JP3666262B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3666262B2
JP3666262B2 JP24208198A JP24208198A JP3666262B2 JP 3666262 B2 JP3666262 B2 JP 3666262B2 JP 24208198 A JP24208198 A JP 24208198A JP 24208198 A JP24208198 A JP 24208198A JP 3666262 B2 JP3666262 B2 JP 3666262B2
Authority
JP
Japan
Prior art keywords
charge
layer
group
photoreceptor
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24208198A
Other languages
Japanese (ja)
Other versions
JP2000075520A (en
Inventor
昌美 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP24208198A priority Critical patent/JP3666262B2/en
Publication of JP2000075520A publication Critical patent/JP2000075520A/en
Application granted granted Critical
Publication of JP3666262B2 publication Critical patent/JP3666262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真用感光体に関し、詳しくは、導電性基体上に有機材料を含む感光層を設けた、電子写真方式のプリンタ、複写機などに用いられる電子写真用感光体に関する。
【0002】
【従来の技術】
従来は、電子写真方式のプリンタ、ファクシミリ、各種複写機等に用いられる電子写真用感光体として、セレンまたはセレン合金などの無機光導電性物質、酸化亜鉛もしくは硫化カドミウムなどの無機光導電性物質を樹脂バインダー中に分散させたものが用いられてきた。近年では、有機光導電性物質を用いた電子写真用感光体の研究も進み、感度や耐久性などが改善されて実用化されているものもある。
【0003】
また、感光体には、暗所で表面電荷を保持する機能、光を受容して電荷を発生する機能、同じく光を受容して電荷を輸送する機能とが必要であるが、一つの層でこれらの機能を合わせ持った、所謂単層型感光体と、主として電荷発生に寄与する層と、暗所での表面電荷の保持と光受容時の電荷輸送に寄与する層とに機能分離した層を積層した、所謂積層型感光体がある。
【0004】
これらの感光体を用いた電子写真法による画像形成には、例えば、カールソンプロセスが適用される。この方法での画像形成は、暗所での感光体へのコロナ放電による帯電、帯電された感光体表面上への露光による原稿の文字や絵などの静電潜像の形成、形成された静電潜像のトナーによる現像、現像されたトナー像の紙などの支持体への定着により行われ、トナー像転写後の感光体は除電、残留トナーの除去、光除電などを行った後、再使用に供される。
【0005】
実用化されている有機感光体は、無機感光体に比べ、可とう性、膜形成性、低コスト、安全性などの利点があり、材料の多様性からさらに感度、耐久性などの改善が進められている。
【0006】
有機感光体のほとんどは、電荷発生層と電荷輸送層に機能を分離した積層型の感光体である。一般に、積層型有機感光体は、導電性基体上に、顔料、染料などの電荷発生物質からなる電荷発生層、ヒドラゾン、トリフェニルアミンなど電荷輸送物質からなる電荷輸送層を順に形成したもので、電子供与性である電荷輸送物質の性質上、正孔移動型となり、感光体表面を負帯電したときに感度を有する。ところが負帯電では、正帯電に比べ帯電時に用いるコロナ放電が不安定であり、またオゾンや窒素酸化物などを発生し、これが感光体表面に吸着して物理的、化学的劣化を引きおこしやすく、さらに環境を悪化するという問題がある。このような点から、感光体としては負帯電型感光体よりも使用条件の自由度の大きい正帯電型感光体の方がその適用範囲は広く有利である。
【0007】
そこで、正帯電で使用するための感光体が種々提案されている。例えば、電荷発生物質と電荷輸送物質を同時に樹脂バインダーに分散させて、単層の感光層として使用する方法が提案され、一部実用化されている。しかし、単層型感光体は高速機に適用するには感度が十分ではなく、また繰り返し特性などの点からもさらに改良が必要である。また、高感度化を目的として機能分離型の積層構造とするため、電荷輸送層上に電荷発生層を積層して感光体を形成し、正帯電で使用する方法が考えられる。
【0008】
しかし、この方式では電荷発生層が表面に形成されるため、コロナ放電、光照射、機械的摩耗などにより、繰り返し使用時での安定性などに問題がある。この場合、電荷発生層の上にさらに保護層を設けることも提案されているが、機械的摩耗は改善されるものの、感度など電気特性の低下を招くなどの問題がある。
【0009】
さらに、電荷発生層上に電子輸送性の電荷輸送層を積層して感光体を形成する方法も提案されている。電子輸送性物質として、2,4,7−トリニトロ−9−フルオレノンなどが知られているが、この物質は発ガン性があり、安全上問題がある。その他、シアノ化合物、キノン系化合物などが特開昭50−131941号公報、特開平6−59483号公報、特開平9−190002号公報、特開平9−190003号公報などにより提案されているが、実用化に十分な電子輸送能を有する化合物が得られていないのが実情であった。
【0010】
【発明が解決しようとする課題】
そこで、本発明の目的は、上述の問題点を解決するため、感光層に電荷輸送物質として今まで用いられたことのない新しい有機材料を用いることにより、高速度な複写機用およびプリンタ用正帯電型電子写真用感光体を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために各種有機材料について鋭意検討するなかで、数多くの実験を行った結果、その技術的解明はまだ十分なされてはいないものの、後述の一般式(I)又は(II)で表される特定の化合物を電荷発生物質として使用することが、電子写真特性の向上に極めて有効であり、正帯電で使用可能な高感度感光体を得ることができることを見出し、本発明を完成するに至った。
【0012】
即ち、本発明の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層に、下記一般式(I)、

Figure 0003666262
(式中、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、Aは酸素原子、又は=CR(但し、RおよびRはそれぞれシアノ基又はアルコキシカルボニル基)、mは1〜4の整数、nは1〜5の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とするものである。
【0013】
また、本発明の他の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層に、下記一般式(II)、
Figure 0003666262
(式中、R、R およびR7はそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、およびBはそれぞれ酸素原子、又は=CR(但し、RおよびRはそれぞれシアノ基又はアルコキシカルボニル基)、o、pおよびqは1〜4の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とするものである。
【0014】
【発明の実施の形態】
前記一般式(I)および(II)で示される化合物の具体例を、それぞれ下記の化合物No.I−1〜I−16およびNo.II−1〜II−16で表される構造式にて示す。
【0015】
Figure 0003666262
【0016】
Figure 0003666262
【0017】
Figure 0003666262
【0018】
Figure 0003666262
【0019】
前記一般式(I)および(II)で示される化合物は、通常の方法により合成することができる。例えば、化合物No.I−1あるいは化合物No.II−1で示される化合物は、下記構造式(III)あるいは構造式(IV)で示される化合物を適当な酸化剤(例えば、過マンガン酸カリウムなど)を用いて有機溶媒(例えば、クロロホルムなど)中で酸化することにより、それぞれ容易に合成することができる。
Figure 0003666262
【0020】
以下、本発明の感光体の好適例の具体的構成について図面を参照しながら説明する。図1および図2は、感光体の各種構成例を示す模式的断面図である。
【0021】
図1は、所謂単層型感光体の一構成例を示し、導電性基体1の上に、電荷発生物質と電荷輸送物質とを樹脂バインダー(結着剤)中に分散させた単層の感光層2が設けられ、さらに必要に応じて被覆層(保護層)5が積層されてなる。この感光体は、電荷発生物質を電荷輸送物質および樹脂バインダを溶解した溶液中に分散せしめ、この分散液を導電性基体上に塗布することによって作製することができる。さらに、必要な場合は被覆層を塗布形成することができる。
【0022】
図2は、所謂積層型感光体の一構成例を示し、導電性基体1の上に電荷発生物質を主体とする電荷発生層3と、電荷輸送物質を含有する電荷輸送層4とが順次積層された感光層が設けられてなる。この感光体は、導電性基体上に電荷発生物質を真空蒸着するか、あるいは電荷発生物質の粒子を溶剤または樹脂バインダー中に分散させて得た分散液を塗布、乾燥し、その上に電荷輸送物質を樹脂バインダー中に溶解又は分散させて得た分散液を塗布、乾燥することにより作製することができる。
【0023】
なお、本発明のいずれのタイプの感光体も、前記電荷輸送物質として前記一般式(I)または(II)で表される電子輸送性化合物を含有する。
【0024】
以下、本発明の好適な実施の形態を図2に示す積層型感光体について説明するが、本発明は以下の具体例に限定されるものではない。
導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体となっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂などの上にに導電処理を施したものを用いることができる。
【0025】
電荷発生層3は、前記のように電荷発生物質の粒子を樹脂バインダー中に分散させた材料を塗布するか、あるいは真空蒸着などの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層4への注入性が重要で、電場依存性が少なく低電場でも注入の良いことが望ましい。電荷発生物質としては、無金属フタロシアニン、チタニルフタロシアニンなどのフタロシアニン化合物、各種アゾ、キノン、インジゴ、シアニン、スクアリリウム、アズレニウム、ピリリウム化合物などの顔料あるいは染料や、セレン又はセレン化合物などが用いられ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。電荷発生層は電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数より決まり、一般的には5μm以下であり、好適には2μm以下である。電荷発生層は電荷発生物質を主体としてこれに電荷輸送物質などを添加して使用することも可能である。
【0026】
電荷発生層用の樹脂バインダーとしては、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、塩化ビニル樹脂、フェノキシ樹脂、ポリビニルブチラール、ジアクリルフタレート樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを適宜組み合わせて使用することが可能である。
【0027】
電荷輸送層4は、樹脂バインダ中に電荷輸送物質として前記一般式(I)または(II)で表される電子輸送性化合物を分散させた塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。
【0028】
電荷輸送層用の樹脂バインダーとしては、各種ポリカーボネートをはじめ、ポリエステル、ポリスチレン、メタクリル酸エステルの重合体および共重合体等を用いることができる。
【0029】
また、感光体を使用する際に使用上障害となるオゾン劣化などを防止する目的で、電荷輸送層4にアミン系、フェノール系、硫黄系、亜リン酸エステル系、リン系などの酸化防止剤を含有させることも可能である。
【0030】
被覆層5は、暗所ではコロナ放電の電荷を受容して保持する機能を有しており、かつ感光層が感応する光を透過する性能を有し、露光時に光を透過して感光層に到達させ、発生した電荷の注入を受けて表面電荷を中和消滅させることが必要である。被覆層の材料としては、ポリエステル、ポリアミドなどの有機絶縁性皮膜形成材料を適用することができる。また、これら有機材料とガラス、SiOなどの無機材料、さらには金属、金属酸化物などの電気抵抗を低減せしめる材料とを混合して用いることができる。被覆層の材料は前述の通り電荷発生物質の光の吸収極大の波長領域においてできるだけ透明であることが望ましい。
【0031】
被覆層自体の膜厚は被覆層の配合組成にも依存するが、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定できる。
【0032】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
実施例1
x型無金属フタロシアニン(HPc)2重量部と、前記化合物No.I−1で示される化合物40重量部と、下記式、
Figure 0003666262
で表されるベンジジン誘導体60重量部と、ポリカーボネート樹脂(PCZ−200、三菱ガス化学(株)製)80重量部とを塩化メチレンとともに3時間混合機により混練して塗布液を調製し、導電性基体である外径30mm、長さ260mmのアルミニウム製ドラム上に塗布して、乾燥後の膜厚が約20μmになるように感光体を作製した。
【0033】
実施例2
チタニルフタロシアニン(TiOPc)2重量部と、前記化合物No.I−4で示される化合物30重量部と、下記式、
Figure 0003666262
で表されるベンジジン誘導体70重量部と、ポリカーボネート樹脂(BP−PC、出光興産(株))80重量部とを塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が約20μmになるように感光体を作製した。
【0034】
実施例3
チタニルフタロシアニン(TiOPc)2重量部と、前記化合物No.I−6で示される化合物30重量部と、下記式、
Figure 0003666262
で表されるトリフェニルアミン誘導体60重量部と、ポリカーボネート樹脂(BP−PC、出光興産(株))80重量部とを塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が約20μmになるように感光体を作製した。
【0035】
実施例4
実施例3において、チタニルフタロシアニンに代えて下記式、
Figure 0003666262
で表されるスクアリリウム化合物を用い、また化合物No.I−6に代えて化合物No.II−1の化合物を用いた以外は実施例3と同様にして感光体を作製した。
【0036】
実施例5
チタニルフタロシアニン(TiOPc)70重量部と、塩化ビニル共重合体(商品名MR−110、日本ゼオン(株)製)30重量部とを塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に約1μmになるように塗布し、電荷発生層を形成した。次に、化合物No.II−7で示される化合物100重量部と、ポリカーボネート樹脂(PCZ−200、三菱ガス化学(株)製)100重量部と、シリコーンオイル0.1重量部とを塩化メチレンと混合し、前記電荷発生層の上に約10μmの膜厚となるように塗布し、電荷輸送層を形成した。
【0037】
実施例6
実施例3において、チタニルフタロシアニンに代えて下記式、
Figure 0003666262
で示されるビスアゾ顔料を用い、また化合物No.I−6に代えて化合物No.II−4の化合物を用いた以外は実施例3と同様にして感光体を作製した。
【0038】
実施例7
実施例3において、チタニルフタロシアニンに代えて下記式、
Figure 0003666262
で示されるビスアゾ顔料を用い、また化合物No.I−6に代えて化合物No.II−6の化合物を用いた以外は実施例3と同様にして感光体を作製した。
【0039】
感光体の評価
上述の実施例で作製した感光体の電子写真特性を下記の方法で評価した。
感光体に暗所で+4.5kVのコロナ放電を行って感光体表面を正帯電せしめたときの初期の表面電位をVs(V)とし、続いてコロナ放電を中止した状態で5秒間暗所に保持したときの表面電位Vd(V)を測定し、さらに続いて感光体表面に照度100ルックス(lux)の白色光を照射して表面電位Vdが半分になるまでの時間(秒)を求め、感度E1/2 (lux・s)とした。
【0040】
また、照度100ルックスの白色光を10秒間照射したときの表面電位を残留電位Vr(V)とした。また、実施例1から5については、長波長での高感度が期待できるので、波長780nmの単色光を用いたときの電子写真特性も同時に測定した。すなわち、Vdまでは同様に測定し、次に白色光の替わりに1μWの単色光(780nm)を照射して半減衰露光量(μJ/cm)を求め、また、この光を10秒間感光体表面に照射したときの残留電位をVr(V)を測定した。測定の結果を下記の表1に示す。
【0041】
【表1】
Figure 0003666262
【0042】
【発明の効果】
本発明によれば、導電性基体上に設けられた感光層に電荷輸送物質として前記一般式(I)または(II)で示される電子輸送性化合物を用いたことにより、正帯電において高感度で電気特性の優れた感光体を得ることができる。また、電荷発生物質は露光光源の種類に対応して好適な物質を選ぶことができ、フタロシアニン化合物、スクアリリウム化合物、ビスアゾ化合物などを用いることにより、半導体レーザプリンタや複写機に使用可能な感光体を得ることができる。さらに、必要に応じて表面に被覆層を設置して耐久性の向上を図ることが可能である。
【図面の簡単な説明】
【図1】本発明に係る単層型電子写真感光体の模式的構造断面図である。
【図2】本発明に係る積層型電子写真感光体の模式的構造断面図である。
【符号の説明】
1 導電性基体
2 感光層
3 電荷発生層
4 電荷輸送層
5 被覆層(保護層)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, and more particularly, to an electrophotographic photoreceptor used in an electrophotographic printer, a copying machine, or the like, in which a photosensitive layer containing an organic material is provided on a conductive substrate.
[0002]
[Prior art]
Conventionally, as an electrophotographic photoreceptor used in electrophotographic printers, facsimiles, various copying machines, etc., an inorganic photoconductive material such as selenium or a selenium alloy, or an inorganic photoconductive material such as zinc oxide or cadmium sulfide is used. Those dispersed in a resin binder have been used. In recent years, research on electrophotographic photoreceptors using organic photoconductive materials has progressed, and some have been put into practical use with improved sensitivity and durability.
[0003]
In addition, the photoreceptor needs to have a function of holding a surface charge in a dark place, a function of receiving light to generate a charge, and a function of receiving light to transport a charge. A layer that is separated into a so-called single-layer type photoreceptor having these functions, a layer that mainly contributes to charge generation, and a layer that contributes to retention of surface charges in the dark and charge transport during light reception. There is a so-called multi-layer photoreceptor in which the above are laminated.
[0004]
For example, a Carlson process is applied to image formation by electrophotography using these photoreceptors. Image formation by this method is performed by charging a photoconductor in the dark by corona discharge, forming an electrostatic latent image such as a character or a picture of an original by exposure on the surface of the charged photoconductor, The electrostatic latent image is developed by toner, and the developed toner image is fixed on a support such as paper. After the toner image is transferred, the photosensitive member is subjected to charge removal, residual toner removal, light charge removal, etc. Provided for use.
[0005]
Organic photoreceptors in practical use have advantages such as flexibility, film formation, low cost and safety compared to inorganic photoreceptors, and further improvements in sensitivity and durability are made possible due to the variety of materials. It has been.
[0006]
Most of the organic photoreceptors are multi-layer photoreceptors in which functions are separated into a charge generation layer and a charge transport layer. In general, a multilayer organic photoreceptor is obtained by sequentially forming a charge generation layer made of a charge generation material such as a pigment or a dye, and a charge transport layer made of a charge transport material such as hydrazone or triphenylamine on a conductive substrate. Due to the nature of the electron transporting charge transport material, it becomes a hole transfer type and has sensitivity when the surface of the photoreceptor is negatively charged. However, in negative charging, corona discharge used during charging is unstable compared to positive charging, and ozone and nitrogen oxides are generated, which are easily adsorbed on the surface of the photoconductor and cause physical and chemical degradation. There is also a problem of worsening the environment. From this point of view, the positively charged type photoconductor having a greater degree of freedom of use conditions than the negatively charged type photoconductor is wider and advantageous.
[0007]
Therefore, various photoreceptors for use with positive charging have been proposed. For example, a method in which a charge generation material and a charge transport material are simultaneously dispersed in a resin binder and used as a single photosensitive layer has been proposed and partially put into practical use. However, the single-layer type photoreceptor is not sufficiently sensitive to be applied to a high-speed machine, and further improvement is required from the viewpoint of repeatability. In order to achieve a function-separated layered structure for the purpose of increasing sensitivity, a method of forming a photoconductor by laminating a charge generation layer on a charge transport layer and using it in a positive charge can be considered.
[0008]
However, in this method, since the charge generation layer is formed on the surface, there is a problem in stability during repeated use due to corona discharge, light irradiation, mechanical wear, and the like. In this case, it has been proposed to further provide a protective layer on the charge generation layer. However, although mechanical wear is improved, there are problems such as a reduction in electrical characteristics such as sensitivity.
[0009]
Furthermore, a method of forming a photoconductor by laminating an electron transporting charge transport layer on a charge generation layer has also been proposed. 2,4,7-trinitro-9-fluorenone is known as an electron transporting substance, but this substance is carcinogenic and has a safety problem. In addition, cyano compounds, quinone compounds, and the like have been proposed by JP-A-50-131941, JP-A-6-59483, JP-A-9-190002, JP-A-9-190003, and the like. In fact, a compound having an electron transporting ability sufficient for practical use has not been obtained.
[0010]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to solve the above-mentioned problems by using a new organic material that has never been used as a charge transport material in the photosensitive layer, thereby enabling high speed copying machines and printers. An object of the present invention is to provide a chargeable electrophotographic photoreceptor.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have conducted extensive studies on various organic materials in order to achieve the above-mentioned object. As a result, although the technical clarification has not yet been sufficiently performed, the following general formula (I ) Or (II) is used as a charge-generating substance, and is found to be extremely effective in improving electrophotographic characteristics, and a highly sensitive photoreceptor that can be used with positive charge can be obtained. The present invention has been completed.
[0012]
That is, the electrophotographic photosensitive member of the present invention is an electrophotographic photosensitive member in which a photosensitive layer containing a charge generating material and a charge transporting material is provided on a conductive substrate, and the photosensitive layer has the following general formula (I): ,
Figure 0003666262
(In the formula, R 1 and R 2 may each independently have a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, an alkoxy group, an arylalkyl group, or a substituent. A good aryl group, or a residue for forming a ring, A 1 is an oxygen atom, or ═CR 3 R 4 (wherein R 3 and R 4 are a cyano group or an alkoxycarbonyl group, respectively), m is 1 to 4 An integer, n represents an integer of 1 to 5.) At least one of the electron transport compounds represented by the formula (1) is contained as a charge transport material.
[0013]
Another electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor in which a photosensitive layer containing a charge generating substance and a charge transporting substance is provided on a conductive substrate, and the photosensitive layer has the following general formula ( II),
Figure 0003666262
(Wherein R 5 , R 6 and R 7 each independently have a hydrogen atom, a halogen atom, an optionally substituted alkyl or alkoxy group having 1 to 8 carbon atoms, an arylalkyl group or a substituent. An aryl group which may be substituted, or a residue for forming a ring, B 1 and B 2 are each an oxygen atom, or ═CR 8 R 9 (where R 8 and R 9 are each a cyano group or an alkoxycarbonyl group) , O, p, and q represent an integer of 1 to 4, and at least one electron transporting compound represented by the formula (1) is contained as a charge transporting substance.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the compounds represented by the general formulas (I) and (II) are the following compound Nos. I-1 to I-16 and No.1. It is shown by the structural formula represented by II-1 to II-16.
[0015]
Figure 0003666262
[0016]
Figure 0003666262
[0017]
Figure 0003666262
[0018]
Figure 0003666262
[0019]
The compounds represented by the general formulas (I) and (II) can be synthesized by an ordinary method. For example, Compound No. I-1 or compound no. The compound represented by II-1 is an organic solvent (for example, chloroform) obtained by using a compound represented by the following structural formula (III) or structural formula (IV) with an appropriate oxidizing agent (for example, potassium permanganate). Each of them can be easily synthesized by oxidation in the medium.
Figure 0003666262
[0020]
Hereinafter, a specific configuration of a preferred example of the photoreceptor of the present invention will be described with reference to the drawings. 1 and 2 are schematic cross-sectional views showing various configuration examples of the photoreceptor.
[0021]
FIG. 1 shows an example of the structure of a so-called single-layer type photoconductor, in which a single-layer photoconductor in which a charge generating substance and a charge transporting substance are dispersed in a resin binder (binder) on a conductive substrate 1. A layer 2 is provided, and a coating layer (protective layer) 5 is laminated as necessary. This photoreceptor can be produced by dispersing a charge generating substance in a solution in which a charge transporting substance and a resin binder are dissolved, and applying this dispersion onto a conductive substrate. Further, if necessary, a coating layer can be formed by coating.
[0022]
FIG. 2 shows an example of the configuration of a so-called multilayer photoreceptor, in which a charge generation layer 3 mainly composed of a charge generation material and a charge transport layer 4 containing a charge transport material are sequentially laminated on a conductive substrate 1. The photosensitive layer is provided. In this photoreceptor, a charge generation material is vacuum-deposited on a conductive substrate, or a dispersion obtained by dispersing particles of a charge generation material in a solvent or a resin binder is applied and dried, and then charge transport is performed thereon. It can be produced by applying and drying a dispersion obtained by dissolving or dispersing a substance in a resin binder.
[0023]
Note that any type of photoreceptor of the present invention contains the electron transporting compound represented by the general formula (I) or (II) as the charge transporting substance.
[0024]
Hereinafter, a preferred embodiment of the present invention will be described with respect to a multilayer photoreceptor shown in FIG. 2, but the present invention is not limited to the following specific examples.
The conductive substrate 1 serves as a support for each of the other layers as well as serving as an electrode of the photoreceptor, and may be any of a cylindrical shape, a plate shape, and a film shape. A metal or a material obtained by conducting a conductive treatment on glass, resin, or the like can be used.
[0025]
The charge generation layer 3 is formed by applying a material in which particles of a charge generation material are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and receives light to generate charges. In addition, since the charge generation efficiency is high, the injection property of the generated charge into the charge transport layer 4 is important, and it is desirable that the injection is good even in a low electric field with little electric field dependency. As the charge generation material, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, pigments or dyes such as various azo, quinone, indigo, cyanine, squarylium, azurenium and pyrylium compounds, selenium or selenium compounds, etc. are used for image formation. A suitable substance can be selected according to the light wavelength region of the exposure light source used for the above. Since the charge generation layer only needs to have a charge generation function, the thickness thereof is determined by the light absorption coefficient of the charge generation material, and is generally 5 μm or less, and preferably 2 μm or less. The charge generation layer can also be used with a charge generation material as a main component and a charge transport material added thereto.
[0026]
As the resin binder for the charge generation layer, polycarbonate, polyester, polyamide, polyurethane, vinyl chloride resin, phenoxy resin, polyvinyl butyral, diacryl phthalate resin, methacrylate polymer, and copolymers thereof may be appropriately combined. It is possible to use.
[0027]
The charge transport layer 4 is a coating film in which the electron transport compound represented by the above general formula (I) or (II) is dispersed as a charge transport material in a resin binder. The function of transporting the charge injected from the charge generation layer when receiving light is exhibited.
[0028]
As the resin binder for the charge transport layer, various polycarbonates, polyesters, polystyrenes, polymers and copolymers of methacrylic acid esters, and the like can be used.
[0029]
Further, for the purpose of preventing ozone deterioration, which is an obstacle to use when using a photoreceptor, an antioxidant such as amine, phenol, sulfur, phosphite, or phosphorus is added to the charge transport layer 4. It is also possible to contain.
[0030]
The coating layer 5 has a function of receiving and holding a corona discharge charge in a dark place, and has a function of transmitting light sensitive to the photosensitive layer, and transmits light to the photosensitive layer during exposure. It is necessary to neutralize and extinguish the surface charge upon arrival and injection of the generated charge. As a material for the covering layer, organic insulating film forming materials such as polyester and polyamide can be applied. Furthermore, can be used as a mixture thereof organic materials and glass, inorganic material such as SiO 2, further metals, and a material capable of reducing the electric resistance, such as metal oxides. As described above, the material of the coating layer is desirably as transparent as possible in the wavelength region of the light absorption maximum of the charge generation material.
[0031]
Although the film thickness of the coating layer itself depends on the composition of the coating layer, it can be arbitrarily set within a range where no adverse effect such as an increase in residual potential occurs when repeatedly used.
[0032]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Example 1
2 parts by weight of x-type metal-free phthalocyanine (H 2 Pc); 40 parts by weight of a compound represented by I-1, the following formula,
Figure 0003666262
A coating solution is prepared by kneading 60 parts by weight of a benzidine derivative represented by the following formula and 80 parts by weight of a polycarbonate resin (PCZ-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with methylene chloride using a mixer for 3 hours. It was applied onto an aluminum drum having an outer diameter of 30 mm and a length of 260 mm, which was a substrate, and a photoreceptor was prepared so that the film thickness after drying was about 20 μm.
[0033]
Example 2
2 parts by weight of titanyl phthalocyanine (TiOPc); 30 parts by weight of a compound represented by I-4, the following formula:
Figure 0003666262
70 parts by weight of a benzidine derivative represented by the following formula and 80 parts by weight of a polycarbonate resin (BP-PC, Idemitsu Kosan Co., Ltd.) are kneaded together with methylene chloride for 3 hours to prepare a coating solution. A photoreceptor was prepared so that the film thickness after drying was about 20 μm.
[0034]
Example 3
2 parts by weight of titanyl phthalocyanine (TiOPc); 30 parts by weight of a compound represented by I-6, the following formula:
Figure 0003666262
A coating solution is prepared by kneading 60 parts by weight of a triphenylamine derivative represented by the following formula and 80 parts by weight of a polycarbonate resin (BP-PC, Idemitsu Kosan Co., Ltd.) with methylene chloride for 3 hours using a mixer. A photoconductor was prepared on the body so that the film thickness after drying was about 20 μm.
[0035]
Example 4
In Example 3, instead of titanyl phthalocyanine, the following formula:
Figure 0003666262
The squarylium compound represented by the formula In place of I-6, Compound No. A photoconductor was prepared in the same manner as in Example 3 except that the compound of II-1 was used.
[0036]
Example 5
A coating solution was prepared by kneading 70 parts by weight of titanyl phthalocyanine (TiOPc) and 30 parts by weight of a vinyl chloride copolymer (trade name MR-110, manufactured by Nippon Zeon Co., Ltd.) with methylene chloride using a mixer for 3 hours. Then, it was applied on an aluminum support so as to have a thickness of about 1 μm to form a charge generation layer. Next, Compound No. 100 parts by weight of the compound represented by II-7, 100 parts by weight of a polycarbonate resin (PCZ-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 0.1 part by weight of silicone oil are mixed with methylene chloride to generate the charge. A charge transport layer was formed on the layer so as to have a thickness of about 10 μm.
[0037]
Example 6
In Example 3, instead of titanyl phthalocyanine, the following formula:
Figure 0003666262
The bisazo pigment represented by the formula In place of I-6, Compound No. A photoconductor was prepared in the same manner as in Example 3 except that the compound II-4 was used.
[0038]
Example 7
In Example 3, instead of titanyl phthalocyanine, the following formula:
Figure 0003666262
The bisazo pigment represented by the formula In place of I-6, Compound No. A photoreceptor was prepared in the same manner as in Example 3 except that the compound II-6 was used.
[0039]
Evaluation of Photoreceptor The electrophotographic characteristics of the photoreceptors prepared in the above examples were evaluated by the following methods.
The initial surface potential when the photoconductor surface is positively charged by performing a +4.5 kV corona discharge in the dark is Vs (V), and the corona discharge is then stopped for 5 seconds in the dark. The surface potential Vd (V) when it is held is measured, and then the time (second) until the surface potential Vd is halved by irradiating the photoreceptor surface with white light with an illuminance of 100 lux is obtained. The sensitivity was E 1/2 (lux · s).
[0040]
The surface potential when irradiated with white light having an illuminance of 100 lux for 10 seconds was defined as a residual potential Vr (V). In Examples 1 to 5, since high sensitivity at a long wavelength can be expected, electrophotographic characteristics when monochromatic light having a wavelength of 780 nm was used were also measured. That is, the same measurement is performed up to Vd, and then a 1 μW monochromatic light (780 nm) is irradiated instead of white light to obtain a half-attenuated exposure (μJ / cm 2 ). Vr (V) was measured as a residual potential when the surface was irradiated. The measurement results are shown in Table 1 below.
[0041]
[Table 1]
Figure 0003666262
[0042]
【The invention's effect】
According to the present invention, the use of the electron transporting compound represented by the general formula (I) or (II) as a charge transporting substance in the photosensitive layer provided on the conductive substrate enables high sensitivity in positive charging. A photoreceptor having excellent electrical characteristics can be obtained. The charge generation material can be selected according to the type of exposure light source. By using a phthalocyanine compound, a squarylium compound, a bisazo compound, etc., a photoconductor that can be used in a semiconductor laser printer or a copying machine can be obtained. Can be obtained. Furthermore, it is possible to improve durability by installing a coating layer on the surface as necessary.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a single-layer electrophotographic photosensitive member according to the present invention.
FIG. 2 is a schematic structural cross-sectional view of a multilayer electrophotographic photoreceptor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductive base | substrate 2 Photosensitive layer 3 Charge generation layer 4 Charge transport layer 5 Covering layer (protective layer)

Claims (2)

導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層に、下記一般式(I)、
Figure 0003666262
(式中、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、Aは酸素原子、又は=CR(但し、RおよびRはそれぞれシアノ基又はアルコキシカルボニル基)、mは1〜4の整数、nは1〜5の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とする電子写真用感光体。
In the electrophotographic photoreceptor in which a photosensitive layer containing a charge generation material and a charge transport material is provided on a conductive substrate, the photosensitive layer has the following general formula (I),
Figure 0003666262
(In the formula, R 1 and R 2 may each independently have a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 8 carbon atoms, an alkoxy group, an arylalkyl group, or a substituent. A good aryl group, or a residue for forming a ring, A 1 is an oxygen atom, or ═CR 3 R 4 (wherein R 3 and R 4 are a cyano group or an alkoxycarbonyl group, respectively), m is 1 to 4 An integer, n represents an integer of 1 to 5.) An electrophotographic photoreceptor, comprising at least one electron transporting compound represented by formula (1) as a charge transporting substance.
導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層に、下記一般式(II)、
Figure 0003666262
(式中、R、R およびR7はそれぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基若しくはアルコキシ基、アリールアルキル基、置換基を有してもよいアリール基、又は環を形成するための残基、およびBはそれぞれ酸素原子、又は=CR(但し、RおよびRはそれぞれシアノ基又はアルコキシカルボニル基)、o、pおよびqは1〜4の整数を表す。)で示される電子輸送性化合物の少なくとも1種を電荷輸送物質として含有することを特徴とする電子写真用感光体。
In the electrophotographic photoreceptor in which a photosensitive layer containing a charge generating substance and a charge transporting substance is provided on a conductive substrate, the photosensitive layer has the following general formula (II),
Figure 0003666262
(Wherein R 5 , R 6 and R 7 each independently have a hydrogen atom, a halogen atom, an optionally substituted alkyl or alkoxy group having 1 to 8 carbon atoms, an arylalkyl group or a substituent. An aryl group which may be substituted, or a residue for forming a ring, B 1 and B 2 are each an oxygen atom, or ═CR 8 R 9 (where R 8 and R 9 are each a cyano group or an alkoxycarbonyl group) , O, p and q each represents an integer of 1 to 4.) An electrophotographic photoreceptor comprising at least one electron transporting compound represented by formula (1) as a charge transporting substance.
JP24208198A 1998-08-27 1998-08-27 Electrophotographic photoreceptor Expired - Fee Related JP3666262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24208198A JP3666262B2 (en) 1998-08-27 1998-08-27 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24208198A JP3666262B2 (en) 1998-08-27 1998-08-27 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2000075520A JP2000075520A (en) 2000-03-14
JP3666262B2 true JP3666262B2 (en) 2005-06-29

Family

ID=17084015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24208198A Expired - Fee Related JP3666262B2 (en) 1998-08-27 1998-08-27 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3666262B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461779B1 (en) 2000-11-14 2002-10-08 Kyocera Mita Corporation Single-layer type electrophotosensitive material
JP2003238561A (en) 2002-02-13 2003-08-27 Fuji Denki Gazo Device Kk Quinomethane compound
JP3712062B2 (en) 2002-02-04 2005-11-02 富士電機画像デバイス株式会社 Electrophotographic photoreceptor and electrophotographic apparatus using the same
JP3937336B2 (en) 2002-05-28 2007-06-27 富士電機デバイステクノロジー株式会社 Quinomethane compound, electrophotographic photoreceptor and electrophotographic apparatus
JPWO2005003093A1 (en) * 2003-07-02 2007-09-20 富士電機デバイステクノロジー株式会社 Novel compound, electrophotographic photoreceptor and electrophotographic apparatus using the same
JP5491738B2 (en) * 2009-01-29 2014-05-14 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive member and image forming apparatus
JP6078517B2 (en) * 2014-11-28 2017-02-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor
JP6424805B2 (en) * 2015-11-30 2018-11-21 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP2000075520A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3717320B2 (en) Electrophotographic photoreceptor
JP3666262B2 (en) Electrophotographic photoreceptor
US6268095B1 (en) Photoconductor for electrophotography
JP4228334B2 (en) Electrophotographic photoreceptor
JP4239133B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2005037476A (en) Electrophotographic photoreceptor
JP2991150B2 (en) Electrophotographic photoreceptor
JP2001215742A (en) Electrophotographic photoreceptor
JP2001022107A (en) Electrophotographic photoreceptor
JP3781362B2 (en) Electrophotographic photoreceptor
JPH1184695A (en) Electrophotographic photoreceptor
JP2002062673A (en) Electrophotographic photoreceptor
JP2000330306A (en) Electrophotographic photoreceptor
JPH06118668A (en) Photosensitive body
JPH10282699A (en) Electrophotographic photoreceptor
JP3114394B2 (en) Electrophotographic photoreceptor
JP2002278112A (en) Electrophotographic photoreceptor
JP2001142239A (en) Electrophotographic photoreceptor
JP2004325587A (en) Electrophotographic photoreceptor
JP2000242009A (en) Electrophotographic photoreceptor
JP2003029436A (en) Electrophotographic photoreceptor
JP2000258936A (en) Electrophotographic photoreceptor
JPH10142821A (en) Electrophotographic photoreceptor
JP3575173B2 (en) Electrophotographic photoreceptor
JP2000162794A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees