is positioned so as to fit into the concave shape of the holder plate 80, and the thickness of the holder plate 80 fits into each of the concave grooves 81A and 81B. That is, the holder plate 80 is configured to constrain the holder 81 in a direction parallel to the core shaft 11 and to slide in a direction perpendicular to the core shaft 11 along the concave grooves 81A and 81B.
[0031]
The holder 81 has a hole in the thickness direction, and a rolling bearing is fitted into the hole. The outer periphery (outer diameter) of the pressing piece 13 is fitted to the inner ring of the rolling bearing. The holding piece 13 includes a collar and a retaining ring groove. The rolling bearing is held by a retaining ring having one end abutting against the collar and the other attached to the retaining ring groove, and the retaining piece 13 is a rolling bearing fitted on the holder 81. It is held rotatably.
[0032]
The pressing piece 13 has the outer shape shown in FIG. 20, and is provided with a hole 13A in the center coaxially with the center of rotation by the rolling bearing on the holder 81 side. The hole 13A is fitted to the outer periphery (outer diameter) of the core 11. The outer periphery of the core 11 has an elliptical shape with a parallel surface equidistant from the center of the circle, and the hole 13A has an elliptical shape with a parallel surface equidistant from the center of the circle. The core shaft 11 is fitted in a relationship in which the hole 13A is slidable in the direction of the core shaft 11 but the rotational direction is restricted. That is, the pressing piece 13 is slidable in the direction of the core axis 11 but is restricted in the rotational direction. The fitting accuracy between the winding core 11 and the holding piece 13 is increased, and therefore the engagement relationship between the holder 81 and the holder plate 80 is the above-described configuration (the holder plate 80 restricts the direction of the holder 81 parallel to the winding shaft 11). In addition, the direction perpendicular to the core axis 11 is configured to be slidable along the concave grooves 81A and 81B), so that competition is not generated in unnecessary portions.
[0033]
As shown in FIG. 13, the core 11 includes a hole 11A in a direction orthogonal to the axis, an inclined groove 11C at the right end, and a slit 11B extending from the bottom of the inclined groove 11C to the hole 11A. This is a configuration in which both side pieces of the slit 11B can be bent with the hole 11A as a fulcrum in the core 11. The bending structure is used when the flat wire 10 is wound around the core shaft 11 and removed. The roles of the slit 11B and the inclined groove 11C will be described later.
[0034]
The left end of the contact / separation shaft 24 includes a protrusion 24A having the same rotation center and a narrow outer diameter. On the other hand, the fixing piece 12 is provided with a corresponding fitting hole, into which the protruding portion 24A is fitted, and is provided with a screw hole in a direction perpendicular to the fitting hole and fixed with a set screw. The contact / separation shaft 24 and the fixed piece 12 are rotating bodies having the same rotation center, and are integrally rotatable.
[0035]
The details of the fixed piece 12 are shown in FIG. 21, and the left end shown in FIG. 13 is provided with a recessed hole 12A into which the right end of the core 11 is fitted with a predetermined fitting accuracy. The core shaft 11, the fixed piece 12, and the contact / separation shaft 24 have a configuration in which the right end of the core shaft 11 is fitted into the recessed hole portion 12 </ b> A, and the rotation center is integrated and rotatable. Further, a screw hole 12B is provided on the bottom surface of the recessed hole portion 12A, and the piece 82 has a hole at the center and is fixed to the screw hole 12B with a bolt. The piece 82 has a trapezoidal shape, and the inclined surface is fitted to the inclined groove 11C at the right end of the core 11 with a predetermined accuracy. When the piece 82 is fitted into the inclined groove 11C, the right end of the core shaft 11 is held so as not to bend (the core shaft maintains a uniform outer peripheral shape in the axial direction). When the rectangular wire 10 is wound around the core shaft 11, it is held so as not to bend.
[0036]
The left end surface of the fixing piece 12 (a contact surface substantially orthogonal to the axial direction of the core axis) and the right end surface of the holding piece 13 (a contact surface substantially orthogonal to the axial direction of the core axis) are connected to the core shaft 11. When the flat wire 10 is wound by edgewise winding between the left end surface and the right end surface, the winding is sandwiched, and the left end surface and the right end surface work together so that the flat wire becomes a predetermined winding. Therefore, the right end surface and the left end surface are made to have corresponding shapes. That is, one side of the flat wire 10 that is edgewise wound around the core shaft 11 is in contact with the contact surface on the fixed piece 12 side, and the other side of the flat wire is in contact with the contact surface on the holding piece 13 side, By rotating and driving the core shaft 11 while the contact surfaces sandwich the flat wire, the flat wire 10 is wound around the core shaft 11, and accordingly, the holding piece 13 is moved in the axial direction of the core shaft 11. It slides and retreats when pushed by
[0037]
As shown in FIGS. 20A to 20C, the right end surface (contact surface) of the pressing piece 13 is a tapered surface 90 whose outer edge portion is gently retracted, and the inside thereof is shown in FIG. The flat surface 92 (the highest portion) except for the shaded portion 91 of FIG. In the hatched portion 91, as shown in the enlarged view of FIG. 20C, there is a step whose height decreases by one sheet of the flat wire 10 from the straight portion of the core shaft 11 to the rounded portion, approximately 90 degrees. The inclined surface gradually increases from the step position so as to be the same height as the flat surface 92 when rotated. The reason for this is that when the flat wire 10 is edgewise wound, the inner peripheral side of the flat wire 10 is distorted or tilted at the rounded portion, and the wall thickness is apparently increased, and this increase in wall thickness can be allowed. As described above, the step corresponding to the rounded portion (curved portion) of the flat wire is provided with a step having a lower height and the inclined surface following the step as shown by the hatched portion 91. If there is no dent in the shaded portion 91, the flat wire 10 is likely to protrude from the left end surface of the fixed piece 12 and the right end surface of the holding piece 13, and winding at a practical speed becomes difficult.
[0038]
As shown in FIG. 21 (A), the left end surface of the fixed piece 12 is a tapered surface 105 whose outer edge portion is gently retracted, and the height of the oblique line portion 106 on the inner end surface is the thickness of the flat wire 10. A step which is lowered by an amount corresponding to one sheet and an inclined surface following the step are formed. In other words, the position at which the winding start of the flat wire 10 indicated by the phantom line is located due to the step is low corresponding to the thickness of one flat wire 10, and as it goes around once as shown in FIG. The inclined surface of the hatched portion 106 is formed so that the height gradually increases. The reason for this is to avoid the problem that the flat wire 10 after being wound around the flat wire 10 at the beginning of winding is caught.
[0039]
As shown in FIG. 13, a portion having a reduced outer diameter is provided on the left side of the fixed piece 12, and a holding piece 110 having a Z-shaped outer shape with a hole at the center of rotation is fitted therein as shown in FIG. The fixed piece 12 and the holding piece 110 are configured to rotate integrally. The holding piece 110 is rotationally symmetric with respect to the hole. At one end thereof, a holding end 113 by a thumbscrew 112 for holding the winding end of the flat wire 10 is provided. After winding the end of the flat wire 10 with the holding end 113, the winding core shaft 11 is rotated and wound. Since the holding piece 110 has a rotationally symmetrical shape, it should keep the stopped position. However, if the holding piece 113 is provided, the weight of one of the holding pieces 113 is won. If the holding piece 110 is left as it is, the holding end 113 is located at the lowest position. . Therefore, since the holding end 113 is at the lower side, the position is fixed and an advantageous advantage is obtained when the work is started.
[0040]
Differences between FIGS. 13 to 15 and FIGS. 16 to 18 which are modifications of the portions will be described (mainly the brake means will be described).
[0041]
13 to 15, an L-shaped leg 114 is fixed and erected on the holder base 22. The plate 115 is fixed to the upper end of the leg 114 with a bolt. The bolt hole is a long hole, and the fixing position can be changed within a predetermined range. A brake substrate 116 is fixed to the tip of the plate 115 with a bolt. The bolt hole is a long hole, and the fixing position can be changed within a predetermined range. The board 116 has a screw hole and a brake push plate 117 is attached with bolts 117A and 117B. Brake sheets Bl and B2 are fixed to the opposing surfaces of the substrate 116 and the push plate 117, respectively, and the flat wire 10 is passed between the brake sheets Bl and B2. The board 116, the push plate 117, the brake sheets Bl and B2, respectively, and the fastening means for the board 116 and the push plate 117 constitute the brake means. For example, a felt sheet, a leather sheet, or a synthetic resin sheet is used as the brake sheets Bl and B2. The brake seats Bl, B2 and the flat wire 10 are rubbed to generate resistance in traveling. Since there are no inclusions, there is an advantage that a braking action can be directly exerted on the traveling of the flat wire 10. The amount of tightening of the bolts 117A and 117B is adjusted to change the distance of the pressing plate 117 with respect to the board 116, and the braking action is adjusted by adjusting the force with which the brake seats Bl and B2 clamp the flat wire 10.
[0042]
16 to 18, the brake 118 and the guide groove substrate 118 are fixed to the front end of the plate 115 with bolts. The bolt holes are the same as the substrate 116. The substrate 118 includes two portions on the top and bottom to sandwich the flat wire 10. The upper part is a part that forms a brake means and is provided with a screw hole, and a brake push plate 117 is attached with bolts 117A and 117B (in the drawing, a thumbscrew is used). Brake sheets Bl and B2 are fixed to the opposing surfaces of the board 118 and the board 117, respectively, and the flat wire 10 is passed between the brake sheets Bl and B2. The material and action of the brake seat are the same as those described in FIGS. The lower part is a part that forms a flat wire guide means, and a guide groove 118A through which the flat wire 10 passes is provided on the surface of the substrate 118. Screw holes are provided on the left and right of the guide groove 118A, and the cover plate 119 of the groove is attached with bolts 119A and 119B. The guide groove 118A is in a state where the cover plate 119 is covered and covered. The position of the flat wire 10 is determined by being guided through the groove 118A. In addition, in the modification of FIG. 16 thru | or FIG. 18, other structures are the same as that of FIG. 13 thru | or FIG. 15, The same code | symbol is attached | subjected to the same or an equivalent part, and description is abbreviate | omitted.
[0043]
The operation in the above configuration will be described. First, the side connected to the output rotation shaft of the pulse motor PM such as the core shaft 11 and the intermediate shaft 18 is at a predetermined rotation position by the pulse motor PM, and the other contact / separation shaft 24 is held in an unconstrained state. The weight of the end 113 works and this is in the lower position, and the piston shaft of the pneumatic cylinder S3 in FIG. In addition, the piston shaft of the pneumatic cylinder S1 in FIG. 1 is ejected, the moving base 21 moves to the left, and the right end of the core shaft 11 is pressed against the left end of the fixed piece 12. The winding core shaft 11 and the contact / separation shaft 24 are in a predetermined position in the rotational direction, and the fixed piece 12 fixed to the contact / separation shaft 24 is also in a predetermined position in the rotational direction and is wound at the predetermined position. The right end of the core shaft 11 is fitted into the recessed hole 12A of the fixed piece 12, and the core shaft 11 side and the contact / separation shaft 24 side are integrated in the rotational direction. Subsequently, the piston shaft of the pneumatic cylinder S <b> 2 is ejected, the holder base 22 moves to the right, the pressing piece 13 slides on the core shaft 11, and the pressing surface (contact surface) becomes the left end of the fixed piece 12. It abuts on the (abutment surface). First, the fixed piece 12 is pressed against the core 11 by the pneumatic cylinder S1, and the pressure at which the pressing surface of the pressing piece 13 comes into contact with the pressing surface of the fixed piece 12 is adjusted by the pneumatic cylinder S2.
[0044]
The rectangular wire 10 is sandwiched between the pressing surface of the fixed piece 12 and the pressing surface of the holding piece 13, and the coil 100 is obtained by winding the flat wire 10 around the core shaft 11. The holding piece 13 that holds the wire 10, that is, the coil 100, can slide back on the core shaft 11, and the force pressed by the holding piece 13 is generated by the air pressure applied to the pneumatic cylinder S <b> 2. This pressing force is set to such a force that the rectangular wire 10 is wound around the core 11 and the holding piece 13 is pushed back. Thus, unlike the biasing by the spring, the pressing force does not change depending on the position of the pressing piece 13, the setting of the pressing force is easy, and the pressing surface of the pressing piece 13 is changed from the pressing surface of the fixed piece 12. Will be separated with the winding.
[0045]
Subsequently, as shown in FIG. 5 and the like, when the reel 20 around which the flat wire 10 is wound as a wire is set on the reel shaft 34 and fixed with the holding nut 36, the reel 20 and the reel shaft 34 rotate integrally. The output rotation shaft of the torque motor TM also rotates integrally, and torque control can be performed in which the reel motor 34 is rotated forward or backward by controlling the torque motor TM. Then, the flat wire 10 is pulled out from the reel 20 and suspended on the pulley 50 of the guide mechanism 7 shown in FIG. A means for detecting the tension of the flat wire 10 suspended on the pulley 50 is added to the guide mechanism 7, and torque control of the torque motor TM is performed in confrontation with the detected tension signal, and the rectangular wire 10 suspended on the pulley 50 is It is also possible to feedback control the tension to a predetermined value. The leading end of the flat wire 10 suspended on the pulley 50 is guided to the winding mechanism 5. In the configuration shown in FIGS. 13 to 15 or the modified examples shown in FIGS. 16 to 18, the bolts 117A and 117B are loosened, and the push plate 117 is moved. The flat wire 10 is sandwiched between the brake seats Bl and B2. 16 to 18, the bolts 119A and 119B are loosened, the cover plate 119 is released, the bolts 119A and 119B are tightened after passing the flat wire 10 into the groove 118A. In the configurations of FIGS. 13 to 15 or FIGS. 16 to 18, the pressure with which the brake seats Bl and B2 clamp the flat wire 10 is changed and the frictional resistance that the flat wire 10 travels is changed by the strength with which the bolts 117A and 117B are tightened. be able to.
[0046]
The flat wire 10 that has passed through the brake seats Bl and B2 (and that has passed through the guide groove 118A in the modified examples of FIGS. 16 to 18) is along the left end surface (contact surface) of the fixing piece 12 before the core shaft 11. Pull down. The leading end of the pulled flat wire 10 is held and held at the holding end 113 between the holding piece 110 and the thumb screw rod. In addition, after attaching the winding start end of the flat wire 10, the torque motor TM is temporarily reversed so that the flat wire 10 is not slackened.
[0047]
Since pneumatic pressure is supplied to the pneumatic cylinder S2 at a predetermined pressure in advance, the holder base 22 and the integral part attached thereto are pressed to the right side, and the pressing surface of the pressing piece 13 is the same as that of the fixed piece 12. It is pressed while holding the flat wire 10 on the pressing surface. The flat wire 10 is held in a posture to start edgewise winding (one side of the flat wire starts to be in contact with the contact surface on the fixed piece side, and the other side is in contact with the contact surface on the holding piece side). Subsequently, the rectangular wire 10 is wound around the core shaft 11 that is driven to rotate according to a predetermined number of turns by the pulse motor PM. At this time, the core shaft 11 rotates while the contact surface on the fixed piece 13 side and the contact surface on the holding piece 13 side sandwich the flat wire 10, and the flat wire 10 is wound edgewise on the core shaft 11. As a result, the holding piece 13 is pushed in the axial direction of the core shaft 11 to slide and retreat, and winding is performed between the contact surfaces of both pieces. When the predetermined number of turns is reached, the holding piece 110 stops the core shaft 11 in such a posture that the holding end 113 is upward. This posture is 180 degrees opposite to the initial posture. In this state, the moving table 61 of the cutting mechanism 4 is moved forward. The second pneumatic nipper 72 cuts the flat wire 10 at the start of winding, and the first pneumatic nipper 71 cuts the flat wire 10 at the end of winding. The interval between the first and second pneumatic nippers 71 and 72 varies depending on the thickness of the rectangular wire 10 and the number of turns, and is set in advance to a predetermined interval corresponding to the number of turns.
[0048]
Next, an adhesive tape is affixed to the outer periphery of the coil 100 wound around the core shaft 11, and the shape is maintained. Thereafter, when the instruction button on the operation panel 9 is pressed, the operation of removing the coil 100 from the core shaft 11 is performed, the piston shaft of the pneumatic cylinder S2 is pulled in, and the holding piece 13 moves to the left, and then the pneumatic cylinder S1. The piston shaft is retracted, and the movable table 21 moves to the right. When the moving base 21 moves to the right, the right end of the core shaft 11 and the left end of the fixed piece 12 are separated, and at the same time, the holding piece 13 reaches the right end while sliding on the core shaft 11. In this process, the coil 100 is extracted from the core 11 to the right end. The coil 100 is extracted in a space where the right end of the winding core 11 and the left end of the fixed piece 12 are separated. When receiving means is provided under this space, the coil 100 is dropped and taken out. Instead of the receiving means, the operator may receive it by hand. The coil 100 is in a state in which the rectangular wire 10 is wound around the core shaft 11, and when the holding piece 13 slides on the core shaft 11, the coil 100 is extracted to the right end. The slit 11B is bent from 11A so that the coil 100 can be easily extracted from the core shaft 11.
[0049]
According to this embodiment, the following effects can be obtained.
[0050]
(1) When the flat wire 10 is wound edgewise, the contact surface of the fixed piece 12 and the contact surface of the holding piece 13 are provided substantially perpendicular to the axial direction of the core shaft 11, The rectangular wire 10 is sandwiched between the windings and wound around the core shaft 11. The contact surface of the pressing piece 13 holds the rectangular wire 10 with a predetermined pressing force, but the rectangular wire 10 is wound to the width of the coil. Even if the spread occurs, the pressing piece 13 can slide to maintain a predetermined pressure. Further, as the flat wire 10 is wound and the width of the coil is expanded, it is necessary to increase the distance between both contact surfaces to be sandwiched. Here, the contact surface of the fixed piece 12 is fixed and the holding piece 13 is fixed. The abutment surface slides while maintaining a predetermined pressure, and the brake means moves in the axial direction integrally with the sliding of the pressing piece 13. As a result, the position where the flat wire 10 is wound around the core shaft 11 is kept in the same positional relationship with the contact surface of the presser piece 13 in the axial direction, and edgewise winding can always be realized stably.
[0051]
It is more preferable that the position where the flat wire 10 passes through the brake means is set to be substantially on the extended surface of the contact surface of the pressing piece 13.
[0052]
Further, the distance to the position where the flat wire 10 is wound around the core shaft 11 and the brake means is shortened, and the tension necessary for the flat wire 10 when it is wound is sufficiently generated by the brake means and the core shaft 11. This configuration creates a state in which the flat wire 10 is tensionally independent between the brake means and the core shaft, and the flat wire between them has a small mass, and the inertia depending on the mass is extremely reduced. Since the mechanism can reduce the inertia, the core shaft 11 exhibits a great effect in edgewise winding in which the core 11 is not circular. In edgewise winding with a circular core axis, stable and high-speed winding that is not possible in the past is possible.
[0053]
(2) Further, the brake means imparts a predetermined friction to the flat wire 10 that travels when the flat wire 10 is wound with the flat wire 10 sandwiched between the brake seats B1 and B2, and has inertia with respect to the flat wire. The structure does not cause an increase, and the ultimate effect can be obtained as a means for applying an arbitrary tension to the rectangular wire.
[0054]
(3) The core shaft 11 is cantilevered by a bearing and protrudes, and is provided with a slit 11B in the axial direction toward the direction supported from the protruding end, and slides from the side where the holding piece 13 is supported toward the protruding end. Thus, when the coil 100 of the rectangular wire 10 wound edgewise on the winding core shaft 11 is extracted, the slit 11B is narrowed on the protruding end side, so that the coil can be easily extracted.
[0055]
(4) The contact surface of the pressing piece 13 is formed at least partially at a position corresponding to the rounded portion when the flat wire 10 is wound edgewise (shaded portion 91 in FIG. 20). In the rounded portion, the inner peripheral side of the flat wire 10 is distorted or tilted and the wall thickness is apparently increased. However, the increase in the wall thickness can be allowed because the abutting surface is lowered corresponding to the portion. Even in edgewise winding in which the end surface perpendicular to the axial direction of the core 11 is not circular such as an oval, winding can be performed at a practical speed.
[0056]
(5) The contact surface of the fixed piece 12 is formed low at the portion where the flat wire 10 starts to be wound as shown by the hatched portion 106 in FIG. It is possible to avoid the problem that the later flat wire portion is caught and to improve the winding speed.
[0057]
(6) By providing guide means (guide groove 118A and its periphery) for guiding the flat wire 10 adjacent to the brake means as in the modified examples of FIGS. 16 to 18, the position where the flat wire is wound is further stabilized. Can be
[0058]
(7) As shown in FIG. 14 and the like, the holder plate 80 constrains the holder 81 holding the holding piece 13 in a rotatable manner in a direction parallel to the core shaft 11, and the direction perpendicular to the core shaft 11 is a groove. By adopting a configuration that allows sliding along the lines 81A and 81B, competition is not caused in unnecessary portions.
[0059]
(8) By finely adjusting the pressure of the pneumatic cylinder S2, the length of the coil 100 (the 38.5 mm portion in FIG. 23C) can be finely adjusted.
[0060]
22 (A) to 22 (G) respectively show modified examples of the configuration of the contact surface of the pressing piece 13, and FIGS. 22 (A) to (C) show the case where the core shaft is oval. (D) and (E) are when the core axis is rectangular (rounded rectangle), and (F) and (G) are when the core axis is square (rounded square). It is. In these cases, the right end surface (contact surface) of the pressing piece 13 is a tapered surface 90 whose outer edge portion is gently retracted, and the inner side is a flat surface 92 except for the shaded portion 91. In the hatched portion 91, a portion having a height that is lowered by one sheet of the thickness of the flat wire 10 is formed low at a portion extending from the straight portion of the core 11 to the round portion (corresponding to the round portion of the flat wire). After that, the inclined surface gradually increases in height so as to approach the flat surface 92. The effect in this case is the same as that of FIG.
[0061]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0062]
【The invention's effect】
As described above, according to the present invention, when a rectangular wire is wound edgewise, the contact surface of the fixed piece and the contact surface of the holding piece are provided substantially perpendicular to the axial direction of the core shaft. A rectangular wire is sandwiched between the contact surfaces and wound around the core shaft, and the contact surface of the pressing piece presses the rectangular wire with a predetermined pressing force. Even if the width is widened, the pressing piece can slide to maintain a predetermined pressure. Further, as the flat wire is wound and the width of the coil is widened, the interval between both contact surfaces is increased, but the contact surface of the pressing piece slides while maintaining a predetermined pressure, Brake means for generating resistance to the travel of the rectangular wire is provided at a predetermined position orthogonal to the axial direction of the core shaft, and the brake means moves in the axial direction integrally with the sliding of the pressing piece. As a result, the core shaft The distance between the brake means and the core shaft is reduced, the rectangular wire is tensionally independent, and the inertia acting on the flat wire between the brake means and the core shaft is extremely small. In addition, the position where the flat wire is wound around the core shaft is kept in the same positional relationship in the axial direction as the contact surface of the pressing piece, so that edgewise winding can be realized stably at all times.
[Brief description of the drawings]
FIG. 1 shows a rectangular wire winding according to the present invention.Way ofIt is an embodiment and is a front view showing a winding mechanism of the main composition.
FIG. 2 is a front view of the overall configuration.
FIG. 3 is a side view of the overall configuration.
FIG. 4 is a plan view of the overall configuration.
FIG. 5 is a plan view showing an arrangement of a winding mechanism, a feeding mechanism, and a cutting mechanism in the embodiment.
FIG. 6 is a plan view of a lower mechanism of the winding mechanism.
FIG. 7 is a left side view showing the arrangement of the winding mechanism, the feeding mechanism, and the cutting mechanism.
FIG. 8 is a right side view of the same.
FIG. 9 is a right side view showing the arrangement of the winding mechanism and the cutting mechanism.
FIG. 10 is a right side view showing a mechanism that maintains the rotational position of the core shaft at the right end of the winding mechanism.
FIG. 11 is a front view showing a cross section of a part of the feeding mechanism.
FIG. 12 is a plan view with a part in cross section.
FIG. 13 is a front sectional view showing a fixed piece and a holding piece in the winding mechanism and a peripheral mechanism thereof.
FIG. 14 is a right side sectional view.
FIG. 15 is a plan view showing brake means for generating resistance in running of a flat wire in the winding mechanism.
FIG. 16 is a front cross-sectional view showing a modification of the winding mechanism, showing the fixed piece, the holding piece and the surrounding mechanism in that case.
FIG. 17 is a right side cross sectional view.
FIG. 18 is a plan view showing brake means for generating resistance in traveling a rectangular wire in the modified example.
FIG. 19 is a right side view showing a holding piece provided on the fixed piece side in order to hold a winding end of a flat wire.
FIG. 20 is an explanatory diagram showing a configuration of the pressing piece.
FIG. 21 is an explanatory view showing a configuration of a contact surface of the fixed piece.
FIG. 22 is an explanatory view showing a configuration of a contact surface in a modified example of the pressing piece.
FIG. 23 is an explanatory diagram showing an example of a coil manufactured in an embodiment of the present invention.
[Explanation of symbols]
1 frame
4 Upper plate
5 Winding mechanism
6 Feeding mechanism
7 Guide mechanism
8 Cutting mechanism
9 Operation panel
10 Flat wire
11 Core axis
11A hole
11B slit
11C inclined groove
12 Fixed pieces
13 Presser piece
18 Intermediate shaft
20 reels
21, 61 Moving platform
22 Holder stand
24 Contact / separation axis
30 blocks
33 Bearing
34 reel shaft
41, 42 pillar
43,44 pillars
45 bars
50 pulley
71,72 Pneumatic nipper
80 Holder plate
81 holder
81A, 81B groove
90, 105 taper surface
91,106 hatched part
100 coils
110 Holding piece
113 Holding end
116 substrates
117 Brake push plate
B1, B2 Brake seat
G1 Straight guide
PM pulse motor
R1, R2, R3 Guide rail
S1, S2, S3 Pneumatic cylinder
TM Torque motor

Claims (1)

巻芯軸の軸方向にほぼ直交する第1の当接面を有する固定駒を前記巻芯軸と一体に回転するように設け、前記第1の当接面に対面し前記巻芯軸の軸方向にほぼ直交する第2の当接面と前記巻芯軸に嵌合する穴を有する押さえ駒を前記巻芯軸と一体に回転しかつ軸方向に摺動自在に設けて、前記巻芯軸にエッジワイズ巻きする平角線の巻き始め片面が前記第1の当接面に接し、前記押さえ駒を前記軸方向に押圧して前記平角線の他の片面が前記第2の当接面に接するようにし、前記第1の当接面と前記第2の当接面が前記平角線を挟持しながら前記巻芯軸を回転し、前記巻芯軸に前記平角線が巻かれることで前記押さえ駒は前記軸方向に押されて摺動し、前記第1の当接面と前記第2の当接面間にエッジワイズ巻きする平角線の巻線方法であって、前記巻芯軸の軸方向に直交する所定位置に前記平角線の走行に抵抗を生じるブレーキ手段を備え、
前記ブレーキ手段は前記押さえ駒と一体に前記巻芯軸の軸方向に空気圧シリンダの押圧を用いて移動させ、
前記巻芯軸の軸方向に直交する断面形状が円形でなく1ターンの巻線中における平角線の走行速度が繰り返し変化するエッジワイズ巻きを実行することを特徴とする平角線の巻線方法。
A fixed piece having a first contact surface substantially orthogonal to the axial direction of the core shaft is provided so as to rotate integrally with the core shaft, and faces the first contact surface so as to face the core shaft. A holding piece having a second contact surface substantially orthogonal to the direction and a hole fitted into the core shaft, which rotates integrally with the core shaft and is slidable in the axial direction; One side of the flat wire to be edgewise wound is in contact with the first contact surface, the pressing piece is pressed in the axial direction, and the other side of the flat wire is in contact with the second contact surface. Thus, the first contact surface and the second contact surface rotate the core shaft while sandwiching the rectangular wire, and the rectangular wire is wound around the core shaft so that the holding piece Is a method of winding a rectangular wire that is pushed in the axial direction and slides and edgewise wound between the first contact surface and the second contact surface. , A brake means for producing a resistance to running of the rectangular wire in a predetermined position perpendicular to the axial direction of the winding core shaft,
The brake means is moved integrally with the holding piece using the pressure of the pneumatic cylinder in the axial direction of the core shaft ,
A method of winding a rectangular wire, comprising performing edgewise winding in which a cross-sectional shape perpendicular to the axial direction of the core axis is not circular but the traveling speed of the rectangular wire is repeatedly changed in one turn of winding .
JP2000381247A 2000-12-15 2000-12-15 Winding method of flat wire Expired - Fee Related JP3669485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381247A JP3669485B2 (en) 2000-12-15 2000-12-15 Winding method of flat wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381247A JP3669485B2 (en) 2000-12-15 2000-12-15 Winding method of flat wire

Publications (2)

Publication Number Publication Date
JP2002184639A JP2002184639A (en) 2002-06-28
JP3669485B2 true JP3669485B2 (en) 2005-07-06

Family

ID=18849281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381247A Expired - Fee Related JP3669485B2 (en) 2000-12-15 2000-12-15 Winding method of flat wire

Country Status (1)

Country Link
JP (1) JP3669485B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656134B2 (en) 2007-11-29 2011-03-23 トヨタ自動車株式会社 Winding device
JP4760825B2 (en) 2007-12-26 2011-08-31 トヨタ自動車株式会社 Edgewise winding method and edgewise winding apparatus
JP4831125B2 (en) 2008-05-21 2011-12-07 トヨタ自動車株式会社 Winding method, winding device, and stator
JP2010211869A (en) * 2009-03-11 2010-09-24 Fujifilm Corp Recording tape cartridge and method for manufacturing security recognition member
JP6002520B2 (en) * 2012-09-26 2016-10-05 株式会社ダイヘン Guide roller for winding machine
GB2525157B (en) 2014-02-18 2016-08-24 Yasa Motors Ltd Machine cooling systems
CN112863861A (en) * 2021-01-09 2021-05-28 安徽新兆科技有限公司 Coil winding device for power equipment
CN115172032B (en) * 2022-08-04 2023-04-14 马鞍山市胜康精密机电有限公司 Automatic processing equipment for high-frequency electronic transformer

Also Published As

Publication number Publication date
JP2002184639A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
US9033271B2 (en) Wire winding apparatus and wire winding method
JP3669485B2 (en) Winding method of flat wire
JP2011527644A5 (en)
TWI447761B (en) Manufacture of non - circular coil and manufacturing method thereof
KR20130001153A (en) Cutting apparatus of pressure-sensitive adhesive tape roll
JPH02151498A (en) Progressive plotter having brake for feed roll
US5605301A (en) Coil winding method and apparatus therefor
US6001006A (en) Machine for machining internal surfaces of axisymmetric workpieces using an abrasive strip
WO2024071149A1 (en) Filamentous adhesive affixing device and filamentous adhesive affixing method
JP2013125838A (en) Winding device for flexible wound wire
JPS60143935A (en) Wind-up machine for forming cylindrical structure by windingup synthetic substance reinforced by fiber
JP2580276B2 (en) Taping device for winding
JPH04128192U (en) web cutting device
CN117969043B (en) Detection device for polarization axis of polarization maintaining optical fiber
JPH10166256A (en) Wire saw
JPH10324456A (en) Device and method for automatically switching unwinding wire
JP2001302103A (en) Waxing device
SU1097419A1 (en) Device for making springs
JPH06237890A (en) Device for coil winding on channel tube of endoscope
JP2000301272A (en) Method and device for production of wire coil
JP2519558B2 (en) Adhesive tape feeding device for taping
JP3465929B2 (en) Surface grooving method and apparatus for thermoplastic resin tube
JP2002025846A (en) Taping method and apparatus therefor
JPH10284334A (en) Coil winder
JPH071280Y2 (en) Cutting machine for Styrofoam materials, etc.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees