JP3666693B2 - Electromagnetic fuel injection device - Google Patents

Electromagnetic fuel injection device Download PDF

Info

Publication number
JP3666693B2
JP3666693B2 JP11791796A JP11791796A JP3666693B2 JP 3666693 B2 JP3666693 B2 JP 3666693B2 JP 11791796 A JP11791796 A JP 11791796A JP 11791796 A JP11791796 A JP 11791796A JP 3666693 B2 JP3666693 B2 JP 3666693B2
Authority
JP
Japan
Prior art keywords
fuel injection
fixed
injection device
movable
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11791796A
Other languages
Japanese (ja)
Other versions
JPH09303207A (en
Inventor
良尚 若松
尚孝 調
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11791796A priority Critical patent/JP3666693B2/en
Publication of JPH09303207A publication Critical patent/JPH09303207A/en
Application granted granted Critical
Publication of JP3666693B2 publication Critical patent/JP3666693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【0001】
【発明の属する技術分野】
本発明は、電磁式燃料噴射弁に関するもので、特に天然ガスなどの気体燃料を使用するのに適した電磁式燃料噴射弁に関する。
【0002】
【従来の技術】
従来より、内燃機関の吸気管に取り付けられる電磁式燃料噴射弁は、弁ボディの内部に取り付けられるコイルへの通電により発生する電磁吸引力を利用して固定子に対し可動子をスプリングに抗して移動することにより、弁ボディに対し弁部材を相対移動させ、弁の開閉を行うようにしたものが周知である。コイルへの通電のオンオフにより弁ボディの弁座に対し弁部材の着座と離座を繰り返し、燃料ノズルからの燃料の噴射と遮断を繰り返すことにより、所望の噴射タイミングで所望量の燃料を噴射する。
【0003】
このような電磁式燃料噴射弁の一例として図4に示すような構造のものが知られている。
図4に示す電磁式燃料噴射弁は、弁ボディ1の内部に軸方向に移動可能にニードル弁3が収容され、ニードル弁3の後端に圧縮コイルスプリング8の一端が当接する。圧縮コイルスプリング8の他端は、フランジ5の内部に固定される円柱状の調量部材6に当接する。弁ボディ1は、弁ケース2の先端をカシメることにより弁ケース2の肩部にディスタンスピース4を介して固定されている。これにより、ニードル弁3が弁ボディ1の弁座に当接する方向に付勢されている。
【0004】
電磁コイル7に通電されると、ニードル弁3が圧縮コイルスプリング8に抗してフランジ5側に吸引移動し、弁ボディ1の弁座からニードル弁3が離座し、噴射孔9から燃料を噴射する。
【0005】
【発明が解決しようとする課題】
しかしながら、このような電磁式燃料噴射弁によると、例えば図4に示すように、ニードル弁3の第一摺動部11と第二摺動部12が弁ボディ1の円筒内壁に接することにより、ニードル弁3が軸方向に安定して移動する構成になっている。
【0006】
このような構成において、天然ガス等の気体燃料を使用する場合、液体燃料を使用する場合と対比すると、燃料の性状等に起因して液体使用時のような良好な潤滑を得ることは難しい。従って、気体燃料を使用する場合、第一摺動部11および第二摺動部12が磨耗しやすいので、燃料噴射特性が変化しやすいし、スティックしやすいとう問題がある。
【0007】
また、この構成をとる場合、第一摺動部および第二摺動部と弁ボディの円筒孔内壁とのクリアランスの寸法管理に要する工数が増大し、コスト高になるという問題点がある。弁部品の寸法管理については、ニードル弁のリフト量の管理をも要する。
このような磨耗を低減するために摺動部と弁ボディの円筒孔内壁との接触面積を大きくすることにより面圧を低下させ磨耗を低減する方法が考えられる。しかし、摺動部と弁ボディの円筒孔内壁との接触面積を大きくすることにより、弁ボディの体格が大型化するという問題がある。
【0008】
本発明は、前記問題点を解決するためになされたもので、弁部品の磨耗の低減と摺動面積の縮小を両立し、燃料噴射特性の良好な小型化可能な電磁式燃料噴射装置を提供することを目的とする。
本発明の別の目的は、高精度な寸法管理を要することなしに製造コスト低減可能な電磁式燃料噴射弁を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載の電磁式燃料噴射装置によると、可動部と固定部との相対移動を安定にするガイド部材の摺動部分の隙間の寸法管理が高精度を要しないことから、寸法管理が容易となり製造コストを低減できるという効果がある。一般に、気体燃料を用いる場合、摺動部分の潤滑性が低下するが、このような気体燃料を用いた場合にも摺動部分の磨耗が部分の接触面積が小さいことから磨耗低減され、耐久性が向上するという効果がある。また可動部と固定部との摩擦接触する摺動部分が実質的に単一箇所であることから、軸方向長さを小型にできるという利点がある。
【0010】
また、この電磁式燃料噴射装置によると、可動部の軸方向移動が板ばねにより案内されるため軸ぶれが少なく燃料噴射特性を良好に保つことができる。さらに、固定部と可動部を小型化し、体格の小さな電磁式燃料噴射装置を製作できる。請求項2に記載の電磁式燃料噴射装置によると、可動部にゴムシートとゴムストッパと板ばねとが一体に成形されていることから、可動部の体格を小さくすることができ軸方向長さを短縮することができるという効果がある。
【0011】
請求項3に記載の電磁式燃料噴射装置によると、付勢手段の設定付勢力をシムの軸方向長さにより容易に調節することができるため、開弁設定荷重ならびに燃料量を容易に調整でき、噴射特性を変える自由度が向上するという効果がある。
請求項4に記載の電磁式燃料噴射装置によると、前記ガイド部材は、前記可動コアの外周壁と摺接する内周壁にポリテトラフルオロエチレンによるコーティングが施されている。
請求項5に記載の電磁式燃料噴射装置によると、前記板ばねの前記径方向外側部は、前記弁座部とスペーサとで狭持固定されている。
請求項6に記載の電磁式燃料噴射装置によると、前記板ばねは円状の薄板であり、前記径方向内側部から前記径方向外側部に延びるとともに周方向にも延び前記径方向内側部と前記径方向外側部とを接続する腕部と、前記腕部によって仕切られる燃料通路とを有している。
【0012】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図1〜図3は、車両に搭載される火花点火式内燃機関の吸気管に燃料を供給する電磁式燃料噴射装置の一実施例を示す。
図2は燃料噴射装置の縦断面を示し、図1はその主要部の拡大断面図を示し、図3は図1に示すIII-III 線断面図である。
【0013】
図2に示すように、電磁式燃料噴射装置21は、弁ケース2を有し、その弁ケース2の先端部29を折り曲げて案内孔部材23にかしめることにより、噴射孔部材22と案内孔部材23とが一体に弁ケース2に連結されている。噴射孔部材22の外周に形成される環状凹部にはOリング26が弁ケース2の内周壁との間に介装されている。
【0014】
弁部31は、図1に示すように、固定部32と可動部33とからなり、固定部32の一部を構成する噴射孔部材22の上面の弁座面34に可動部33が当接可能になっている。
(1) 可動部33は、弁座面34に当接可能な円環状突起を有するゴムシート 35と、調量部材38の端面39に当接可能なゴムストッパ36と、これらゴムシート35とゴムストッパ36とで板ばね40をインサート成形により一体に成形する円筒部43とからなる。ゴムシート35の反当接側の円筒部43の外周は円筒状の可動コア41の下端側内壁に溶接固定されている。
【0015】
ゴムシート35のリフト量Lは、弁座面34とゴムシート35との当接時の ゴムストッパ36と調量部材38の端面39との間のクリアランスで決まる。
(2) 板ばね40は、可動部33の一部分を構成し、図3に示すように、円状の薄板の構成をもっている。板ばね40の外周部62は噴射孔部材22の端面とスペーサ27とで挟持固定されている。中央側固定部61が外周部62に対し軸方向に移動しやすいように中央側固定部61と外周部62とが腕部63、64、65により接続されている。この腕部63、64、65は、径内外方向に延びるとともに周方向にも長く延び、その両縁により燃料通路56、57、58を仕切る。これにより、腕部63、64、65の径外側と径内側の移動が弾性的に行われやすいようになっている。したがって、可動部33は、調量部材38の軸方向に沿ってリフト量L だけ軸方向に移動可能である。また燃料通路56、57 、58は燃料を流通するのに十分な開口面積をもっている。板ばね40は燃料溜室55に収容され、板ばね40の上側に上室49が形成され、下側に下室50が形成される。
【0016】
(3) 付勢手段としての圧縮コイルスプリング8の一端14がシム46に当接し、他端15が円筒部43に当接している。シム46の軸方向長さにより圧縮コイルスプリング8のスプリング力が決定されている。また調量部材38の端面39の位置で弁部31の可動部33のリフト量Lが決定される。すなわち、リフト量Lで静的流量の管理がなされ、スプリング力で開閉弁特性を決める動的流量の管理がなされている。
【0017】
(4) 固定部32の一部を形成する調量部材38は小径部44と大径部45とからなり、小径部44と大径部45との境界部に円環状のシム46が設けられている。
(5) ガイド部材42は、可動コア41の外周壁を隙間を介して案内する部材で、固体潤滑剤、例えばカーボン、モリブデンなどの材料からなる。また他の実施例としては、可動コア41の外周壁と摺接する部分であるガイド部材42の内周壁にテフロンコート(「テフロン」は登録商標)を施すこともできる。すなわち、内周壁にポリテトラフルオロエチレンによるコーティングを施すこともできる。可動コア41の外周の一部分は、弁ケース2に固定される円環状のガイド部材42の内周壁により案内されている。このガイド部材42の内周壁と可動コア41の外周壁との隙間は、高度な寸法管理を要しない。
【0018】
電磁アクチュエータ51は、電磁コイル7にターミナル47から電流が供給されることにより、電磁コイル7が励磁され、発生する電磁吸引力によりフランジ5側に可動部33を圧縮コイルスプリング8に抗して吸引移動する。弁座面34からゴムシート35が離座したとき弁開状態であり、図1に示すように弁座面34にゴムシート35が当接しているとき弁閉状態である。電磁コイル7は、コネクタ67に収納されるターミナル47を介して図示しない電子制御回路に接続され、その電子制御回路の指令により電磁コイル7への電流の供給および停止が制御される。
【0019】
燃料供給部は、弁ケース2の外部から内側に貫通される燃料供給孔53、54、弁ケース2と噴射孔部材22の内部に形成される燃料溜室55、噴射孔24、案内孔25で構成される。燃料溜室55は、板ばね40の上側の上室49と下側のの下室50とに仕切られている。上室49と下室50は、燃料入口と燃料出口であり、図3に示すように板を打ち抜いて形成される燃料通路56、57、58により連通している。
【0020】
次に、この電磁式燃料噴射装置21の作動について説明する。
電磁コイル7に電流が供給されると、発生する電磁吸引力により可動コア41が圧縮コイルスプリング8の付勢力に抗してフランジ5側に移動する。可動コア41がフランジ5側に吸引されるとき、ゴムストッパ36が調量部材38の小径部44の端面39に当接すると、その位置で弁全開状態となる。電磁コイル7への電流の供給が停止されると、圧縮コイルスプリング8の付勢力により、可動コアに固定されるゴムシート35が弁座面34に当接することにより弁閉状態になる。
【0021】
電磁式燃料噴射装置21が開弁状態にあるとき、図示しない燃料供給通路からの加圧燃料が燃料供給孔53、54、燃料溜室55の上室49、燃料通路56、57、58、下室50、弁座面34とゴムシート35との隙間、噴射孔24、案内孔25を通って吸気管内に噴射される。
この実施例によると、板ばね40は、可動コア41が傾くのを抑制する働きをもち、ガイド部材42は可動コア41の移動方向を案内する働きをもつ。従って、ガイド部材42は過度の荷重がかからない構成であるから、燃料の調量はゴムシート35のリフト量および電磁コイル7の通電時間によって管理される。弁部のリフト量およびスプリング力は、調量部材38によって管理され、リフト量とスプリング力が独立に設定できるように圧縮コイルスプリング8のセット長を管理するシム46が調量部材38に設定されている。
【0022】
この実施例によると、可動コア41の移動時、可動部33が摩擦接触する部分が軸方向に実質的に単一箇所であり、この摩擦接触部分に対し軸方向に所定の間隔をおいたゴムシート35が弁座面34に対し着座と離座可能である。このゴムシート35に設けられる板ばね40の中央部と外周部との軸方向距離変化が可能であり、外周部が固定部に固定されている構成であるから、このシート部の径内外方向へのぶれが規制される。しかも、この摩擦接触しうる部分は実質的に摺動部分を構成していない。軸方向へのぶれはないように板ばねにより位置が軸方向に移動できるようにかつ内外方向への移動がないように規制されることから、軸方向へのぶれはガイド部材42の一カ所で基本的に足りている。このため、実質的な摺動部分を軸方向に設けることなしに、可動部33の案内を確実に行える。したがって、弁部材の軸方向長さを縮小でき、小型化がはかれる。
【0023】
またこの実施例では、摺動部分の寸法管理が製作上、緩やかでよいことから、製造管理が容易となり、製品コストを低減できるという効果がある。
【図面の簡単な説明】
【図1】本発明の電磁式燃料噴射装置の中央部を示すもので、図2に示す要部拡大断面図である。
【図2】本発明の一実施例の縦断面図である。
【図3】図1に示すIII ーIII 線断面図である。
【図4】従来例の縦断面図である。
【符号の説明】
2 弁ケース(固定部)
5 フランジ(固定部)
7 電磁コイル
8 圧縮コイルスプリング(付勢手段)
21 電磁式燃料噴射装置
22 噴射孔部材(固定部)
23 案内孔部材(固定部)
24 噴射孔
25 案内孔
31 弁部
32 固定部
33 可動部
34 弁座面(固定部)
35 ゴムシート(可動部)
36 ゴムストッパ(可動部)
38 調量部材(固定部)
40 板ばね
41 可動コア(可動部)
42 ガイド部材(固定部)
46 シム
49 上室(燃料入口)
50 下室(燃料出口)
53 燃料供給孔
54 燃料供給孔
55 燃料溜室
56、57、58 燃料通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic fuel injection valve, and more particularly to an electromagnetic fuel injection valve suitable for using a gaseous fuel such as natural gas.
[0002]
[Prior art]
Conventionally, an electromagnetic fuel injection valve attached to an intake pipe of an internal combustion engine resists a mover against a spring against a stator by using an electromagnetic attractive force generated by energizing a coil attached to the inside of the valve body. It is well known that the valve member is moved relative to the valve body to open and close the valve. By energizing the coil, the seat of the valve member is repeatedly seated and separated from the valve seat of the valve body, and the fuel is injected and shut off from the fuel nozzle, thereby injecting the desired amount of fuel at the desired injection timing. .
[0003]
As an example of such an electromagnetic fuel injection valve, a structure as shown in FIG. 4 is known.
In the electromagnetic fuel injection valve shown in FIG. 4, the needle valve 3 is accommodated in the valve body 1 so as to be movable in the axial direction, and one end of the compression coil spring 8 abuts on the rear end of the needle valve 3. The other end of the compression coil spring 8 abuts on a cylindrical metering member 6 fixed inside the flange 5. The valve body 1 is fixed to the shoulder portion of the valve case 2 via a distance piece 4 by crimping the tip of the valve case 2. Thereby, the needle valve 3 is urged in a direction in which the needle valve 3 comes into contact with the valve seat of the valve body 1.
[0004]
When the electromagnetic coil 7 is energized, the needle valve 3 is attracted and moved toward the flange 5 against the compression coil spring 8, the needle valve 3 is separated from the valve seat of the valve body 1, and fuel is injected from the injection hole 9. Spray.
[0005]
[Problems to be solved by the invention]
However, according to such an electromagnetic fuel injection valve, for example, as shown in FIG. 4, the first sliding portion 11 and the second sliding portion 12 of the needle valve 3 are in contact with the cylindrical inner wall of the valve body 1. The needle valve 3 is configured to move stably in the axial direction.
[0006]
In such a configuration, when using a gaseous fuel such as natural gas, it is difficult to obtain good lubrication as in the case of using the liquid due to the properties of the fuel as compared with the case of using a liquid fuel. Therefore, when using gaseous fuel, since the 1st sliding part 11 and the 2nd sliding part 12 are easy to wear out, there exists a problem that a fuel injection characteristic changes easily and sticks easily.
[0007]
Moreover, when this structure is taken, the man-hour required for the dimension management of the clearance between the 1st sliding part and the 2nd sliding part, and the cylindrical hole inner wall of a valve body increases, and there exists a problem that cost becomes high. Regarding the dimension management of the valve parts, it is also necessary to manage the lift amount of the needle valve.
In order to reduce such wear, a method of reducing the wear by reducing the contact pressure by increasing the contact area between the sliding portion and the inner wall of the cylindrical hole of the valve body can be considered. However, there is a problem that the size of the valve body is increased by increasing the contact area between the sliding portion and the inner wall of the cylindrical hole of the valve body.
[0008]
The present invention has been made to solve the above problems, and provides an electromagnetic fuel injection device capable of reducing the wear of a valve component and reducing the sliding area, and having a good fuel injection characteristic. The purpose is to do.
Another object of the present invention is to provide an electromagnetic fuel injection valve capable of reducing manufacturing costs without requiring highly accurate dimensional control.
[0009]
[Means for Solving the Problems]
According to the electromagnetic fuel injection device of the first aspect, since the dimension management of the gap of the sliding portion of the guide member that stabilizes the relative movement between the movable part and the fixed part does not require high accuracy, the dimension management can be performed. There is an effect that it becomes easy and the manufacturing cost can be reduced. Generally, when gaseous fuel is used, the lubricity of the sliding part decreases, but even when such gaseous fuel is used, the wear of the sliding part is reduced because the contact area of the part is small and the durability is reduced. Has the effect of improving. In addition, since the sliding portion in frictional contact between the movable portion and the fixed portion is substantially a single location, there is an advantage that the axial length can be reduced.
[0010]
Further, according to this electromagnetic fuel injection device, the axial movement of the movable portion is guided by the leaf spring, so that the axial blur is small and the fuel injection characteristics can be kept good. Furthermore, the fixed part and the movable part can be reduced in size, and an electromagnetic fuel injection device with a small physique can be manufactured. According to the electromagnetic fuel injection device of the second aspect, since the rubber sheet, the rubber stopper, and the leaf spring are integrally formed on the movable part, the size of the movable part can be reduced and the axial length can be reduced. There is an effect that can be shortened.
[0011]
According to the electromagnetic fuel injection device of the third aspect, since the set biasing force of the biasing means can be easily adjusted by the axial length of the shim, the valve opening set load and the fuel amount can be easily adjusted. There is an effect that the degree of freedom in changing the injection characteristics is improved.
According to the electromagnetic fuel injection device of the fourth aspect, the guide member is coated with polytetrafluoroethylene on the inner peripheral wall that is in sliding contact with the outer peripheral wall of the movable core.
According to the electromagnetic fuel injection device of the fifth aspect, the radially outer portion of the leaf spring is nipped and fixed by the valve seat portion and the spacer.
According to the electromagnetic fuel injection device of claim 6, the leaf spring is a circular thin plate, and extends from the radially inner portion to the radially outer portion and also extends in the circumferential direction, and the radially inner portion. An arm portion that connects the radially outer portion and a fuel passage that is partitioned by the arm portion are provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 to 3 show an embodiment of an electromagnetic fuel injection device for supplying fuel to an intake pipe of a spark ignition type internal combustion engine mounted on a vehicle.
2 is a longitudinal sectional view of the fuel injection device, FIG. 1 is an enlarged sectional view of the main part thereof, and FIG. 3 is a sectional view taken along line III-III shown in FIG.
[0013]
As shown in FIG. 2, the electromagnetic fuel injection device 21 includes the valve case 2, and the tip portion 29 of the valve case 2 is bent and caulked to the guide hole member 23. The member 23 is integrally connected to the valve case 2. An O-ring 26 is interposed between the inner peripheral wall of the valve case 2 in an annular recess formed on the outer periphery of the injection hole member 22.
[0014]
As shown in FIG. 1, the valve portion 31 includes a fixed portion 32 and a movable portion 33, and the movable portion 33 contacts the valve seat surface 34 on the upper surface of the injection hole member 22 that constitutes a part of the fixed portion 32. It is possible.
(1) The movable portion 33 includes a rubber sheet 35 having an annular protrusion that can come into contact with the valve seat surface 34, a rubber stopper 36 that can come into contact with the end surface 39 of the metering member 38, and the rubber sheet 35 and rubber. It consists of a cylindrical portion 43 that integrally molds the leaf spring 40 with the stopper 36 by insert molding. The outer periphery of the cylindrical portion 43 on the opposite side of the rubber sheet 35 is fixed by welding to the inner wall on the lower end side of the cylindrical movable core 41.
[0015]
The lift amount L of the rubber sheet 35 is determined by the clearance between the rubber stopper 36 and the end surface 39 of the metering member 38 when the valve seat surface 34 and the rubber sheet 35 come into contact with each other.
(2) The plate spring 40 constitutes a part of the movable portion 33 and has a circular thin plate configuration as shown in FIG. The outer peripheral portion 62 of the leaf spring 40 is clamped and fixed between the end face of the injection hole member 22 and the spacer 27. The central side fixing part 61 and the outer peripheral part 62 are connected by arm parts 63, 64, 65 so that the central side fixing part 61 can easily move in the axial direction with respect to the outer peripheral part 62. The arm portions 63, 64, 65 extend in the radially inner and outer directions and also extend in the circumferential direction, and partition the fuel passages 56, 57, 58 by both edges thereof. Thereby, the movement of the arm portions 63, 64, 65 on the outer diameter side and the inner diameter side is easily performed elastically. Therefore, the movable portion 33 is movable in the axial direction by the lift amount L along the axial direction of the metering member 38. The fuel passages 56, 57 and 58 have an opening area sufficient for circulating fuel. The leaf spring 40 is accommodated in a fuel reservoir chamber 55. An upper chamber 49 is formed on the upper side of the leaf spring 40, and a lower chamber 50 is formed on the lower side.
[0016]
(3) One end 14 of the compression coil spring 8 as the urging means is in contact with the shim 46 and the other end 15 is in contact with the cylindrical portion 43. The spring force of the compression coil spring 8 is determined by the axial length of the shim 46. Further, the lift amount L of the movable portion 33 of the valve portion 31 is determined at the position of the end face 39 of the metering member 38. In other words, the static flow rate is managed by the lift amount L, and the dynamic flow rate is determined by the spring force to determine the on-off valve characteristics.
[0017]
(4) The metering member 38 forming a part of the fixed portion 32 includes a small diameter portion 44 and a large diameter portion 45, and an annular shim 46 is provided at the boundary between the small diameter portion 44 and the large diameter portion 45. ing.
(5) The guide member 42 is a member that guides the outer peripheral wall of the movable core 41 through a gap, and is made of a solid lubricant such as carbon or molybdenum. As another embodiment, a Teflon coat (“Teflon” is a registered trademark) can be applied to the inner peripheral wall of the guide member 42, which is a portion in sliding contact with the outer peripheral wall of the movable core 41. That is, the inner peripheral wall can be coated with polytetrafluoroethylene. A part of the outer periphery of the movable core 41 is guided by an inner peripheral wall of an annular guide member 42 fixed to the valve case 2. The gap between the inner peripheral wall of the guide member 42 and the outer peripheral wall of the movable core 41 does not require sophisticated dimensional management.
[0018]
The electromagnetic actuator 51 is excited by supplying current from the terminal 47 to the electromagnetic coil 7 and attracts the movable portion 33 against the compression coil spring 8 toward the flange 5 by the generated electromagnetic attractive force. Moving. When the rubber sheet 35 is separated from the valve seat surface 34, the valve is in an open state, and when the rubber sheet 35 is in contact with the valve seat surface 34 as shown in FIG. 1, the valve is in a closed state. The electromagnetic coil 7 is connected to an electronic control circuit (not shown) via a terminal 47 housed in the connector 67, and the supply and stop of current to the electromagnetic coil 7 are controlled by a command from the electronic control circuit.
[0019]
The fuel supply unit includes fuel supply holes 53 and 54 penetrating from the outside to the inside of the valve case 2, a fuel reservoir chamber 55 formed in the valve case 2 and the injection hole member 22, the injection hole 24, and the guide hole 25. Composed. The fuel reservoir 55 is partitioned into an upper chamber 49 on the upper side of the leaf spring 40 and a lower chamber 50 on the lower side. The upper chamber 49 and the lower chamber 50 are a fuel inlet and a fuel outlet, and communicate with each other through fuel passages 56, 57, and 58 formed by punching a plate as shown in FIG.
[0020]
Next, the operation of the electromagnetic fuel injection device 21 will be described.
When a current is supplied to the electromagnetic coil 7, the movable core 41 moves toward the flange 5 against the urging force of the compression coil spring 8 by the generated electromagnetic attractive force. When the movable core 41 is attracted to the flange 5 side, when the rubber stopper 36 contacts the end surface 39 of the small diameter portion 44 of the metering member 38, the valve is fully opened at that position. When the supply of current to the electromagnetic coil 7 is stopped, the rubber sheet 35 fixed to the movable core is brought into contact with the valve seat surface 34 by the urging force of the compression coil spring 8 and the valve is closed.
[0021]
When the electromagnetic fuel injection device 21 is in the valve open state, pressurized fuel from a fuel supply passage (not shown) is supplied to the fuel supply holes 53, 54, the upper chamber 49 of the fuel reservoir 55, the fuel passages 56, 57, 58, and lower. The air is injected into the intake pipe through the chamber 50, the gap between the valve seat surface 34 and the rubber sheet 35, the injection hole 24, and the guide hole 25.
According to this embodiment, the leaf spring 40 has a function of suppressing the tilt of the movable core 41, and the guide member 42 has a function of guiding the moving direction of the movable core 41. Therefore, since the guide member 42 is configured not to be excessively loaded, the fuel metering is managed by the lift amount of the rubber sheet 35 and the energization time of the electromagnetic coil 7. The lift amount and spring force of the valve portion are managed by the metering member 38, and a shim 46 for managing the set length of the compression coil spring 8 is set in the metering member 38 so that the lift amount and the spring force can be set independently. ing.
[0022]
According to this embodiment, when the movable core 41 is moved, the portion with which the movable portion 33 is in frictional contact is substantially a single portion in the axial direction, and the rubber having a predetermined interval in the axial direction with respect to this frictional contact portion. The seat 35 can be seated and separated from the valve seat surface 34. The axial distance between the central portion and the outer peripheral portion of the leaf spring 40 provided on the rubber sheet 35 can be changed, and the outer peripheral portion is fixed to the fixed portion. Shake is regulated. Moreover, this frictional contact portion does not substantially constitute a sliding portion. Since the position of the leaf spring can be moved in the axial direction so that there is no movement in the axial direction and the movement in the inner and outer directions is not restricted, the movement in the axial direction is caused at one position of the guide member 42. Basically enough. For this reason, it is possible to reliably guide the movable portion 33 without providing a substantial sliding portion in the axial direction. Therefore, the axial length of the valve member can be reduced and the size can be reduced.
[0023]
Further, in this embodiment, since the dimensional management of the sliding portion may be gradual in production, the production management becomes easy and the product cost can be reduced.
[Brief description of the drawings]
FIG. 1 shows a central part of an electromagnetic fuel injection device according to the present invention, and is an enlarged cross-sectional view of a main part shown in FIG.
FIG. 2 is a longitudinal sectional view of an embodiment of the present invention.
3 is a cross-sectional view taken along line III-III shown in FIG.
FIG. 4 is a longitudinal sectional view of a conventional example.
[Explanation of symbols]
2 Valve case (fixed part)
5 Flange (fixed part)
7 Electromagnetic coil 8 Compression coil spring (biasing means)
21 Electromagnetic fuel injection device 22 Injection hole member (fixed part)
23 Guide hole member (fixed part)
24 injection hole 25 guide hole 31 valve part 32 fixed part 33 movable part 34 valve seat surface (fixed part)
35 Rubber sheet (movable part)
36 Rubber stopper (moving part)
38 Metering member (fixed part)
40 leaf spring 41 movable core (movable part)
42 Guide member (fixed part)
46 Shim 49 Upper chamber (fuel inlet)
50 Lower chamber (fuel outlet)
53 Fuel supply hole 54 Fuel supply hole 55 Fuel reservoir 56, 57, 58 Fuel passage

Claims (6)

固定部と、可動部と、電流が供給されると励磁されて前記固定部に前記可動部を電磁吸引力により吸引する方向に移動するコイルとを有する電磁式燃料噴射装置であって、
前記可動部に取り付けられるゴムシートと、
前記固定部に形成され、前記ゴムシートが当接可能な弁座面をもつ弁座部と、
薄板状部分を有し、径方向内側部が前記ゴムシートに固定され、径方向外側部が前記固定部に固定され、薄板状部分の板面に対し直交する方向に変位可能な板ばねと、
前記固定部に固定され、前記可動部の外周の一部分を軸方向に相対移動可能に支持するガイド部材と、
前記ゴムシートが前記弁座面に当接する方向に付勢する付勢手段とを備え、
前記板ばねにより仕切られる一方の空間側に燃料入口が形成され、他方の空間側に燃料出口が形成され
前記可動部は、前記コイルへの通電により発生する電磁吸引力によって前記固定部に吸引される可動コアを有し、前記可動コア、前記板ばね及び前記ゴムシートは、前記可動コアと前記ゴムシートとの間に前記板ばねが位置する状態で一体に構成されていることを特徴とする電磁式燃料噴射装置。
An electromagnetic fuel injection device having a fixed portion, a movable portion, and a coil that is excited when current is supplied and moves to the fixed portion in a direction in which the movable portion is attracted by an electromagnetic attractive force,
A rubber sheet attached to the movable part;
A valve seat portion formed on the fixed portion and having a valve seat surface with which the rubber sheet can come into contact;
A leaf spring having a thin plate portion, a radially inner portion fixed to the rubber sheet, a radially outer portion fixed to the fixed portion, and displaceable in a direction perpendicular to the plate surface of the thin plate portion;
A guide member fixed to the fixed portion and supporting a part of the outer periphery of the movable portion so as to be relatively movable in the axial direction;
An urging means for urging the rubber sheet in a direction in contact with the valve seat surface;
A fuel inlet is formed on one space side partitioned by the leaf spring, and a fuel outlet is formed on the other space side ;
The movable part has a movable core that is attracted to the fixed part by electromagnetic attraction generated by energization of the coil, and the movable core, the leaf spring, and the rubber sheet are the movable core and the rubber sheet. An electromagnetic fuel injection device , wherein the plate spring is integrally formed with the plate spring positioned therebetween.
前記ゴムシートと、前記板ばねと、前記可動部の最大リフト量を規制するゴムストッパとが一体成形により形成されていることを特徴とする請求項1記載の電磁式燃料噴射装置。  2. The electromagnetic fuel injection device according to claim 1, wherein the rubber sheet, the leaf spring, and a rubber stopper that regulates the maximum lift amount of the movable part are formed by integral molding. 前記付勢手段は、圧縮コイルスプリングであり、この圧縮コイルスプリングの設定荷重を可変にするシムが設けられ、このシムは弁体のリフト量を決定する調量部材に一体的に形成されていることを特徴とする請求項1または請求項2記載の電磁式燃料噴射装置。  The biasing means is a compression coil spring, and a shim is provided to make the set load of the compression coil spring variable. This shim is formed integrally with a metering member that determines the lift amount of the valve body. The electromagnetic fuel injection device according to claim 1 or 2, wherein 前記ガイド部材は、前記可動コアの外周壁と摺接する内周壁にポリテトラフルオロエチレンによるコーティングが施されていることを特徴とする請求項1、2又は3記載の電磁式燃料噴射装置。4. The electromagnetic fuel injection device according to claim 1, wherein the guide member is coated with polytetrafluoroethylene on an inner peripheral wall that is in sliding contact with an outer peripheral wall of the movable core. 5. 前記板ばねの前記径方向外側部は、前記弁座部とスペーサとで狭持固定されていることを特徴とする請求項1〜4のいずれか一項記載の電磁式燃料噴射装置。The electromagnetic fuel injection device according to any one of claims 1 to 4, wherein the radially outer portion of the leaf spring is nipped and fixed by the valve seat portion and a spacer. 前記板ばねは円状の薄板であり、前記径方向内側部から前記径方向外側部に延びるとともに周方向にも延び前記径方向内側部と前記径方向外側部とを接続する腕部と、前記腕部によって仕切られる燃料通路とを有していることを特徴とする請求項1〜5のいずれか一項記載の電磁式燃料噴射装置。The leaf spring is a circular thin plate, extends from the radially inner portion to the radially outer portion and also extends in the circumferential direction, and an arm portion connecting the radially inner portion and the radially outer portion; 6. The electromagnetic fuel injection device according to claim 1, further comprising a fuel passage partitioned by an arm portion.
JP11791796A 1996-05-13 1996-05-13 Electromagnetic fuel injection device Expired - Fee Related JP3666693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11791796A JP3666693B2 (en) 1996-05-13 1996-05-13 Electromagnetic fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11791796A JP3666693B2 (en) 1996-05-13 1996-05-13 Electromagnetic fuel injection device

Publications (2)

Publication Number Publication Date
JPH09303207A JPH09303207A (en) 1997-11-25
JP3666693B2 true JP3666693B2 (en) 2005-06-29

Family

ID=14723385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11791796A Expired - Fee Related JP3666693B2 (en) 1996-05-13 1996-05-13 Electromagnetic fuel injection device

Country Status (1)

Country Link
JP (1) JP3666693B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905721A1 (en) * 1998-02-24 1999-08-26 Hoerbiger Ventilwerke Gmbh Electromagnetically actuated gas valve for use as a fuel injection valve in a gas engine
DE69933714T2 (en) * 1999-02-09 2007-10-04 Hitachi, Ltd. High pressure fuel pump for an internal combustion engine
JP2001182624A (en) * 1999-12-27 2001-07-06 Yanmar Diesel Engine Co Ltd Gas fuel supply valve
JP4416571B2 (en) * 2004-05-27 2010-02-17 愛三工業株式会社 Fuel injection valve
JP2006138277A (en) * 2004-11-15 2006-06-01 Denso Corp Ejector pump and fuel cell system using the same
JP2007085433A (en) * 2005-09-21 2007-04-05 Aisan Ind Co Ltd Control valve for fluid
JP5758145B2 (en) * 2011-02-16 2015-08-05 株式会社ケーヒン Gas fuel injection valve
CN105275672B (en) * 2015-07-10 2017-12-12 重庆红江机械有限责任公司 The automatically controlled fuel gas injection valve of engine
JP7163886B2 (en) * 2019-08-19 2022-11-01 株式会社デンソー measuring device

Also Published As

Publication number Publication date
JPH09303207A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
EP1750005B1 (en) Gaseous fuel injection valve
US7131426B2 (en) Fluid flow rate control valve, anchor for mover and fuel injection system
US6811105B2 (en) Fuel injection nozzle
JP4358445B2 (en) Fuel injection system for internal combustion engines
US20090200405A1 (en) Fuel injection valve
US6824120B2 (en) Flow amount control device
EP1146222B1 (en) Solenoid valve and fuel injector using same
EP2570648A1 (en) Electromagnetic fuel-injection valve
US5238222A (en) Flow control valve
JP3666693B2 (en) Electromagnetic fuel injection device
US5139227A (en) Proportional flow control valve
JP2013167194A (en) Fuel injection valve
US5429154A (en) Three-way electromagnetic valve
JP2003120846A (en) Fuel liquid flow rate adjusting valve, and fuel injection system for internal combustion engine provided with fuel liquid flow rate adjusting valve
JP4400638B2 (en) Solenoid valve and fuel injection device using the same
JP4099738B2 (en) Fuel injection device
JP4196151B2 (en) Fuel injection device
JP2007218425A (en) Solenoid valve device
JP2004068671A (en) Gas fuel injection valve
JPH02190684A (en) Solenoid valve, especially fuel injection valve for fuel injector
JP2022135698A (en) Electromagnetic type fuel injection valve
JP2003314738A (en) Flow control valve
JP2022102754A (en) Electromagnetic fuel injection valve
JP2005511952A (en) Anchor for liquid flow control valve and mover, and fuel injection system
JP2021116710A (en) Fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees