JP3667474B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3667474B2
JP3667474B2 JP31813896A JP31813896A JP3667474B2 JP 3667474 B2 JP3667474 B2 JP 3667474B2 JP 31813896 A JP31813896 A JP 31813896A JP 31813896 A JP31813896 A JP 31813896A JP 3667474 B2 JP3667474 B2 JP 3667474B2
Authority
JP
Japan
Prior art keywords
water
electric pump
electrodes
stopped
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31813896A
Other languages
Japanese (ja)
Other versions
JPH10156362A (en
Inventor
信夫 阿知波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP31813896A priority Critical patent/JP3667474B2/en
Publication of JPH10156362A publication Critical patent/JPH10156362A/en
Application granted granted Critical
Publication of JP3667474B2 publication Critical patent/JP3667474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水または希塩水等の原水を電気分解して酸性水とアルカリ性水を生成する電解水生成装置に関する。
【0002】
【従来の技術】
この種の装置は例えば特開平7−328625号公報に示されていて、この装置は、水または食塩水等の原水を貯溜する貯水タンクと、この貯水タンクに供給管を介して接続されて内部が隔膜によって電極をそれぞれ収容する2つの室に区切られた電解槽と、供給管に介装されて貯水タンク内の原水を電解槽の両室に圧送する電動ポンプとを備えている。
【0003】
【発明が解決しようとする課題】
ところで、上記公報に示されている電解水生成装置においては、電解槽よりも貯水タンクが低い位置に設けられているため、電動ポンプの停止時には電解槽内に水が存在しない構成になっている。このため、隔膜が空気中に露呈して乾燥するおそれがあり、この場合には隔膜の寿命を縮めるとともに、乾燥した状態で再度水を通しても初期段階では隔膜の透過性が充分に得られなくて、電解によって生じるイオンが透過し難く、電解が的確に行われないという問題があった。
【0004】
また、電解の開始時、両電極への通電と電動ポンプの駆動が同時であって、電解槽内に水が存在しない状態で通電が開始され、その後に原水が供給されるため、両電極は下方から徐々に浸水し、浸水する箇所に局部的に大電流が流れて電極を痛めるという問題もあった。
【0005】
【課題を解決するための手段】
本発明は、上記した各問題に対処すべくなされたものであり、水または食塩水等の原水を貯溜する貯水タンクと、この貯水タンクに供給管を介して接続されて内部が隔膜によって電極をそれぞれ収容する2つの室に区切られた電解槽と、前記供給管に介装されて前記貯水タンク内の原水を前記電解槽の両室に圧送する電動ポンプと、前記両電極への通電と前記電動ポンプの作動を制御する制御装置とを備えた電解水生成装置において、前記電動ポンプの停止時にも前記両電極の反応面全体を浸水可能に構成するとともに、前記制御装置により前記両電極への通電が開始してから第1設定時間経過後に前記電動ポンプを起動させ、前記両電極への通電が停止してから第2設定時間経過後に前記電動ポンプを停止させるようにしたことに特徴がある。
【0006】
【発明の作用効果】
本発明による電解水生成装置においては、初期状態(すなわち、貯水タンク内の原水が電解槽内に満たされた状態)にて電解が開始されるときには、制御装置により、全体が浸水状態にある両電極への通電が開始され、第1設定時間経過後に電動ポンプが駆動(通水開始)される。このときには、両電極の反応面全体が浸水状態にあって電極の一部分に局部的に大電流が流れることがなく、電極の反応面全体に均等に電流が流れ、電極の損傷を防止することができる。また、この電解開始時においては、電極への通電開始から第1設定時間が経過するまでは電動ポンプが駆動しないため、電解槽内に満たされた未電解の原水は、この間に電解されて、電動ポンプが駆動するときには所定pH値の酸性水及びアルカリ性水となっている。このため、電解初期から所定pH値の酸性水及びアルカリ性水が利用可能となる。
【0007】
また、電解が停止(一時中断を含む)されるときには、制御装置によって電極への通電が停止してから第2設定時間の経過後に電動ポンプが停止(通水停止)する。この停止した状態でも、両電極の反応面全体を浸水可能にされているため、電解終了後(通電停止後)、電動ポンプの駆動により電解槽内は未電解の原水で満たされている。したがって、隔膜の乾燥を防止できて隔膜の寿命を縮めることがないとともに、電解再開時にもその初期から隔膜の充分な透過性を得ることができて電解が的確に行われる。
【0008】
また、上記したように電解停止後には、電解槽内は未電解の原水で満たされるようにしたため、電極への通電の停止と電動ポンプの停止が同時に行われて電解槽内に電解後の酸性水及びアルカリ性水が残る場合に比して、隔膜、電極への酸性水及びアルカリ性水による悪影響を抑制することができる。
【0009】
【発明の実施の形態】
以下に本発明の一実施形態を図面に基づいて説明する。図1は本発明による電解水生成装置の一実施形態を示していて、この電解水生成装置は濃塩水を蓄える濃塩水タンク10と、同タンク10の下方に設けられて希塩水を蓄える希塩水タンク20と、同タンク20から供給される希塩水を電気分解する電解槽30と、制御装置40を備えている。
【0010】
濃塩水タンク10は、食塩を、図示しない外部給水源(例えば水道)から給水管11(給水バルブ12が介装されている)を介して圧送される水により溶解させてなる略飽和状態の濃塩水を貯溜するためのもので、底部には同濃塩水を希塩水タンク20へ供給するための供給管13(ピンチバルブ14が介装されている)が上方向に侵入し食塩の上方に開口しており、側部にはフロートスイッチ15が組付けられている。フロートスイッチ15は濃塩水タンク10の下限水位と上限水位を検出するためのもので、同スイッチ15が下限水位を検出すると給水バルブ12が開いて濃塩水タンク10への給水が開始され、上限水位を検出すると給水バルブ12が閉じて濃塩水タンク10への給水が停止されるようになっている。
【0011】
希塩水タンク20は、濃塩水タンク10から供給される濃塩水を、図示しない外部給水源(例えば水道)から給水管21(給水バルブ22が介装されている)を介して圧送される水により所定濃度に希釈した希塩水を貯溜するためのもので、底部には同希塩水を電解槽30へ供給するための供給管23(電動ポンプ24が介装されている)が接続されており、側部にはフロートスイッチ25が組付けられている。フロートスイッチ25は希塩水タンク20の下限水位と上限水位を検出するためのもので、同スイッチ25が下限水位を検出すると給水バルブ22が開いて希塩水タンク20への給水が開始され、上限水位を検出すると給水バルブ22が閉じて希塩水タンク20への給水が停止されるようになっている。また、希塩水タンク20内には濃度センサ(図示しない)が収容されており、希塩水タンク20への給水にともなって希塩水の濃度が低下すると、同センサの信号に基づいてピンチバルブ14が開いて希塩水タンク20に濃塩水が供給され、希塩水タンク20内の希塩水の濃度は所定濃度に維持される。
【0012】
電解槽30は、希塩水タンク20から供給される希塩水を電気分解して、酸性水とアルカリ性水を生成するためのもので、希塩水タンク20よりも下方(希塩水タンク20の底面よりも電解槽30の上面が下方)に配置されており、内部が隔膜31によって陽極室32と陰極室33に区画されている。陽極室32は酸性水を生成する室であって陽電極34を収容しており、生成された酸性水は先端が大気開放された導出管36を介して所定の箇所に導かれ、また、陰極室33はアルカリ性水を生成する室であって陰電極35を収容しており、生成されたアルカリ性水は先端が大気開放された導出管37を介して所定の箇所に導かれるようになっていて、両電極34,35は直流電源装置39に接続されている。直流電源装置39は、両電極34,35間に所定の直流電圧を印加するためのものであって、その通電の開始及び停止は制御装置40によって制御されるようになっている。
【0013】
制御装置40は、電動ポンプ24及び直流電源装置39のそれぞれに接続されていて、電動ポンプ24の駆動・停止及び直流電源装置39の通電の開始・停止を制御するようになっている。
【0014】
上記のように構成した本実施形態においては、図1に示した初期状態(濃塩水タンク10が上限水位まで濃塩水で満たされ、希塩水タンク20が所定濃度の希塩水で上限水位まで満たされ、電解槽30が所定濃度の希塩水で満たされた状態)にて電解水生成スイッチ(図示しない)をオン操作すると(図2のt1参照)電解が開始されて、制御装置40の制御下にて直流電源装置39による通電が開始され、両電極34,35間に所定電圧が印加される。電圧印加を開始してから第1設定時間T1(電動ポンプ24の作動によって希塩水が電解槽30内を流れて通過する時間と略同じ時間である)が経過すると(図2のt2参照)、制御装置40は電動ポンプ24を駆動させて希塩水タンク20内の希塩水を電解槽30の両室32,33に供給する。このときには(すなわち、図2のt1〜t2間)、両電極34,35の反応面全体が浸水状態にあって電極34,35の一部分に局部的に大電流が流れることがなく、電極34,35の反応面全体に均等に電流が流れ、電極34,35の損傷を防止することができる。また、この電解開始時においては、電極34,35への通電開始から第1設定時間T1が経過するまでは電動ポンプ24が駆動しないため、電解槽30内に満たされた未電解の希塩水は、この間に電解されて、電動ポンプ24が駆動するときには所定pH値の酸性水及びアルカリ性水となっている。このため、電解初期から所定pH値の酸性水及びアルカリ性水が利用可能となる。なお、電動ポンプ24の駆動により供給される希塩水は、電解水生成スイッチがオフ操作されるまで順次電解されて導出される。
【0015】
一方、電解水生成スイッチをオフ操作すると(図2のt3参照)、制御装置40の制御下で直流電源装置39による通電が停止されて両電極34,35間への電圧印加が停止する。電圧印加が停止してから第2設定時間T2(電解槽30内の酸性水及びアルカリ性水が全て排出されるまでの時間)が経過すると(図2のt4参照)、制御装置40は電動ポンプ24を停止させて電解槽30への希塩水の供給を停止する。
【0016】
この停止した状態でも、両電極34,35の反応面全体を浸水可能にされているため、電解終了後(通電停止後)、電動ポンプ24の駆動により電解槽30内が未電解の希塩水で満たされている。したがって、隔膜31の乾燥を防止できて隔膜31の寿命を縮めることがないとともに、電解再開時にもその初期から隔膜31の充分な透過性を得ることができて電解が的確に行われる。
【0017】
また、上記したように電解停止後には、電解槽30内は未電解の希塩水で満たされるようにしたため、電極34,35への通電の停止と電動ポンプ24の停止が同時に行われて電解槽30内に電解後の酸性水及びアルカリ性水が残る場合に比して、隔膜31、電極34,35への酸性水及びアルカリ性水による悪影響を抑制することができる。なお、電解が停止された後に再度電解水生成スイッチをオン操作すると(図2のt5参照)、上述した作動(図2のt1〜t4の作動)が繰返し得られる。
【0018】
上記実施形態においては、電解槽30の上面を希塩水タンク20の底面よりも下方(すなわち、両電極34,35の反応面及び隔膜31全体が希塩水タンク20の底面よりも下方)に設けて、両電極34,35の反応面全体を浸水可能に構成して実施したが、両電極34,35の反応面を希塩水タンク20の下限水位よりも下方とすれば、電解槽30を希塩水タンク20に対してどこに配置してもよい。この場合において、電解槽30の上面を希塩水タンク20の下限水位に一致する位置に配置すれば、電動ポンプ24の停止時にも隔膜31及び両電極34,35全体が浸水するため、供給管23の配管長を最短とし得る状態で上記実施形態と同様の作用効果が得られる。また、両電極34,35の反応面全体を浸水可能に構成する手段として、供給管23に逆止弁を設けて、電解槽30から希塩水タンク20へ水が逆流するのを防止すれば、電動ポンプ24の停止時にも隔膜31及び両電極34,35全体を浸水可能にできて、電解槽30と希塩水タンク20の位置関係を考慮することなく実施可能である。
【0019】
また、上記実施形態においては、濃塩水タンク10の上方から給水管11を介して水道水を給水し、同タンク10の底部に収容された食塩を自然に溶解させるようにしたが、図3に示すように、給水管11から給水される水道水を濃塩水タンク10の底部に収容された食塩の中に導く導水溶解パイプ16を濃塩水タンク10に設けて実施してもよい。この導水溶解パイプ16はL字形状をしたパイプであって、その上端は給水管11の給水口に近接して開口しており、下方先端は閉塞されていて、折曲部から閉塞端部まで食塩中に埋没している。また、同パイプ16の折曲部から閉塞端部に至るまでの間には、多数の小孔が設けられていて、水道水は同小孔から食塩中に流出して食塩を溶かすようになっている。
【0020】
また、図3に示す実施形態においては、水道水を食塩中に導いて食塩の溶解を促進するように実施したが、食塩を更に溶解し易くするため、図4に示すように、導水溶解パイプ16を直線状とし給水管11に直結して水道圧によって水道水を噴射させて実施してもよい。このとき、図5に示すように導水溶解パイプ16は濃塩水タンク10の底部を対角線上に設けることが望ましい。なお、この場合には、食塩が吹き上がって供給管13に入り込まないように、濃塩水タンク10内に仕切板18(上端を濃塩水タンク10の上限水位と同レベルにし、塩返しとして食塩側に折曲げることが好ましい)を設け、また、給水管11に濃塩水が給水バルブ12まで逆流しないように給水管11と導水溶解パイプ16間に逆止弁17を設けて実施する。
【図面の簡単な説明】
【図1】 本発明による電解水生成装置の一実施形態を示す全体概略図である。
【図2】 図1に示した電動ポンプと直流電源装置の作動を示すタイムチャートである。
【図3】 図1に示した濃塩水タンクの他の実施形態を示す概略図である。
【図4】 図1に示した濃塩水タンクのその他の実施形態を示す概略図である。
【図5】 図4に示した濃塩水タンクの平面図である。
【符号の説明】
10…濃塩水タンク、20…希塩水タンク(貯水タンク)、23…供給管、24…電動ポンプ、30…電解槽、31…隔膜、32…陽極室、33…陰極室、34…陽電極、35…陰電極、39…直流電源装置、40…制御装置、T1…第1設定時間、T2…第2設定時間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyzed water generating apparatus that electrolyzes raw water such as water or dilute salt water to generate acidic water and alkaline water.
[0002]
[Prior art]
This type of device is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-328625. This device is connected to a water storage tank for storing raw water such as water or saline, and is connected to the water storage tank via a supply pipe. Is provided with an electrolytic cell divided into two chambers each containing an electrode by a diaphragm, and an electric pump that is interposed in a supply pipe and pumps the raw water in the water storage tank to both chambers of the electrolytic cell.
[0003]
[Problems to be solved by the invention]
By the way, in the electrolyzed water production | generation apparatus shown by the said gazette, since the water storage tank is provided in the position lower than an electrolyzer, it has the structure in which water does not exist in an electrolyzer when the electric pump stops. . For this reason, the diaphragm may be exposed to the air and dried. In this case, the life of the diaphragm is shortened, and even when water is passed through again in a dry state, sufficient permeability of the diaphragm cannot be obtained in the initial stage. There is a problem that ions generated by electrolysis are difficult to permeate and electrolysis is not performed accurately.
[0004]
Also, at the start of electrolysis, energization to both electrodes and driving of the electric pump are simultaneous, and energization is started in the absence of water in the electrolytic cell, and then raw water is supplied, so both electrodes are There was also a problem in that the water was gradually submerged from below, and a large current locally flowed in the submerged area, causing damage to the electrodes.
[0005]
[Means for Solving the Problems]
The present invention has been made to cope with each of the above-described problems. A water storage tank for storing raw water such as water or saline, and an electrode connected to the water storage tank via a supply pipe and having an electrode by a diaphragm. An electrolyzer divided into two chambers for accommodating each of them; an electric pump interposed in the supply pipe for pumping raw water in the water storage tank to both chambers of the electrolyzer; energization of the electrodes; In the electrolyzed water generating apparatus provided with a control device for controlling the operation of the electric pump, the entire reaction surface of both electrodes can be submerged even when the electric pump is stopped, and the control device supplies the electrodes to both electrodes. The electric pump is started after the first set time has elapsed since the start of energization, and the electric pump is stopped after the second set time has elapsed since the energization of the electrodes has stopped. .
[0006]
[Effects of the invention]
In the electrolyzed water generating device according to the present invention, when electrolysis is started in the initial state (that is, the state in which the raw water in the water storage tank is filled in the electrolyzer), the control device causes both of the two to be submerged. Energization of the electrode is started, and the electric pump is driven (water passage is started) after the first set time has elapsed. At this time, the entire reaction surface of both electrodes is in a flooded state, so that a large current does not flow locally to a part of the electrode, and an electric current flows evenly over the entire reaction surface of the electrode, thereby preventing damage to the electrode. it can. In addition, at the start of electrolysis, since the electric pump is not driven until the first set time elapses from the start of energization to the electrodes, unelectrolyzed raw water filled in the electrolytic cell is electrolyzed during this period, When the electric pump is driven, it becomes acidic water and alkaline water having a predetermined pH value. For this reason, acidic water and alkaline water having a predetermined pH value can be used from the beginning of electrolysis.
[0007]
Further, when the electrolysis is stopped (including temporary interruption), the electric pump is stopped (water flow is stopped) after elapse of the second set time after the energization of the electrode is stopped by the control device. Even in this stopped state, since the entire reaction surface of both electrodes can be submerged, the electrolysis tank is filled with unelectrolyzed raw water by driving the electric pump after completion of electrolysis (after stopping energization). Therefore, drying of the diaphragm can be prevented and the life of the diaphragm is not shortened, and sufficient permeability of the diaphragm can be obtained from the initial stage even when electrolysis is resumed, and electrolysis is performed accurately.
[0008]
In addition, as described above, after the electrolysis is stopped, the electrolytic cell is filled with unelectrolyzed raw water, so that the current supply to the electrode is stopped and the electric pump is stopped at the same time. Compared with the case where water and alkaline water remain, the adverse effect of acidic water and alkaline water on the diaphragm and electrode can be suppressed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of an electrolyzed water generating device according to the present invention. The electrolyzed water generating device is a concentrated salt water tank 10 for storing concentrated salt water, and a diluted salt water for storing diluted salt water provided below the tank 10. A tank 20, an electrolytic cell 30 for electrolyzing dilute salt water supplied from the tank 20, and a control device 40 are provided.
[0010]
The concentrated salt water tank 10 is a substantially saturated concentrated salt solution in which salt is dissolved by water pumped from an external water supply source (for example, tap water) (not shown) through a water supply pipe 11 (a water supply valve 12 is interposed). For storing salt water, a supply pipe 13 (with a pinch valve 14 interposed) for supplying the same salt water to the diluted salt water tank 20 enters in the upward direction and opens above the salt. The float switch 15 is assembled to the side portion. The float switch 15 is for detecting the lower limit water level and the upper limit water level of the concentrated salt water tank 10, and when the switch 15 detects the lower limit water level, the water supply valve 12 is opened and water supply to the concentrated salt water tank 10 is started. Is detected, the water supply valve 12 is closed and the water supply to the concentrated salt water tank 10 is stopped.
[0011]
The dilute salt water tank 20 uses concentrated water supplied from the concentrated salt water tank 10 under pressure from an external water supply source (for example, water supply) (not shown) via a water supply pipe 21 (a water supply valve 22 is interposed). For storing dilute salt water diluted to a predetermined concentration, a supply pipe 23 (with an electric pump 24 interposed) for supplying the dilute salt water to the electrolytic cell 30 is connected to the bottom, A float switch 25 is assembled on the side. The float switch 25 is for detecting the lower limit water level and the upper limit water level of the dilute salt water tank 20, and when the switch 25 detects the lower limit water level, the water supply valve 22 is opened to start water supply to the dilute salt water tank 20, and the upper limit water level. Is detected, the water supply valve 22 is closed and the water supply to the diluted salt water tank 20 is stopped. In addition, a concentration sensor (not shown) is accommodated in the diluted salt water tank 20, and when the concentration of the diluted salt water decreases with the supply of water to the diluted salt water tank 20, the pinch valve 14 is operated based on the signal from the sensor. Opened, concentrated salt water is supplied to the diluted salt water tank 20, and the concentration of the diluted salt water in the diluted salt water tank 20 is maintained at a predetermined concentration.
[0012]
The electrolysis tank 30 is for electrolyzing the diluted salt water supplied from the diluted salt water tank 20 to generate acidic water and alkaline water, and is below the diluted salt water tank 20 (below the bottom surface of the diluted salt water tank 20). The upper surface of the electrolytic cell 30 is disposed on the lower side), and the inside is divided into an anode chamber 32 and a cathode chamber 33 by a diaphragm 31. The anode chamber 32 is a chamber for generating acidic water and contains a positive electrode 34. The generated acidic water is guided to a predetermined location via a lead-out pipe 36 whose tip is open to the atmosphere, and the cathode The chamber 33 is a chamber for generating alkaline water and contains a negative electrode 35. The generated alkaline water is guided to a predetermined location through a lead-out pipe 37 whose tip is open to the atmosphere. Both electrodes 34 and 35 are connected to a DC power supply device 39. The DC power supply device 39 is for applying a predetermined DC voltage between the electrodes 34 and 35, and the start and stop of the energization is controlled by the control device 40.
[0013]
The control device 40 is connected to each of the electric pump 24 and the DC power supply device 39, and controls the drive / stop of the electric pump 24 and the start / stop of energization of the DC power supply device 39.
[0014]
In the present embodiment configured as described above, the initial state shown in FIG. 1 (the concentrated salt water tank 10 is filled with concentrated salt water up to the upper limit water level, and the diluted salt water tank 20 is filled up with the predetermined concentration of diluted salt water to the upper limit water level. When the electrolyzed water generating switch (not shown) is turned on (see t1 in FIG. 2) in a state where the electrolyzer 30 is filled with dilute salt water of a predetermined concentration), electrolysis is started and under the control of the control device 40 Then, energization by the DC power supply device 39 is started, and a predetermined voltage is applied between the electrodes 34 and 35. When the first set time T1 (approximately the same time as the dilute water flows through the electrolytic cell 30 through the operation of the electric pump 24) after the voltage application is started (see t2 in FIG. 2), The control device 40 drives the electric pump 24 to supply the dilute salt water in the dilute salt water tank 20 to both chambers 32 and 33 of the electrolytic cell 30. At this time (that is, between t1 and t2 in FIG. 2), the entire reaction surface of both electrodes 34 and 35 is in a flooded state, and a large current does not flow locally in a part of electrodes 34 and 35. The current flows evenly over the entire reaction surface 35, and the electrodes 34 and 35 can be prevented from being damaged. At the start of electrolysis, since the electric pump 24 is not driven until the first set time T1 has elapsed since the start of energization of the electrodes 34 and 35, the unelectrolyzed dilute water filled in the electrolytic cell 30 is During the electrolysis, when the electric pump 24 is driven, it becomes acidic water and alkaline water having a predetermined pH value. For this reason, acidic water and alkaline water having a predetermined pH value can be used from the beginning of electrolysis. The diluted salt water supplied by driving the electric pump 24 is sequentially electrolyzed and led out until the electrolyzed water generation switch is turned off.
[0015]
On the other hand, when the electrolyzed water generation switch is turned off (see t3 in FIG. 2), the energization by the DC power supply device 39 is stopped under the control of the control device 40, and the voltage application between the electrodes 34 and 35 is stopped. When the second set time T2 (the time until all of the acidic water and alkaline water in the electrolytic cell 30 are discharged) elapses after the voltage application is stopped (see t4 in FIG. 2), the control device 40 controls the electric pump 24. Is stopped to stop the supply of dilute salt water to the electrolytic cell 30.
[0016]
Even in this stopped state, the entire reaction surface of both electrodes 34 and 35 can be submerged. Therefore, after the end of electrolysis (after stopping energization), the electrolysis tank 30 is driven by the electropump 24 with unelectrolyzed diluted salt water. be satisfied. Therefore, drying of the diaphragm 31 can be prevented and the life of the diaphragm 31 is not shortened, and sufficient permeability of the diaphragm 31 can be obtained from the initial stage even when electrolysis is resumed, so that the electrolysis is accurately performed.
[0017]
Further, as described above, after the electrolysis is stopped, the electrolysis tank 30 is filled with unelectrolyzed dilute salt water, so that the energization of the electrodes 34 and 35 is stopped and the electric pump 24 is stopped at the same time. Compared with the case where acidic water and alkaline water after electrolysis remain in 30, adverse effects of acidic water and alkaline water on the diaphragm 31 and the electrodes 34 and 35 can be suppressed. When the electrolyzed water generation switch is turned on again after the electrolysis is stopped (see t5 in FIG. 2), the above-described operation (operation from t1 to t4 in FIG. 2) is repeatedly obtained.
[0018]
In the above embodiment, the upper surface of the electrolytic cell 30 is provided below the bottom surface of the diluted salt water tank 20 (that is, the reaction surfaces of the electrodes 34 and 35 and the entire diaphragm 31 are below the bottom surface of the diluted salt water tank 20). However, if the reaction surfaces of both electrodes 34 and 35 are set below the lower limit water level of the diluted salt water tank 20, the electrolytic cell 30 is diluted with diluted salt water. It may be arranged anywhere with respect to the tank 20. In this case, if the upper surface of the electrolytic cell 30 is disposed at a position that matches the lower limit water level of the dilute salt water tank 20, the diaphragm 31 and the electrodes 34 and 35 are all submerged even when the electric pump 24 is stopped. The effect similar to the said embodiment is acquired in the state which can make the piping length of the shortest. In addition, as a means for allowing the entire reaction surface of both electrodes 34 and 35 to be submerged, if a check valve is provided in the supply pipe 23 to prevent water from flowing back from the electrolytic cell 30 to the diluted salt water tank 20, Even when the electric pump 24 is stopped, the diaphragm 31 and the electrodes 34 and 35 as a whole can be submerged, and this is possible without considering the positional relationship between the electrolytic cell 30 and the diluted salt water tank 20.
[0019]
Further, in the above embodiment, tap water is supplied from above the concentrated salt water tank 10 through the water supply pipe 11 so that the salt contained in the bottom of the tank 10 is naturally dissolved. As shown in the figure, the concentrated salt water tank 10 may be provided with a water conduit dissolution pipe 16 that guides the tap water supplied from the water supply pipe 11 into the salt contained in the bottom of the concentrated salt water tank 10. This water guide melting pipe 16 is an L-shaped pipe, the upper end of which opens close to the water supply port of the water supply pipe 11, the lower end is closed, and from the bent part to the closed end. Buried in salt. In addition, a large number of small holes are provided between the bent part and the closed end of the pipe 16, and the tap water flows into the salt from the small hole to dissolve the salt. ing.
[0020]
Further, in the embodiment shown in FIG. 3, tap water is introduced into the salt so as to promote the dissolution of the salt. However, in order to further facilitate the dissolution of the salt, as shown in FIG. 16 may be linearly connected to the water supply pipe 11 and tap water may be jetted by tap pressure. At this time, as shown in FIG. 5, it is desirable that the water guide dissolution pipe 16 is provided with the bottom of the concentrated salt water tank 10 on a diagonal line. In this case, the partition plate 18 (the upper end is set at the same level as the upper limit water level of the concentrated salt water tank 10 so that salt does not blow up and enter the supply pipe 13, and the salt side is used as salt return. And a check valve 17 is provided between the water supply pipe 11 and the water guide dissolution pipe 16 so that the concentrated salt water does not flow back to the water supply valve 12 in the water supply pipe 11.
[Brief description of the drawings]
FIG. 1 is an overall schematic view showing an embodiment of an electrolyzed water generating apparatus according to the present invention.
FIG. 2 is a time chart showing the operation of the electric pump and the DC power supply device shown in FIG.
FIG. 3 is a schematic view showing another embodiment of the concentrated salt water tank shown in FIG. 1;
FIG. 4 is a schematic view showing another embodiment of the concentrated salt water tank shown in FIG. 1;
FIG. 5 is a plan view of the concentrated salt water tank shown in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Concentrated salt water tank, 20 ... Diluted salt water tank (storage tank), 23 ... Supply pipe, 24 ... Electric pump, 30 ... Electrolyzer, 31 ... Diaphragm, 32 ... Anode chamber, 33 ... Cathode chamber, 34 ... Positive electrode, 35 ... negative electrode, 39 ... DC power supply device, 40 ... control device, T1 ... first set time, T2 ... second set time.

Claims (1)

水または食塩水等の原水を貯溜する貯水タンクと、この貯水タンクに供給管を介して接続されて内部が隔膜によって電極をそれぞれ収容する2つの室に区切られた電解槽と、前記供給管に介装されて前記貯水タンク内の原水を前記電解槽の両室に圧送する電動ポンプと、前記両電極への通電と前記電動ポンプの作動を制御する制御装置とを備えた電解水生成装置において、前記電動ポンプの停止時にも前記両電極の反応面全体を浸水可能に構成するとともに、前記制御装置により前記両電極への通電が開始してから第1設定時間経過後に前記電動ポンプを起動させ、前記両電極への通電が停止してから第2設定時間経過後に前記電動ポンプを停止させるようにしたことを特徴とする電解水生成装置。A water storage tank for storing raw water such as water or saline, an electrolytic cell connected to the water storage tank via a supply pipe and having an interior separated into two chambers each containing an electrode by a diaphragm; and the supply pipe An electrolyzed water generating apparatus comprising: an electric pump that is interposed and pumps raw water in the water storage tank to both chambers of the electrolysis tank; and a controller that controls energization of the electrodes and the operation of the electric pump. The entire reaction surface of both electrodes can be submerged even when the electric pump is stopped, and the electric pump is started after a first set time has elapsed since the controller started energizing the electrodes. The electrolyzed water generating apparatus is characterized in that the electric pump is stopped after a second set time has elapsed since the energization of the electrodes is stopped.
JP31813896A 1996-11-28 1996-11-28 Electrolyzed water generator Expired - Fee Related JP3667474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31813896A JP3667474B2 (en) 1996-11-28 1996-11-28 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31813896A JP3667474B2 (en) 1996-11-28 1996-11-28 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH10156362A JPH10156362A (en) 1998-06-16
JP3667474B2 true JP3667474B2 (en) 2005-07-06

Family

ID=18095933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31813896A Expired - Fee Related JP3667474B2 (en) 1996-11-28 1996-11-28 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3667474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678540B2 (en) * 2010-09-22 2015-03-04 Toto株式会社 Sanitary washing device
JP2023065739A (en) * 2021-10-28 2023-05-15 パナソニックIpマネジメント株式会社 Hypochlorous acid water supply device

Also Published As

Publication number Publication date
JPH10156362A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JPH07299458A (en) Electrolyzed water producing device
KR20020090888A (en) Water treatment apparatus
JP3667474B2 (en) Electrolyzed water generator
WO2018084117A1 (en) Electrolyzed water server
JP2000218271A (en) Electrolytic device
JP3575726B2 (en) Method for producing weakly acidic water
JP3667436B2 (en) Electrolyzed water generator
JP2019188348A (en) Electrolytic water generation device, and endoscope washing device
JP3758945B2 (en) Electrolyzed water generator
JP3453528B2 (en) Electrolyzed water generator
JPH026588B2 (en)
JP4126501B2 (en) Solid polymer electrolyte membrane water electrolyzer and pinhole detection method for solid polymer electrolyte membrane
JP3431982B2 (en) Electrolytic ionic water generator
JPS638833B2 (en)
JP3548635B2 (en) Electrolyzed water generator
KR100367895B1 (en) Electrolytic Water Generator
JPH10469A (en) Electrolytic water producing apparatus
JPH06304561A (en) Device for producing electrolyzed ionized water
JPS637359Y2 (en)
JP3548637B2 (en) Electrolyzed water generator
JP3919868B2 (en) Renewable water softener
JPH10468A (en) Electrolytic water-producing apparatus
JPH0428439B2 (en)
JPH027674Y2 (en)
JPH06328072A (en) Electrolyzed ionic water generation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees