JP3666506B2 - Method for manufacturing ink jet recording apparatus - Google Patents

Method for manufacturing ink jet recording apparatus Download PDF

Info

Publication number
JP3666506B2
JP3666506B2 JP2004184743A JP2004184743A JP3666506B2 JP 3666506 B2 JP3666506 B2 JP 3666506B2 JP 2004184743 A JP2004184743 A JP 2004184743A JP 2004184743 A JP2004184743 A JP 2004184743A JP 3666506 B2 JP3666506 B2 JP 3666506B2
Authority
JP
Japan
Prior art keywords
substrate
lead
electrode
jet recording
recording apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004184743A
Other languages
Japanese (ja)
Other versions
JP2004262253A (en
Inventor
伊策 神野
覚 藤井
良一 高山
健 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004184743A priority Critical patent/JP3666506B2/en
Publication of JP2004262253A publication Critical patent/JP2004262253A/en
Application granted granted Critical
Publication of JP3666506B2 publication Critical patent/JP3666506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、インクジェット記録装置の製造方法に関するものである。   The present invention relates to a method for manufacturing an ink jet recording apparatus.

近年、パソコンなどの印刷装置としてインクジェット記録装置を用いたプリンタが印字性能がよく取り扱いが簡単、低コストなどの理由から広く普及している。このインクジェット記録装置には、熱エネルギーによってインク中に気泡を発生させ、その気泡による圧力波によりインク滴を吐出させるもの、静電力によりインク滴を吸引吐出させるもの、圧電素子のような振動子による圧力波を利用したもの等、種々の方式がある。   In recent years, printers using an inkjet recording apparatus as a printing apparatus such as a personal computer are widely used for reasons such as good printing performance, easy handling, and low cost. In this ink jet recording apparatus, bubbles are generated in ink by heat energy, ink droplets are ejected by pressure waves caused by the bubbles, ink droplets are sucked and discharged by electrostatic force, and a vibrator such as a piezoelectric element is used. There are various methods such as those using pressure waves.

一般に、圧電素子を用いたものは、例えば、インク吐出口に連通したインク供給室と、そのインク供給室に連通した圧力室と、その圧力室に設けられ、圧電素子が接合された振動板等により構成されている。従来、インクの吐出方向と圧電素子の振動方向は同方向である。このような構成において、圧電素子に所定の電圧を印加すると、圧電素子が伸縮することによって、圧電素子と振動板が太鼓状の振動を起こして圧力室内のインクが圧縮され、それによりインク吐出口からインク液滴が吐出する。現在カラーのインクジェト記録装置が普及してきたが、その印字性能の向上、特に高解像度化および高速印字が求められている。そのためインクヘッドの微細化しマルチノズルヘッド構造を用いて高解像度および高速印字を実現する事が試みられている。インクヘッドの微細化には、インクを供給するための圧電素子の小型化が強く求められている。圧電素子の小型化のためには圧電体の厚みを薄くして、振動板を利用してたわみ振動を発生させインクを吐出させる方法が構成上可能である。しかし、電圧に対する圧電体自身の変位量は非常に小さく、そのため圧電素子を小型化すると圧電性の低下から十分な応力や振動が発生せずインクを吐出することができない。そこで、小型、マルチノズルヘッドを有した高解像度、高速プリンタを実現するためには薄い膜厚においても十分な圧電性を有する圧電薄膜材料を開発し、その製造方法を確立することが必要がある。   Generally, those using piezoelectric elements include, for example, an ink supply chamber that communicates with an ink discharge port, a pressure chamber that communicates with the ink supply chamber, a diaphragm provided in the pressure chamber, and a piezoelectric element joined thereto, etc. It is comprised by. Conventionally, the ink ejection direction and the vibration direction of the piezoelectric element are the same. In such a configuration, when a predetermined voltage is applied to the piezoelectric element, the piezoelectric element expands and contracts, causing the piezoelectric element and the diaphragm to vibrate in a drum shape, thereby compressing the ink in the pressure chamber, and thereby the ink discharge port. Ink droplets are ejected from. Currently, color ink jet recording apparatuses have become widespread, but improvement in printing performance, in particular, higher resolution and higher speed printing are required. For this reason, attempts have been made to realize high resolution and high-speed printing by miniaturizing the ink head and using a multi-nozzle head structure. For miniaturization of the ink head, miniaturization of a piezoelectric element for supplying ink is strongly demanded. In order to reduce the size of the piezoelectric element, it is possible to construct a method in which the thickness of the piezoelectric body is reduced, and flexural vibration is generated using a vibration plate to eject ink. However, the amount of displacement of the piezoelectric body itself with respect to the voltage is very small. Therefore, when the piezoelectric element is downsized, sufficient stress and vibration are not generated due to the decrease in piezoelectricity, and ink cannot be ejected. Therefore, in order to realize a high-resolution, high-speed printer having a small size, multi-nozzle head, it is necessary to develop a piezoelectric thin film material having sufficient piezoelectricity even in a thin film thickness and to establish a manufacturing method thereof. .

しかしながら、上述のように厚みの薄い圧電体を用いて、十分なインクの吐出に必要な特性を有する小型の圧電素子およびインクヘッドをこれまで実現することができなかった。特に、従来から用いてきた焼結体の圧電材料では、素子を切削等の機械的な加工により小型化してきたが、機械的加工では小型化に限界がある上、圧電特性の劣化を招き、小型化と高解像度を両立させる事は困難であった。   However, it has not been possible to realize a small piezoelectric element and ink head having characteristics necessary for sufficient ink ejection by using a thin piezoelectric body as described above. In particular, in the piezoelectric material of the sintered body that has been used conventionally, the element has been miniaturized by mechanical processing such as cutting, but there is a limit to miniaturization in mechanical processing, leading to deterioration of piezoelectric characteristics, It was difficult to achieve both miniaturization and high resolution.

本発明は、従来のこのようなインクジェット記録装置における圧電素子の課題を解決するもので、圧電素子を構成する圧電体や振動板等を薄膜化することで半導体プロセスで一般に用いられている微細加工が可能な形状とし、更に膜厚が薄くても大きな圧電特性を有する薄膜材料を開発し、ノズルの構造が2000dpiの多素子化を実現するその製造方法を提供する事を目的とするものである。   The present invention solves the problem of the piezoelectric element in such a conventional ink jet recording apparatus, and fine processing generally used in a semiconductor process by thinning a piezoelectric body or a diaphragm constituting the piezoelectric element. The object is to develop a thin film material having a large piezoelectric characteristic even when the film thickness is thin, and to provide a manufacturing method for realizing a multi-element nozzle structure of 2000 dpi. .

前記目的を達成するため、本発明にかかるインクジェット記録装置の製造方法は、MgO基板上に電極を形成し、その電極上に鉛を含有した酸化物誘電体である鉛系誘電体層を形成する。その鉛系誘電体層上に更に電極を形成し鉛系誘電体層の厚み方向に電圧を印加でいる構成とする。更にその電極上に金属、酸化物、もしくは高分子有機物からなる材料を振動板としてスパッタリング、真空蒸着、メッキもしくはスピンコート法により形成する。次に、前記MgO基板の全て、もしくは一部をエッチング除去、および振動板の上にインク液体を収容するための圧力室を樹脂もしくはガラスにより形成し、前記圧力室に圧力を印加するための圧力印加手段を作製することにより多素子化を実現したインクジェット記録装置の製造方法である。   In order to achieve the above object, an ink jet recording apparatus manufacturing method according to the present invention forms an electrode on an MgO substrate, and forms a lead-based dielectric layer that is an oxide dielectric containing lead on the electrode. . An electrode is further formed on the lead-based dielectric layer, and a voltage is applied in the thickness direction of the lead-based dielectric layer. Further, a material made of a metal, an oxide, or a polymer organic material is formed on the electrode as a vibration plate by sputtering, vacuum deposition, plating, or spin coating. Next, all or a part of the MgO substrate is removed by etching, and a pressure chamber for containing ink liquid is formed on the vibration plate with resin or glass, and pressure for applying pressure to the pressure chamber is formed. This is a method of manufacturing an ink jet recording apparatus that realizes multi-elements by producing an applying means.

更に、MgO基板上に形成する電極として白金もしくはルテニウム酸化物を用い、鉛系誘電体としては膜厚20μm以下のPZT系強誘電体をスパッタ法により形成し、かつZr/Ti比が30/70から70/30の範囲内の薄膜、もしくはPZT系強誘電体にニオブおよび錫を添加した反強誘電性の薄膜であり、また振動板としてはニッケル、アルミニウム、アルミナ、酸化シリコン、またはポリイミド系樹脂を用い、更にMgO基板のエッチング溶液として燐酸を用いた製造方法が好ましい。   Further, platinum or ruthenium oxide is used as an electrode formed on the MgO substrate, a PZT ferroelectric having a film thickness of 20 μm or less is formed as a lead dielectric by sputtering, and a Zr / Ti ratio is 30/70. To 70/30 or an antiferroelectric thin film in which niobium and tin are added to a PZT ferroelectric, and the diaphragm is nickel, aluminum, alumina, silicon oxide, or polyimide resin Further, a manufacturing method using phosphoric acid as an etching solution for the MgO substrate is preferable.

更に本発明にかかるインクジェット記録装置の製造方法として、シリコン、またはガラス基板上に電極を形成し、その電極上に鉛系誘電体から成る層を形成する。その鉛系誘電体層上に更に電極を形成し、その電極上に金属、酸化物、もしくは高分子有機物からなる材料を振動板としてスパッタリング、真空蒸着、メッキ、もしくはスピンコーティングにより形成する。次に、振動板の上にインク液体を収容するための圧力室を樹脂もしくはガラスにより形成、および前記シリコンもしくはガラス基板のすべて、もしくは一部を弗酸系溶液、もしくは水酸化カリウム溶液を用いてエッチングを行い除去することにより前記圧力室に圧力を印加するための圧力印加手段を作製することを特徴とするインクジェット記録装置の製造方法である。   Further, as a method of manufacturing the ink jet recording apparatus according to the present invention, an electrode is formed on a silicon or glass substrate, and a layer made of a lead-based dielectric is formed on the electrode. An electrode is further formed on the lead-based dielectric layer, and a material made of a metal, an oxide, or a polymer organic material is formed on the electrode as a vibration plate by sputtering, vacuum deposition, plating, or spin coating. Next, a pressure chamber for containing the ink liquid is formed on the vibration plate with resin or glass, and all or part of the silicon or glass substrate is formed with a hydrofluoric acid solution or a potassium hydroxide solution. A method of manufacturing an ink jet recording apparatus, comprising: producing pressure applying means for applying pressure to the pressure chamber by etching and removing.

また、本発明にかかるインクジェット記録装置の製造方法として、シリコン、またはガラス基板上に金属、酸化物、窒化物もしくは高分子有機物からなる材料を振動板として形成し、その上に電極を形成し、更にその電極上に鉛系誘電体を形成し、その鉛系誘電体層上に更に電極を形成する。更に前記シリコン、またはガラス基板の一部を弗酸系溶液、もしくは水酸化カリウム溶液を用いてエッチングを行い、前記シリコン、またはガラス基板を用いてインク液体を収容するための圧力室を形成することを特徴とするインクジェット記録装置の製造方法である。   In addition, as a method for manufacturing the ink jet recording apparatus according to the present invention, a material made of metal, oxide, nitride, or polymer organic substance is formed on a silicon or glass substrate as a diaphragm, and an electrode is formed thereon, Further, a lead-based dielectric is formed on the electrode, and an electrode is further formed on the lead-based dielectric layer. Further, a part of the silicon or glass substrate is etched using a hydrofluoric acid solution or a potassium hydroxide solution to form a pressure chamber for containing an ink liquid using the silicon or glass substrate. This is a method for manufacturing an ink jet recording apparatus.

更にシリコン、またはガラス基板上に形成する電極として白金もしくはルテニウム酸化物を用い、鉛系誘電体としては膜厚20μm以下のPZT系強誘電体をスパッタ法により形成し、かつZr/Ti比が30/70から70/30の範囲内のもの、もしくはPZT系強誘電体にニオブおよび錫を添加した反強誘電性の薄膜である製造方法が好ましい。   Furthermore, platinum or ruthenium oxide is used as an electrode formed on silicon or a glass substrate, a PZT ferroelectric having a film thickness of 20 μm or less is formed by sputtering as a lead dielectric, and the Zr / Ti ratio is 30. The production method is preferably an antiferroelectric thin film having a thickness in the range of / 70 to 70/30, or a PZT ferroelectric material with niobium and tin added.

以上説明したように本発明は、インクジェット記録装置の解像度を向上させるため、薄膜形成プロセスを用いてPZT等の鉛系誘電体層を高い圧電特性を維持したまま薄膜化し、それらを微細加工することにより低電圧でインク吐出能力の良いインクジェット記録装置用圧電素子を形成することができる。   As described above, in order to improve the resolution of the ink jet recording apparatus, the present invention uses a thin film formation process to reduce the thickness of a lead-based dielectric layer such as PZT while maintaining high piezoelectric characteristics, and finely process them. Accordingly, it is possible to form a piezoelectric element for an ink jet recording apparatus having a low voltage and good ink discharge capability.

以下に、本発明の実施の形態について図面をもちいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1(a)は、本発明にかかる第1の実施の形態のインクジェット記録装置におけるノズルヘッドを横から見た断面図、(b)はその概観図である。
(First embodiment)
FIG. 1A is a cross-sectional view of a nozzle head as viewed from the side in the ink jet recording apparatus according to the first embodiment of the present invention, and FIG.

図1において、本実施の形態のノズルヘッドは、インクを収容する圧力室1、インクを吐出する吐出口2、その吐出口2に連通し圧力室1に圧力を印加するための圧電素子3、及びその圧電素子3で振動する振動板4から構成されている。尚、図1は断面図であり、圧力室1は隔壁により分離された複数個が、この断面と垂直方向に並んだ構成になっており、吐出口2、圧電素子3も圧力室1と同数が同様に並んでいる。   In FIG. 1, a nozzle head according to the present embodiment includes a pressure chamber 1 that contains ink, a discharge port 2 that discharges ink, a piezoelectric element 3 that communicates with the discharge port 2 and applies pressure to the pressure chamber 1. And a diaphragm 4 that vibrates with the piezoelectric element 3. 1 is a cross-sectional view, and a plurality of pressure chambers 1 separated by partition walls are arranged in a direction perpendicular to the cross section, and the number of discharge ports 2 and piezoelectric elements 3 are the same as the number of pressure chambers 1. Are lined up in the same way.

圧力室1は、感光性有機高分子材料、感光性ガラスおよびシリコンなどにより構成されている。圧力室1の上部は振動板4により形成されている。振動板4はSiO2層により構成されている。振動板4の上には圧電素子3が形成され、この圧電素子3には、図示していないが上下に電極が配されている。 The pressure chamber 1 is composed of a photosensitive organic polymer material, photosensitive glass, silicon, and the like. The upper part of the pressure chamber 1 is formed by a diaphragm 4. The diaphragm 4 is composed of a SiO 2 layer. A piezoelectric element 3 is formed on the vibration plate 4, and electrodes are arranged on the piezoelectric element 3 at the top and bottom although not shown.

ここで、本実施の形態では、圧電素子3を形成する圧電体として鉛を含有したペロブスカイト型誘電体薄膜がその優れた圧電性から効果的であり、膜厚が20μm以下の厚みにおいても十分な圧電特性を有していた。また圧電体の厚みを20μm以下とする事により、圧電体を薄膜プロセスにより形成できる事に加え、また微細加工も行えることから圧電素子3の大きさも約10μm程度の幅でも加工できた。そのため図1(b)の様にノズルを約10μmの幅で1列に配置することが可能で、印字解像度を向上し、更に印字速度を向上させることができる。   Here, in the present embodiment, a perovskite type dielectric thin film containing lead is effective as a piezoelectric body forming the piezoelectric element 3 because of its excellent piezoelectricity, and even a thickness of 20 μm or less is sufficient. It had piezoelectric properties. Further, by setting the thickness of the piezoelectric body to 20 μm or less, in addition to being able to form the piezoelectric body by a thin film process and performing fine processing, the piezoelectric element 3 can be processed even with a width of about 10 μm. Therefore, as shown in FIG. 1B, the nozzles can be arranged in a line with a width of about 10 μm, so that the printing resolution can be improved and the printing speed can be further improved.

図2は圧電素子3の構成を詳しく示した図である。圧力室1に面する振動板4として、振動部分の厚みが2μmのSiO2層、圧電体5としてPb(Zr0.5Ti0.5)O3の組成式で示される厚み3μmのPZT薄膜を用いた。圧電体5の上下には厚み0.1μmの白金から成る電極6および7が形成されている。圧電体5の厚みは薄いほど微細加工が容易となり、また駆動電圧も低くすることが可能で、シリコンの振動板4の厚みも2μmとたわみやすい厚みとしたことで50V以下の電圧においても良好なたわみ振動を発生させることができた。また、PZT薄膜の微細加工では弗酸や硝酸など強酸性の溶液を用いて行うが、電極6または7として白金もしくは金を用いることにより電極材料が腐食することを防止し、素子化を安定に行うことができた。この振動板4の材料としては、SiO2のほかにニッケル、クロム、アルミニウムなどの金属を蒸着、もしくはメッキにより形成したものでも振動中に亀裂が生じるなどの劣化はなく、インクを吐出するのに十分な振動を発生することができた。振動板4の材料としてこれらの金属の酸化物でも同様の振動特性を得ることができた。振動板4としてはポリイミドなどの有機高分子材料でも同様の振動効果を得ることが可能で、感光性ポリイミドを用いることにより素子化を容易に進めることができた。 FIG. 2 is a diagram showing the configuration of the piezoelectric element 3 in detail. As the diaphragm 4 facing the pressure chamber 1, a SiO 2 layer having a vibration part thickness of 2 μm and a PZT thin film having a thickness of 3 μm represented by the composition formula of Pb (Zr 0.5 Ti 0.5 ) O 3 were used as the piezoelectric body 5. Electrodes 6 and 7 made of platinum having a thickness of 0.1 μm are formed above and below the piezoelectric body 5. The thinner the piezoelectric body 5 is, the easier microfabrication is possible, and the drive voltage can be lowered. The thickness of the silicon diaphragm 4 is also 2 μm, which is good even at a voltage of 50 V or less. A flexural vibration could be generated. In addition, the microfabrication of PZT thin film is performed using a strongly acidic solution such as hydrofluoric acid or nitric acid. By using platinum or gold as the electrode 6 or 7, the electrode material is prevented from being corroded, and the device can be stably formed. Could be done. As a material of the diaphragm 4, even when a metal such as nickel, chromium, and aluminum is deposited or plated in addition to SiO 2 , there is no deterioration such as cracking during vibration, and ink is ejected. Sufficient vibration could be generated. Similar vibration characteristics could be obtained even with oxides of these metals as the material of the diaphragm 4. As the diaphragm 4, it is possible to obtain the same vibration effect even with an organic polymer material such as polyimide. By using photosensitive polyimide, it was possible to easily make an element.

圧電体5の材料として、鉛、チタン、ジルコニウムから構成された酸化物であるペロブスカイト型PZT薄膜材料を用いることにより、低電圧でも良好な振動を発生させることができた。またこのPZT薄膜の組成は、Pb(Zr0.53Ti0.47)O3の場合に最大の圧電性を示すとされているが、この組成の薄膜を直接基板上に形成することは容易ではない。そのため第1層としてZrの含有していないPbTiO3やPbTiO3にランタンを添加したPLTを形成し、第2層としてPb(Zr0.53Ti0.47)O3の組成の2層構造とした場合、高品質圧電薄膜を形成しやすく、更に良好な圧電特性を得ることができた。図3に多層構造圧電体の断面構造を示す。第1層として膜厚0.1μmのPbTiO3層8、第2層として膜厚2.9μmのPb(Zr0.53Ti0.47)O3の組成を有するPZT層9とした。この2層構造の圧電体5を用いることにより、低電圧においても十分なインク吐出能力を有するインクジェット記録装置を作ることができた。また、この様な多層構造とせずに、PbTiO3からPb(Zr0.5Ti0.5)O3付近の組成へと連続に組成傾斜をしている層から成る圧電体5でも同様の効果が得られた。 By using a perovskite PZT thin film material, which is an oxide composed of lead, titanium, and zirconium, as the material of the piezoelectric body 5, good vibrations could be generated even at a low voltage. The composition of this PZT thin film is said to exhibit the maximum piezoelectricity in the case of Pb (Zr 0.53 Ti 0.47 ) O 3 , but it is not easy to form a thin film of this composition directly on the substrate. Therefore, when PbTiO 3 not containing Zr or PLT in which lanthanum is added to PbTiO 3 is formed as the first layer and a two-layer structure of Pb (Zr 0.53 Ti 0.47 ) O 3 is formed as the second layer, It was easy to form a quality piezoelectric thin film, and better piezoelectric properties could be obtained. FIG. 3 shows a cross-sectional structure of the multilayered piezoelectric material. The PbTiO 3 layer 8 having a thickness of 0.1 μm was used as the first layer, and the PZT layer 9 having a composition of Pb (Zr 0.53 Ti 0.47 ) O 3 having a thickness of 2.9 μm was used as the second layer. By using this two-layered piezoelectric body 5, an ink jet recording apparatus having sufficient ink discharge capability even at a low voltage could be produced. In addition, the same effect was obtained even in the piezoelectric body 5 composed of a layer having a composition gradient continuously from PbTiO 3 to a composition in the vicinity of Pb (Zr 0.5 Ti 0.5 ) O 3 without using such a multilayer structure. .

(第2の実施の形態)
図4は、本発明の第2の実施の形態における圧電素子及び圧力室の製造方法を説明する図である。
(Second Embodiment)
FIG. 4 is a diagram for explaining a method of manufacturing a piezoelectric element and a pressure chamber according to the second embodiment of the present invention.

図4において、まず、MgO基板10の(100)面上に個別電極11となるPt層を形成し、その個別電極11の上に圧電材料として鉛系誘電体層12をrfスパッタリングにより形成した。この鉛系誘電体層12としては、膜厚3μmのPZT系のc軸方向に配向した単結晶層であればよい圧電性を得ることができた。鉛系誘電体層12の形成法としてrfスパッタ法を用いることにより、(100)MgO基板10上にc軸方向に配向した結晶性の良いPZT薄膜を形成することができた。またMgO基板10の表面にはPtの個別電極11があるが、その表面に直接PZTを堆積させず第1層としてZrの含有していないPbTiO3層を厚み約0.01μmと非常に薄く形成しておくことで、単結晶のPZT薄膜が形成することが可能となった。鉛系誘電体層12の形成方法としてrfスパッタ法の他、MOCVDもしくはゾルゲル溶液を用いたスピンコート法においても良好な結晶性を有する圧電性薄膜を形成することができた。次にその鉛系誘電体層12の上に共通電極13となるPt層を形成する。その共通電極13の上にSiO2からなる材料で振動板4をスパッタリング法により形成した。この振動板4は個別電極11と対応する鉛系強誘電体層12が振動し、この振動が振動板4により増幅される。この個別電極11の下の振動板の厚みが2μmの時、良好な振動特性が得られた。次に振動板4の上に圧力室1の構造体を感光性樹脂14などにより形成し、最後にMgO基板10を酸性溶液でエッチング除去する。個別電極11は鉛系誘電体層12の形成前、もしくはMgO基板10をエッチング除去した後にパターンニングする。鉛系誘電体層12は、共通電極13を形成する前にパターンニングする。もしくは共通電極13を形成し、MgO基板10をエッチング後に、各圧力室1に対応した分割された形状となるように強酸性溶液を用いてパターンニングした。本発明におけるインクヘッド形成法を図5に示す。(a)は個別電極11をはじめに電極パターンを形成する方法で、(b)は工程の終盤でMgO基板10をエッチング除去した後個別電極11のパターン形成を行う方法である。 In FIG. 4, first, a Pt layer to be the individual electrode 11 was formed on the (100) plane of the MgO substrate 10, and a lead-based dielectric layer 12 was formed on the individual electrode 11 as a piezoelectric material by rf sputtering. As the lead-based dielectric layer 12, piezoelectricity can be obtained as long as it is a single crystal layer oriented in the c-axis direction of a PZT system having a thickness of 3 μm. By using rf sputtering as a method for forming the lead-based dielectric layer 12, a PZT thin film with good crystallinity oriented in the c-axis direction on the (100) MgO substrate 10 could be formed. Further, although there is a Pt individual electrode 11 on the surface of the MgO substrate 10, a PbTiO 3 layer not containing Zr is formed as a first layer with a very thin thickness of about 0.01 μm without directly depositing PZT on the surface. Thus, a single crystal PZT thin film can be formed. In addition to the rf sputtering method as a method for forming the lead-based dielectric layer 12, a piezoelectric thin film having good crystallinity could be formed by MOCVD or spin coating using a sol-gel solution. Next, a Pt layer to be the common electrode 13 is formed on the lead-based dielectric layer 12. The diaphragm 4 is formed on the common electrode 13 by a sputtering method using a material made of SiO 2 . In the diaphragm 4, the lead-based ferroelectric layer 12 corresponding to the individual electrode 11 vibrates, and this vibration is amplified by the diaphragm 4. Good vibration characteristics were obtained when the thickness of the diaphragm under the individual electrode 11 was 2 μm. Next, the structure of the pressure chamber 1 is formed on the vibration plate 4 with a photosensitive resin 14 or the like, and finally the MgO substrate 10 is removed by etching with an acidic solution. The individual electrodes 11 are patterned before the formation of the lead-based dielectric layer 12 or after the MgO substrate 10 is removed by etching. The lead-based dielectric layer 12 is patterned before the common electrode 13 is formed. Alternatively, the common electrode 13 was formed and the MgO substrate 10 was etched and then patterned using a strongly acidic solution so as to have a divided shape corresponding to each pressure chamber 1. FIG. 5 shows an ink head forming method in the present invention. (a) is a method of forming an electrode pattern at the beginning of the individual electrode 11, and (b) is a method of forming the pattern of the individual electrode 11 after the MgO substrate 10 is removed by etching at the end of the process.

本実施の形態に示した製造方法によれば圧電特性の良い薄膜材料を形成することができ、更に半導体の微細加工技術を応用し多素子化が可能となる。図6に上記の方法で製作したインクジェット記録装置のノズルヘッドを正面から見た図を示す。作製したヘッドは、ノズルが2000dpiの密度で形成されたヘッドである。   According to the manufacturing method shown in this embodiment mode, a thin film material having good piezoelectric characteristics can be formed, and further, a multi-element can be formed by applying a semiconductor microfabrication technique. FIG. 6 shows a front view of the nozzle head of the ink jet recording apparatus manufactured by the above method. The produced head is a head in which nozzles are formed at a density of 2000 dpi.

この構成のインクジェット記録装置の製造において、MgO基板10上の個別電極11として白金もしくはルテニウム酸化物を用いることにより、ペロブスカイト構造を有する鉛系誘電体層12を結晶性よく形成することができた。結晶性を改善することにより圧電特性を向上させることができ、多素子化した場合でもインク吐出能力の素子間のばらつきを少なくすることができた。また圧電材料として用いる鉛系誘電体層12としては、Zr/Ti比が30/70〜70/30の範囲内にあるPZT層であれば、更に良好な圧電特性を有しいた。Zr/Ti比が50/50のPZT薄膜を鉛系誘電体層12とし、各圧力室1に対応して幅10μm、長さ1mmの大きさにパターンニングしたものに対して、印加電圧と振動板4の最大たわみ量の関係を図7に示す。図より印加電圧を増加すると振動板がたわみ30Vの電圧に対して約2μmの変位を発生させることができた。この良好な圧電特性を利用して、インク吐出能力の高いインクジェット記録装置とすることができた。このほか、鉛系誘電体層12として Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (0.060≦y≦0.065)の組成を有する反強誘電体の薄膜を用いた場合について、印加電圧と振動板4の最大変位との関係を図8に示す。この場合、15Vの電圧で、反強誘電体から強誘電体への相転移が起こるため不連続な変位特性を示し、20Vで約0.8μmの変位が発生した。このことは、ある電圧以上を印加した場合ほぼ一定の変位を発生させることができ、インク吐出量のばらつきを少なくする事ができた。更にPb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (0.060≦y≦0.065)の組成を有する反強誘電体薄膜では、多結晶質の薄膜でも安定なインク吐出能力を有する圧電素子とすることができた。 In the manufacture of the ink jet recording apparatus having this configuration, the lead-based dielectric layer 12 having a perovskite structure could be formed with good crystallinity by using platinum or ruthenium oxide as the individual electrode 11 on the MgO substrate 10. The piezoelectric characteristics can be improved by improving the crystallinity, and even when the number of elements is increased, the variation in the ink discharge ability between elements can be reduced. Further, as the lead-based dielectric layer 12 used as the piezoelectric material, if it is a PZT layer having a Zr / Ti ratio in the range of 30/70 to 70/30, even better piezoelectric characteristics were obtained. A PZT thin film having a Zr / Ti ratio of 50/50 is used as a lead-based dielectric layer 12 and is patterned to have a width of 10 μm and a length of 1 mm corresponding to each pressure chamber 1. The relationship of the maximum deflection amount of the plate 4 is shown in FIG. As shown in the figure, when the applied voltage was increased, the diaphragm was able to generate a displacement of about 2 μm with respect to the voltage of deflection of 30V. By utilizing this good piezoelectric characteristic, an ink jet recording apparatus having a high ink discharge capability could be obtained. In addition, an antiferroelectric thin film having a composition of Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (0.060 ≦ y ≦ 0.065) was used as the lead-based dielectric layer 12. The relationship between the applied voltage and the maximum displacement of the diaphragm 4 is shown in FIG. In this case, a phase transition from antiferroelectric to ferroelectric occurred at a voltage of 15 V, so that discontinuous displacement characteristics were exhibited, and a displacement of about 0.8 μm occurred at 20 V. As a result, when a certain voltage or more is applied, a substantially constant displacement can be generated, and variations in the ink discharge amount can be reduced. Furthermore, the antiferroelectric thin film having a composition of Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (0.060 ≦ y ≦ 0.065) is stable even in a polycrystalline thin film. It was possible to obtain a piezoelectric element having

更に振動板4はスパッタ法などの薄膜プロセスを用いることにより微細加工が容易となる。その材料として、酸化シリコンSiO2の他、ニッケル、アルミニウムなどの金属もスパッタ法、真空蒸着およびメッキ法により容易に形成することができ、SiO2と同様良好な振動特性を得ることができた。またアルミナでもSiO2と同様の効果を得ることができ、スパッタリング法により容易に形成できた。この他、ポリイミド系の樹脂はスピンコート法により容易に形成でき、またその微細加工も容易であり、インクジェット記録装置の振動板として適した材料であった。スパッタリングなどの薄膜プロセスによって得られた鉛系誘電体層12は、MgO基板10上に形成するが、最終的に酸性溶液により除去する。この酸性溶液として燐酸溶液を用いることでMgOを安定に溶解することができ、かつ圧電体にダメージを与えることなくインクジェット記録装置を作製することができた。 Further, the diaphragm 4 can be easily finely processed by using a thin film process such as a sputtering method. As the material, metals such as nickel oxide and aluminum, as well as silicon oxide SiO 2 , could be easily formed by sputtering, vacuum deposition, and plating, and good vibration characteristics could be obtained as with SiO 2 . Alumina can also achieve the same effect as SiO 2 and can be easily formed by sputtering. In addition, the polyimide resin can be easily formed by a spin coating method, and its microfabrication is easy, and is a material suitable as a diaphragm for an ink jet recording apparatus. The lead-based dielectric layer 12 obtained by a thin film process such as sputtering is formed on the MgO substrate 10, but is finally removed by an acidic solution. By using a phosphoric acid solution as the acidic solution, MgO could be stably dissolved, and an ink jet recording apparatus could be produced without damaging the piezoelectric body.

(第3の実施の形態)
図9は、本発明の第3の実施の形態における圧電素子及び圧力室の製造方法を説明する図である。
(Third embodiment)
FIG. 9 is a diagram for explaining a method of manufacturing a piezoelectric element and a pressure chamber according to the third embodiment of the present invention.

図9において、まず、シリコン基板15上に個別電極11となるPt層を形成し、その個別電極11の上に圧電材料として鉛系誘電体層12をスパッタ法により形成した。この鉛系誘電体層12としては、厚みが3μmのPZT系の多結晶層であればよい圧電性を得ることができた。鉛系誘電体層12の形成法としてMOCVDもしくはゾルゲル溶液を用いたスピンコートにおいても良好な結晶性を有する圧電性薄膜を形成することができた。次にその鉛系誘電体層12の上に共通電極13となるPt層を形成する。その共通電極13の上にSiO2からなる材料で振動板4をスパッタ法により形成した。次に振動板4の上に圧力室1の構造体を感光性樹脂14により形成し、最後にシリコン基板15を弗酸系溶液、もしくは水酸化カリウム溶液でエッチング除去する。圧力室1は感光性ガラスもしくは感光性樹脂などにより分割形成され多素子化している。個別電極11は鉛系誘電体層12の形成前、もしくはシリコン基板15をエッチングした後にパターンニングする。また鉛系誘電体層12は、共通電極13を形成する前にパターンニングする。もしくはシリコン基板15をエッチング除去した後に、各圧力室1に分割した形状となるようにパターンニングした。本実施例の製造方法の一例を図10に示す。本実施の形態に示した製造方法によればMgO基板6より安価に、かつ大きな面積を有した単結晶基板が入手しやすいシリコン基板15を用いることができ、インクジェット用圧電素子を一度に多数形成することが可能で、更に圧電特性の良い薄膜材料を形成することができる。またこれまで確立されてきたシリコンの微細加工技術を応用し非常に高精度な微細加工から作り出される多素子化も容易となる。上記の方法で製作したインクジェトのヘッドは、図6と同様の構成が可能でノズルが2000dpiの密度まで形成できた。 In FIG. 9, first, a Pt layer to be the individual electrode 11 was formed on the silicon substrate 15, and a lead-based dielectric layer 12 was formed as a piezoelectric material on the individual electrode 11 by sputtering. As the lead-based dielectric layer 12, it is possible to obtain piezoelectricity as long as it is a PZT-based polycrystalline layer having a thickness of 3 μm. A piezoelectric thin film having good crystallinity could also be formed by spin coating using MOCVD or sol-gel solution as a method of forming the lead-based dielectric layer 12. Next, a Pt layer to be the common electrode 13 is formed on the lead-based dielectric layer 12. The diaphragm 4 is formed on the common electrode 13 by a sputtering method using a material made of SiO 2 . Next, the structure of the pressure chamber 1 is formed on the vibration plate 4 with the photosensitive resin 14, and finally the silicon substrate 15 is removed by etching with a hydrofluoric acid solution or a potassium hydroxide solution. The pressure chamber 1 is divided and formed into multiple elements using photosensitive glass or photosensitive resin. The individual electrodes 11 are patterned before the lead-based dielectric layer 12 is formed or after the silicon substrate 15 is etched. The lead-based dielectric layer 12 is patterned before the common electrode 13 is formed. Alternatively, after the silicon substrate 15 is removed by etching, the silicon substrate 15 is patterned so as to be divided into the pressure chambers 1. An example of the manufacturing method of a present Example is shown in FIG. According to the manufacturing method shown in the present embodiment, it is possible to use the silicon substrate 15 which is cheaper than the MgO substrate 6 and is easily available as a single crystal substrate having a large area, and a large number of piezoelectric elements for inkjet are formed at a time. It is possible to form a thin film material with better piezoelectric characteristics. In addition, application of silicon microfabrication technology that has been established so far makes it easy to increase the number of elements produced from very high precision micromachining. The inkjet head manufactured by the above method can have the same configuration as in FIG. 6, and the nozzles can be formed to a density of 2000 dpi.

この構成のインクジェット記録装置の製造において、シリコン基板15を用いる他、ガラス基板を用いても同様の多素子構成のインクジェット記録装置が作製できた。この場合弗酸系の溶液を用いてガラス基板をエッチングする事により、図5と同様の構成を有する多素子化したインクジェット記録装置を形成することができた。   In the manufacture of the ink jet recording apparatus having this configuration, an ink jet recording apparatus having the same multi-element configuration could be manufactured using a glass substrate in addition to using the silicon substrate 15. In this case, by etching the glass substrate using a hydrofluoric acid-based solution, a multi-element ink jet recording apparatus having the same configuration as that shown in FIG. 5 could be formed.

上の個別電極11として白金以外に、ルテニウム酸化物を用いることにより、ペロブスカイト構造を有する鉛系誘電体層12を結晶性よく形成することができた。このため圧電体として良好な特性を有することができ、多素子化した場合でもインク吐出能力の素子間のばらつきの少ないインクジェット記録装置が作成できた。また圧電材料として用いる鉛系誘電体層12としては、Zr/Ti比が30/70〜70/30の範囲内にあるPZT層であれば、更に良好な圧電特性を有し、インク吐出能力の高いインクジェット記録装置とすることができた。また、鉛系誘電体層12として Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (0.060≦y≦ 0.065)の組成を有する反強誘電体の薄膜を用いた場合、電圧印加に対して安定した応答が得ることができ、インク吐出量のばらつきを少なくする事ができた。 By using ruthenium oxide in addition to platinum as the individual electrode 11, the lead-based dielectric layer 12 having a perovskite structure could be formed with good crystallinity. For this reason, it is possible to produce an ink jet recording apparatus that can have excellent characteristics as a piezoelectric body and has little variation in the ink discharge capability between elements even when the number of elements is increased. Further, as the lead-based dielectric layer 12 used as the piezoelectric material, if it is a PZT layer having a Zr / Ti ratio in the range of 30/70 to 70/30, it has even better piezoelectric characteristics and has an ink ejection capability. A high inkjet recording apparatus could be obtained. In the case where an antiferroelectric thin film having a composition of Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (0.060 ≦ y ≦ 0.065) is used as the lead-based dielectric layer 12 Thus, a stable response to voltage application can be obtained, and variations in ink discharge amount can be reduced.

更に振動板4の材料として、酸化シリコンSiO2の他、ニッケル、アルミニウムなどの金属もスパッタリング、真空蒸着およびメッキ法により容易に形成することができ、SiO2と同様良好な振動特性を得ることができた。またアルミナ等の酸化物でもSiO2と同様の効果を得ることができ、スパッタリング法により容易に形成できた。この他、ポリイミド系の樹脂などの高分子有機物はスピンコート法により容易に形成でき、またその加工も容易であり、インクジェット記録装置の振動板として適した材料であった。 As a further material of the vibrating plate 4, another silicon oxide SiO 2, nickel, a metal such as aluminum is also sputtering, can be readily formed by vacuum deposition and plating, to obtain a similar favorable vibration characteristics and SiO 2 did it. Also, oxides such as alumina can obtain the same effect as SiO 2 and can be easily formed by sputtering. In addition, a polymer organic material such as a polyimide resin can be easily formed by a spin coating method and can be easily processed, and is a material suitable as a diaphragm of an ink jet recording apparatus.

(第4の実施の形態)
図11は、本発明の第4の実施の形態における圧電素子及び圧力室の製造方法を説明する図である。
(Fourth embodiment)
FIG. 11 is a diagram for explaining a method of manufacturing a piezoelectric element and a pressure chamber according to the fourth embodiment of the present invention.

図11において、まず、シリコン基板15上に膜厚2μmのSiO2からなる振動板4をスパッタ法を用いて形成する。更にその上に共通電極13となるPt層を形成する。個別電極13の上に圧電材料として鉛系誘電体層12をrfスパッタ法により形成した。この鉛系誘電体層12としては、厚みが3μmのPZT系の多結晶層であればよい圧電特性を得ることができた。鉛系誘電体層12の形成法としてMOCVDもしくはゾルゲル溶液を用いたスピンコートにおいても良好な結晶性を有する圧電性薄膜を形成することができた。次にその鉛系誘電体層12の上に個別電極11となるPt層を形成する。この個別電極11はイオンエッチングによって微細加工し、各圧力室1に対応した箇所に分離した形状となるようにした。なお、振動板4が絶縁物である場合、個別電極11を振動板4上に形成し、共通電極13を鉛系誘電体層4上に形成しても良い。次にシリコン基板15を弗酸系溶液、もしくは水酸化カリウム溶液で部分的にエッチング除去し、シリコン基板15の一部を圧力室1の構造部材として用いた。鉛系誘電体層12は、共通電極13を形成する前に、各圧力室1に対応し分割された形状となるようにパターンニングした。本実施の形態に示した製造方法の一例を図12に示す。この方法では圧力室1の形成を圧電素子を形成する基板の一部を用いて作製するため、工程が簡略化でき、かつシリコンの微細加工技術を用いることにより微細な素子化も可能になる。上記の方法で製作したインクジェトのヘッドは、図6と同様の構成が可能でノズルが2000dpiの密度まで形成できた。 In FIG. 11, first, a diaphragm 4 made of SiO 2 having a thickness of 2 μm is formed on a silicon substrate 15 by sputtering. Further, a Pt layer to be the common electrode 13 is formed thereon. A lead-based dielectric layer 12 was formed as a piezoelectric material on the individual electrode 13 by rf sputtering. As the lead-based dielectric layer 12, piezoelectric characteristics can be obtained as long as it is a PZT-based polycrystalline layer having a thickness of 3 μm. A piezoelectric thin film having good crystallinity could also be formed by spin coating using MOCVD or sol-gel solution as a method of forming the lead-based dielectric layer 12. Next, a Pt layer to be the individual electrode 11 is formed on the lead-based dielectric layer 12. The individual electrode 11 was finely processed by ion etching so as to have a shape separated into portions corresponding to the pressure chambers 1. When the diaphragm 4 is an insulator, the individual electrode 11 may be formed on the diaphragm 4 and the common electrode 13 may be formed on the lead-based dielectric layer 4. Next, the silicon substrate 15 was partially etched away with a hydrofluoric acid solution or a potassium hydroxide solution, and a part of the silicon substrate 15 was used as a structural member of the pressure chamber 1. The lead-based dielectric layer 12 was patterned to have a divided shape corresponding to each pressure chamber 1 before forming the common electrode 13. An example of the manufacturing method shown in this embodiment mode is shown in FIG. In this method, since the pressure chamber 1 is formed by using a part of the substrate on which the piezoelectric element is formed, the process can be simplified, and a fine element can be formed by using a silicon microfabrication technique. The inkjet head manufactured by the above method can have the same configuration as in FIG. 6, and the nozzles can be formed to a density of 2000 dpi.

この構成のインクジェット記録装置の製造において、シリコン基板15を用いる他、更に安価なガラス基板を用いても同様の多素子構成のインクジェット記録装置が作製できた。この場合弗酸系の溶液を用いてガラス基板13をエッチングする事により、図6と同様の構成を有する多素子化したインクジェット記録装置を形成することができた。   In the production of the ink jet recording apparatus having this configuration, an ink jet recording apparatus having the same multi-element configuration could be manufactured by using a silicon substrate 15 or using an inexpensive glass substrate. In this case, by etching the glass substrate 13 using a hydrofluoric acid-based solution, a multi-element ink jet recording apparatus having the same configuration as in FIG. 6 could be formed.

上の個別電極11として白金以外に、ルテニウム酸化物を用いることにより、ペロブスカイト構造を有する鉛系誘電体層12を結晶性よく形成することができた。このため圧電体として良好な特性を有することができ、多素子化した場合でもインク吐出能力の素子間のばらつきの少ないインクジェット記録装置が作成できた。また圧電材料として用いる鉛系誘電体層12としては、Zr/Ti比が30/70〜70/30の範囲内にあるPZT層であれば、更に良好な圧電特性を有し、インク吐出能力の高いインクジェット記録装置とすることができた。また、鉛系誘電体層12として Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (0.060≦y≦ 0.065)の組成を有する反強誘電体の薄膜を用いた場合、電圧印加に対して安定した応答が得ることができ、インク吐出量のばらつきを少なくする事ができた。また Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (0.060≦y≦0.065)の組成を有する反強誘電体薄膜では、多結晶質の薄膜でも安定なインク吐出能力を有する圧電素子とすることができた。 By using ruthenium oxide in addition to platinum as the individual electrode 11, the lead-based dielectric layer 12 having a perovskite structure could be formed with good crystallinity. For this reason, it is possible to produce an ink jet recording apparatus that can have excellent characteristics as a piezoelectric body and has little variation in the ink discharge capability between elements even when the number of elements is increased. Further, as the lead-based dielectric layer 12 used as the piezoelectric material, if it is a PZT layer having a Zr / Ti ratio in the range of 30/70 to 70/30, it has even better piezoelectric characteristics and has an ink ejection capability. A high inkjet recording apparatus could be obtained. In the case where an antiferroelectric thin film having a composition of Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (0.060 ≦ y ≦ 0.065) is used as the lead-based dielectric layer 12 Thus, a stable response to voltage application can be obtained, and variations in ink discharge amount can be reduced. In addition, the antiferroelectric thin film having the composition of Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (0.060 ≦ y ≦ 0.065) has a stable ink ejection capability even with a polycrystalline thin film. It was possible to obtain a piezoelectric element having

更に振動板4の材料として、酸化シリコンSiO2の他、ニッケル、アルミニウムなどの金属もスパッタリング、真空蒸着およびメッキ法により容易に形成することができ、SiO2と同様良好な振動特性を得ることができた。またアルミナでもSiO2と同様の効果を得ることができ、スパッタリング法により容易に形成できた。この他、ポリイミド系の樹脂はスピンコート法により容易に形成でき、またその加工も容易であり、インクジェット記録装置の振動板として適した材料であった。 As a further material of the vibrating plate 4, another silicon oxide SiO 2, nickel, a metal such as aluminum is also sputtering, can be readily formed by vacuum deposition and plating, to obtain a similar favorable vibration characteristics and SiO 2 did it. Alumina can also achieve the same effect as SiO2, and can be easily formed by sputtering. In addition, the polyimide-based resin can be easily formed by a spin coating method and can be easily processed, and is a material suitable as a diaphragm for an ink jet recording apparatus.

本発明は、インクジェット記録装置に有用である。   The present invention is useful for an ink jet recording apparatus.

本発明の一実施例におけるインクジェット記録装置のヘッドを横から見た断面を示す図、およびヘッドの概観図The figure which shows the cross section which looked at the head of the inkjet recording device in one Example of this invention from the side, and the general | schematic figure of a head 本発明の一実施例におけるインクジェット記録装置のヘッドの断面を拡大した図The figure which expanded the cross section of the head of the inkjet recording device in one Example of this invention 本発明の一実施例におけるインクジェト記録装置の圧電素子の構成を示す図The figure which shows the structure of the piezoelectric element of the inkjet recording device in one Example of this invention. 本発明の一実施例におけるインクジェット記録装置の圧電素子及び圧力室の製造方法を示す図The figure which shows the manufacturing method of the piezoelectric element and pressure chamber of the inkjet recording device in one Example of this invention 本発明の一実施例におけるインクジェット記録装置の製造工程を示す図The figure which shows the manufacturing process of the inkjet recording device in one Example of this invention. 本発明の一実施例におけるインクジェット記録装置の製造方法により製造したノズルヘッドを正面から見た図The figure which looked at the nozzle head manufactured by the manufacturing method of the inkjet recording device in one Example of this invention from the front 本発明の一実施例におけるインクジェット記録装置の圧電素子における印加電圧と振動板の最大変位量の関係を示す図The figure which shows the relationship between the applied voltage in the piezoelectric element of the inkjet recording device in one Example of this invention, and the maximum displacement amount of a diaphragm. 本発明の一実施例におけるインクジェット記録装置の圧電素子における印加電圧と振動板の最大変位量の関係を示す図The figure which shows the relationship between the applied voltage in the piezoelectric element of the inkjet recording device in one Example of this invention, and the maximum displacement amount of a diaphragm. 本発明の一実施例におけるインクジェット記録装置の製造方法を示す図The figure which shows the manufacturing method of the inkjet recording device in one Example of this invention 本発明の一実施例におけるインクジェット記録装置の製造工程を示す図The figure which shows the manufacturing process of the inkjet recording device in one Example of this invention. 本発明の一実施例におけるインクジェット記録装置の製造方法を示す図The figure which shows the manufacturing method of the inkjet recording device in one Example of this invention 本発明の一実施例におけるインクジェット記録装置の製造工程を示す図The figure which shows the manufacturing process of the inkjet recording device in one Example of this invention.

符号の説明Explanation of symbols

1 圧力室
2 吐出口
3 圧電素子
4 振動板
5 鉛系誘電体層
6 共通電極
7 個別電極
8 PbTiO3
9 PZT
10 MgO基板
11 個別電極
12 鉛系誘電体層
13 共通電極
14 感光性樹脂
15 シリコン基板
1 Pressure Chamber 2 Discharge Port 3 Piezoelectric Element 4 Diaphragm 5 Lead-Based Dielectric Layer 6 Common Electrode 7 Individual Electrode 8 PbTiO 3
9 PZT
10 MgO substrate 11 Individual electrode 12 Lead-based dielectric layer 13 Common electrode 14 Photosensitive resin 15 Silicon substrate

Claims (10)

MgO基板、シリコン基板またはガラス基板のいずれかの基板上に電極を形成し、前記電極上に鉛系誘電体層を形成し、前記鉛系誘電体層上に更に第2の電極を形成し、前記第2の電極上に振動板を形成した後、前記MgO基板、シリコン基板またはガラス基板のいずれかの基板の全て、もしくは一部を除去し、前記振動板の上にインク液体を収容するための圧力室を形成するインクジェット記録装置の製造方法。 Forming an electrode on any one of an MgO substrate , a silicon substrate, and a glass substrate, forming a lead-based dielectric layer on the electrode, and further forming a second electrode on the lead-based dielectric layer; After the diaphragm is formed on the second electrode , all or a part of any one of the MgO substrate , the silicon substrate, and the glass substrate is removed, and ink liquid is stored on the diaphragm. Manufacturing method for forming an ink jet recording apparatus. 鉛系誘電体をスパッタ法により形成することを特徴とする請求項1記載のインクジェット記録装置の製造方法。 2. The method of manufacturing an ink jet recording apparatus according to claim 1, wherein the lead-based dielectric is formed by a sputtering method. 基板としてMgO基板を用いた場合、MgO基板のエッチング溶液として燐酸を用いる請求項1に記載のインクジェット記録装置の製造方法。 2. The method of manufacturing an ink jet recording apparatus according to claim 1, wherein when an MgO substrate is used as the substrate, phosphoric acid is used as an etching solution for the MgO substrate. 基板として、シリコン基板またはガラス基板を用いた場合、シリコン基板、またはガラス基板の除去を弗酸系溶液、もしくは水酸化カリウム溶液を用いたエッチングで行うことを特徴とする請求項3記載のインクジェット記録装置の製造方法。 4. The ink jet recording according to claim 3 , wherein when a silicon substrate or a glass substrate is used as the substrate, the silicon substrate or the glass substrate is removed by etching using a hydrofluoric acid solution or a potassium hydroxide solution. Device manufacturing method. 基板を準備する第1の工程と、前記基板に対し、第1の電極と第2の電極と鉛系誘電体層と振動板とを形成する第2の工程と、前記第2の工程後、前記基板の全て、もしくは一部を除去する第3の工程とを有するインクジェット記録装置の製造方法。 A first step of preparing a substrate, a second step of forming a first electrode, a second electrode, a lead-based dielectric layer, and a diaphragm on the substrate; and after the second step, And a third step of removing all or part of the substrate. 第3の工程後、振動板に対し、インク液体を収容するための圧力室を形成することを特徴とする請求項記載のインクジェット記録装置の製造方法。 6. The method of manufacturing an ink jet recording apparatus according to claim 5 , wherein after the third step, a pressure chamber for containing ink liquid is formed on the diaphragm. 第3の工程において、基板の一部を除去することにより、インク液体を収容するための圧力室を形成することを特徴とする請求項記載のインクジェット記録装置の製造方法。 6. The method of manufacturing an ink jet recording apparatus according to claim 5 , wherein in the third step, a pressure chamber for containing the ink liquid is formed by removing a part of the substrate. 第2の工程は、基板上に第1の電極を形成し、前記第1の電極上に鉛系誘電体層を形成し、前記鉛系誘電体層上に第2の電極を形成し、前記第2の電極上に振動板を形成することにより行われることを特徴とする請求項記載のインクジェット記録装置の製造方法。 In the second step, a first electrode is formed on a substrate, a lead-based dielectric layer is formed on the first electrode, a second electrode is formed on the lead-based dielectric layer, 6. The method of manufacturing an ink jet recording apparatus according to claim 5, wherein the method is performed by forming a diaphragm on the second electrode. 第2の工程は、基板上に振動板を形成し、前記振動板上に第1の電極を形成し、前記第1の電極上に鉛系誘電体層を形成し、前記鉛系誘電体層上に第2の電極を形成することにより行われることを特徴とする請求項記載のインクジェット記録装置の製造方法。 In the second step, a diaphragm is formed on a substrate, a first electrode is formed on the diaphragm, a lead-based dielectric layer is formed on the first electrode, and the lead-based dielectric layer is formed. 6. The method for manufacturing an ink jet recording apparatus according to claim 5, wherein the method is performed by forming a second electrode thereon. 基板は、MgO基板、シリコン基板、またはガラス基板であることを特徴とする請求項記載のインクジェット記録装置の製造方法。 6. The method of manufacturing an ink jet recording apparatus according to claim 5 , wherein the substrate is an MgO substrate, a silicon substrate, or a glass substrate.
JP2004184743A 2004-06-23 2004-06-23 Method for manufacturing ink jet recording apparatus Expired - Fee Related JP3666506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184743A JP3666506B2 (en) 2004-06-23 2004-06-23 Method for manufacturing ink jet recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184743A JP3666506B2 (en) 2004-06-23 2004-06-23 Method for manufacturing ink jet recording apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09549197A Division JP3666177B2 (en) 1997-04-14 1997-04-14 Inkjet recording device

Publications (2)

Publication Number Publication Date
JP2004262253A JP2004262253A (en) 2004-09-24
JP3666506B2 true JP3666506B2 (en) 2005-06-29

Family

ID=33128841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184743A Expired - Fee Related JP3666506B2 (en) 2004-06-23 2004-06-23 Method for manufacturing ink jet recording apparatus

Country Status (1)

Country Link
JP (1) JP3666506B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091641B2 (en) 2006-04-07 2008-05-28 富士フイルム株式会社 Piezoelectric element, manufacturing method thereof, and ink jet recording head
JP5811728B2 (en) 2011-09-16 2015-11-11 株式会社リコー ELECTRO-MACHINE CONVERSION ELEMENT, DROPLET DISCHARGE HEAD, DROPLET DISCHARGE DEVICE, AND IMAGE FORMING DEVICE
JP2013197522A (en) 2012-03-22 2013-09-30 Ricoh Co Ltd Piezoelectric thin film element and method of manufacturing the same, and droplet discharge head using the piezoelectric thin film element, and ink jet recording device
JP6156068B2 (en) 2013-03-14 2017-07-05 株式会社リコー Piezoelectric thin film element, ink jet recording head, and ink jet image forming apparatus

Also Published As

Publication number Publication date
JP2004262253A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP3666177B2 (en) Inkjet recording device
JP3796394B2 (en) Method for manufacturing piezoelectric element and method for manufacturing liquid jet recording head
JP3508682B2 (en) Piezoelectric actuator, ink jet type recording head, manufacturing method thereof and ink jet printer
CN100382969C (en) Liquid ejection head
JPH11348285A (en) Ink jet recorder and manufacture thereof
JP5311775B2 (en) Piezoelectric element, inkjet head, and method of manufacturing piezoelectric element
US20040066116A1 (en) Actuator and liquid discharge head, and method for manufacturing liquid discharge head
US8672458B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP3202006B2 (en) Piezoelectric element, method of manufacturing the same, ink jet head using the same, and method of manufacturing the same
JP3666506B2 (en) Method for manufacturing ink jet recording apparatus
JP3280349B2 (en) Microactuator and ink jet printer head using the same
JP4086864B2 (en) Method for manufacturing liquid discharge head and method for manufacturing substrate for liquid discharge head
US7063407B2 (en) Piezoelectric actuator, method for manufacturing the same, ink jet head, and ink jet recording apparatus
JP2004104106A (en) Piezoelectric actuator, method of manufacturing the same, ink jet head, and ink jet recorder
JP2010221434A (en) Liquid jetting head, method for manufacturing the same, and liquid jetting apparatus
JP3903056B2 (en) Method for manufacturing piezoelectric element and method for manufacturing liquid jet recording head
JP6394901B2 (en) Liquid jet head
JP2008244266A (en) Method for manufacturing piezoelectric element, ink-jet type recording head, and ink jet printer
JP2006303519A (en) Liquid injection recording head and its manufacturing method
JP2015035516A (en) Piezoelectric element manufacturing method, piezoelectric element, liquid jet head, liquid jet apparatus, and ultrasonic device
JP3551357B2 (en) Actuator, inkjet recording head and inkjet printer
JP7331558B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2004237676A (en) Ink jet head
JP2011142280A (en) Actuator apparatus, method of manufacturing the same, method of manufacturing liquid injection head, and method of manufacturing liquid injection equipment
JP2005289017A (en) Inkjet head, inkjet recorder equipped with the same and manufacturing method for inkjet head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees