JP2004325587A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004325587A
JP2004325587A JP2003117273A JP2003117273A JP2004325587A JP 2004325587 A JP2004325587 A JP 2004325587A JP 2003117273 A JP2003117273 A JP 2003117273A JP 2003117273 A JP2003117273 A JP 2003117273A JP 2004325587 A JP2004325587 A JP 2004325587A
Authority
JP
Japan
Prior art keywords
substituent
layer
charge
photosensitive layer
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117273A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sekine
伸行 関根
Masami Kuroda
昌美 黒田
Yoshihiro Ueno
芳弘 上野
Kenichi Okura
健一 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Imaging Device Co Ltd
Original Assignee
Fuji Electric Imaging Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Imaging Device Co Ltd filed Critical Fuji Electric Imaging Device Co Ltd
Priority to JP2003117273A priority Critical patent/JP2004325587A/en
Publication of JP2004325587A publication Critical patent/JP2004325587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive charge type electrophotographic photoreceptor for a copying machine and for a printer having high sensitivity and using a new organic material as a charge transport material in a photosensitive layer. <P>SOLUTION: The electrophotographic photoreceptor is obtained by disposing a photosensitive layer containing a charge generating material and a charge transport material on a conductive substrate. The photosensitive layer contains at least one of the compounds represented by formula (I), wherein R<SP>1</SP>and R<SP>2</SP>are the same or different and each represent H, a 1-6C alkyl group which may have a substituent or an aryl group which may have a substituent; R<SP>3</SP>represents a 1-6C alkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent; R<SP>4</SP>represents halogen, a 1-6C alkyl group which may have a substituent or an aryl group which may have a substituent; and m represents an integer of 0-4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真用感光体(以下、単に「感光体」とも称する)に関し、詳しくは、導電性基体上に有機材料を含む感光層を設けた、電子写真方式のプリンタ、複写機などに用いられる電子写真用感光体に関する。
【0002】
【従来の技術】
従来は、電子写真用感光体の感光層として、セレンまたはセレン合金などの無機光導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無機光導電性物質を樹脂結着剤中に分散させたものが用いられてきた。近年では、有機光導電性物質を用いた電子写真用感光体の研究が進み、感度や耐久性などが改善されて実用化されているものもある。
【0003】
また、感光体には、暗所で表面電荷を保持する機能と、光を受容して電荷を発生する機能と、同じく光を受容して電荷を輸送する機能とが必要であるが、一つの層でこれらの機能を併せ持った、いわゆる単層型感光体と、主として電荷発生に寄与する層と暗所での表面電荷の保持および光受容時の電荷輸送に寄与する層とに機能分離した層を積層した、いわゆる積層型感光体とがある。
【0004】
これらの感光体を用いた電子写真法による画像形成には、例えば、カールソン方式が適用される。この方式での画像形成は、暗所での感光体へのコロナ放電による帯電と、帯電された感光体表面上への原稿の文字や絵などの静電潜像の形成と、形成された静電潜像のトナーによる現像と、現像されたトナー像の紙などの支持体への定着とにより行われ、トナー像転写後の感光体は、除電、残留トナーの除去、光除電などを行った後、再使用に供される。
【0005】
実用化されている有機感光体は、無機感光体に比べ、可とう性、膜形成性、低コスト、安全性などの利点があり、材料の多様性から、さらに感度、耐久性などの改善が進められている。
【0006】
有機感光体のほとんどは、電荷発生層と電荷輸送層とに機能を分離した積層型の有機感光体である。一般に、積層型有機感光体は、導電性基体上に、顔料や染料などの電荷発生物質を含む電荷発生層と、ヒドラゾンやトリフェニルアミンなどの電荷輸送物質を含む電荷輸送層とを順に形成したものであり、電子供与性である電荷輸送物質の性質上、正孔移動型となり、感光体表面を負帯電したときに感度を有する。ところが負帯電型では、正帯電型に比べて帯電時に用いるコロナ放電が不安定であり、また、オゾンや窒素酸化物などを発生させるために、これらが感光体表面に吸着して、物理的、化学的劣化を引き起こしやすく、さらに、環境を悪化するという問題がある。このような点から、感光体としては負帯電型感光体よりも使用条件の自由度の大きい正帯電型感光体の方が、その適用範囲が広く有利である。
【0007】
そこで、正帯電型で使用するために、電荷発生物質と電荷輸送物質とを同時に樹脂バインダに分散させて単層の感光層として使用する方法が提案されており、一部実用化されている。しかし、単層型感光体は高速機に適用するには感度が十分ではなく、また、繰り返し特性などの点からもさらに改良が必要である。
【0008】
また、高感度化を目的として機能分離型の積層構造とするため、電荷輸送層上に電荷発生層を積層して感光体を形成し、正帯電型で使用する方法も考えられるが、この方式では、電荷発生層が表面に形成されるため、コロナ放電、光照射、機械的摩耗などにより、繰り返し使用時における安定性などに問題が生ずる。この場合、電荷発生層の上にさらに保護層を設けることも提案されているが、機械的摩耗は改善されるものの、感度などの電気特性の低下を招くなどの問題は解消されていない。
【0009】
さらに、電荷発生層上に電子輸送性の電荷輸送層を積層して感光体を形成する方法も提案されている。
【0010】
電子輸送性の電荷輸送材料としては、例えば、2,4,7−トリニトロ−9−フルオレノンなどが知られているが、この物質は発ガン性があることから、安全上問題がある。また、その他、特許文献1〜特許文献6などではシアノ化合物やキノン系化合物などが提案されているが、実用化に十分な電子輸送能を有するものは得られていなかった。
【0011】
これに対し、本発明者らはこれまでに、優れた電子輸送能を有する物質を含有する感光体を種々提案している(例えば、特許文献7〜特許文献10などに記載)。
【0012】
【特許文献1】
特開平1−206349号公報
【特許文献2】
特開平6−59483号公報
【特許文献3】
特開平9−190002号公報
【特許文献4】
特開平9−190003号公報
【特許文献5】
特開平8−278643号公報
【特許文献6】
特開2002−37755号公報
【特許文献7】
特開2000−75520号公報
【特許文献8】
特開2000−199979号公報
【特許文献9】
特開2000−143607号公報
【特許文献10】
特開2001−142239号公報
【0013】
【発明が解決しようとする課題】
しかしながら、近年の高感度感光体に対する要請から、より優れた電子輸送能を有する新たな電荷輸送物質を用いることにより、高性能の感光体を実現することが求められていた。
【0014】
そこで本発明の目的は、これまで用いられたことのない新規な有機材料を感光層中に電荷輸送物質として用いることにより、高感度な複写機用およびプリンタ用の正帯電型電子写真用感光体を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために各種有機材料について鋭意検討した結果、以下に示す一般式(I)または(II)で示される特定の化合物を電荷輸送物質として使用することにより、正帯電で使用可能な高感度感光体を得ることができることを見出して、本発明を完成するに至った。
【0016】
上記課題を解決するために、本発明の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(I)、

Figure 2004325587
(式(I)中、RおよびRは、同一または異なって、水素原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Rは、置換基を有してもよい炭素数1〜6のアルキル基、置換基を有してもよいアリール基、または置換基を有してもよい複素環基を表し、Rは、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、mは0〜4の整数を表す)で示される化合物の少なくとも一種を含有することを特徴とするものである。
【0017】
また、本発明の他の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(II)、
Figure 2004325587
(式(II)中、RおよびRは、同一または異なって、水素原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Rは、置換基を有してもよい炭素数1〜6のアルキル基、置換基を有してもよいアリール基、または置換基を有してもよい複素環基を表し、Rは、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Xは硫黄原子または酸素原子を表し、nは0〜3の整数を表す)で示される化合物の少なくとも一種を含有することを特徴とするものである。
【0018】
【発明の実施の形態】
前記一般式(I)または(II)で示される化合物の具体例を、夫々下記の構造式(I−1)〜(I−18)および(II−1)〜(II−18)にて示すが、本発明においては、これらの化合物に限定されるものではない。
【0019】
Figure 2004325587
【0020】
Figure 2004325587
【0021】
Figure 2004325587
【0022】
Figure 2004325587
【0023】
前記一般式(I)および(II)で示される化合物は、通常の方法により合成することができる。
例えば、前記構造式(I−2)および(II−4)で示される化合物は、夫々下記構造式(III)および(IV)、
Figure 2004325587
で示される化合物を、適当な触媒(例えば、p−トルエンスルホン酸など)で脱水することにより、容易に合成することができる。
【0024】
以下、本発明の電子写真用感光体の具体的な実施の形態について図面を参照しつつ詳細に説明する。図1および図2は、感光体の各種構成例を示す模式的断面図である。
図1は、いわゆる単層型感光体の一構成例を示しており、導電性基体1上に電荷発生物質と電荷輸送物質とを樹脂バインダ(結着剤)中に分散した単層の感光層2が設けられ、さらに、必要に応じて被覆層(保護層)6が積層されてなる。この単層型感光体は、電荷発生物質を電荷輸送物質および樹脂バインダを溶解した溶液中に分散せしめ、この分散液を導電性基体上に塗布することによって作製することができる。さらに、必要な場合には被膜層6を塗布形成することができる。
【0025】
図2は、いわゆる積層型感光体の一構成例を示しており、導電性基体1上に、電荷発生物質を主体とする電荷発生層3と、電荷輸送物質を含有する電荷輸送層4とが順次積層された感光層5が設けられてなる。この積層型感光体は、導電性基体上に電荷発生物質を真空蒸着するか、または、電荷発生物質の粒子を溶剤または樹脂バインダ中に分散して得た分散液を塗布、乾燥して電荷発生層を形成し、次いで、その上に電荷輸送物質および樹脂バインダを溶解した溶液を塗布、乾燥して電荷輸送層を形成することにより作製することができる。
【0026】
また、図示はしていないが、いずれのタイプの感光体においても、導電性基体と感光層との間に下引き層を設けることができる。下引き層は、導電性基体から感光層への不要な電荷の注入防止や、基体表面上の欠陥被覆、感光層の接着性の向上等の目的で必要に応じて設けることができ、樹脂を主成分とする層やアルマイト等の酸化被膜等からなる。
【0027】
なお、本発明のいずれのタイプの感光体も、電荷輸送物質として、前記一般式(I)または(II)で示される本発明に係る電子輸送性を有する化合物の少なくとも一種を含有する。
【0028】
以下、本発明の感光体の好適な実施の形態を図2に示す積層型感光体について説明するが、本発明は以下の具体例に限定されるものではない。
【0029】
導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体ともなっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属や、ガラス、樹脂などの上に導電処理を施したものなどを用いることができる。
【0030】
電荷発生層3は、前述したように電荷発生物質の粒子を樹脂バインダ中に分散させた材料を塗布するか、あるいは、真空蒸着するなどの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層4への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
【0031】
電荷発生物質としては、無金属フタロシアニン、チタニルフタロシアニンなどのフタロシアニン化合物、各種アゾ、キノン、インジゴ、シアニン、スクアリリウム、アズレニウム、ピリリウム化合物などの顔料あるいは染料や、セレンまたはセレン化合物などが用いられ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。電荷発生層は電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数より決まり、一般的には5μm以下であり、好適には2μm以下である。さらに、電荷発生層は、電荷発生物質を主体としてこれに電荷輸送物質などを添加して使用することも可能である。
【0032】
電荷発生層3用の樹脂バインダとしては、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、塩化ビニル、フェノキシ樹脂、ポリビニルブチラール、ジアリルフタレート樹脂、メタクリル酸エステルの重合体および共重合体などを適宜組合せて使用することが可能である。
【0033】
電荷輸送層4は、樹脂バインダ中に電荷輸送物質を分散させた塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。前述したように、本発明においては、かかる電荷輸送物質として、前記一般式(I)または(II)で示される、本発明に係る電子輸送性を有する化合物の少なくとも一種を含有させることが必要であるが、他の電荷輸送物質を含有させてもよい。本発明に係る化合物の好適添加量は、電荷輸送層4中に含まれる材料全体に対して、好適には10〜60重量%であり、より好適には15〜50重量%である。
【0034】
電荷輸送層4用の樹脂バインダとしては、ポリカーボネート、ポリエステル、ポリスチレン、メタクリル酸エステルの重合体および共重合体などを用いることができる。
【0035】
また、感光体を使用する際に使用上障害となるオゾン劣化などを防止する目的で、電荷輸送層4にアミン系、フェノール系、硫黄系、亜リン酸エステル系、リン系などの酸化防止剤を含有させることも可能である。
【0036】
図1に示す被覆層6は、暗所ではコロナ放電の電荷を受容して保持する機能を有しており、かつ、感光層が感応する光を透過する性能を有し、露光時に光を透過して感光層に到達させ、発生した電荷の注入を受けて表面電荷を中和消滅させることが必要である。被覆層の材料としては、ポリエステル、ポリアミドなどの有機絶縁性皮膜形成材料を適用することができる。また、これら有機材料とガラス、SiOなどの無機材料、さらには金属、金属酸化物などの電気抵抗を低減せしめる材料とを混合して用いることができる。被覆層の材料は、上述の通り電荷発生物質の光の吸収極大の波長領域においてできるだけ透明であることが望ましい。
【0037】
被覆層自体の膜厚は、被覆層の配合組成にも依存するが、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定することができる。
【0038】
尚、図1に示す単層型感光体の場合においても、前記一般式(I)または(II)で示される本発明に係る電子輸送性を有する化合物の少なくとも一種を感光層2中に含有させることが必要であるが、その他の材料等は、上述の積層型感光体と同様のものを用いることができ、特に制限されるものではない。好適には、電荷輸送物質として前記一般式(I)または(II)で示される化合物と共に、正孔輸送物質を含有させる。正孔輸送物質としては、ベンジジン誘導体やトリフェニルアミン誘導体などが好ましい。この場合、これらの好適添加量としては、感光層形成塗膜中に含まれる材料全体に対して、本発明に係る化合物については好適には10〜60重量%であり、より好適には15〜50重量%であり、正孔輸送物質については好適には10〜60重量%であり、より好適には20〜50重量%である。
【0039】
【実施例】
以下、本発明の実施例について説明する。
実施例1
x型無金属フタロシアニン(HPc)20重量部と、前記構造式(I−2)で示される化合物100重量部とを、ポリエステル樹脂(商品名バイロン200:東洋紡(株)製)100重量部とテトラヒドロフラン(THF)溶剤とともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が13μmとなるように感光層を塗布形成して、単層型感光体を作製した。
【0040】
実施例2
x型無金属フタロシアニン(HPc)2重量部と、前記構造式(I−6)で示される化合物40重量部と、正孔輸送物質としての下記式、
Figure 2004325587
で示されるベンジジン誘導体60重量部と、ポリカーボネート樹脂(商品名PCZ200:三菱ガス化学(株)製)100重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が20μmとなるように感光層を塗布形成して、単層型感光体を作製した。
【0041】
実施例3
チタニルフタロシアニン(TiOPc)2重量部と、前記構造式(I−7)で示される化合物40重量部と、正孔輸送物質としての下記式、
Figure 2004325587
で示されるベンジジン誘導体60重量部と、ポリカーボネート樹脂(商品名BP−PC:出光興産(株))100重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が20μmとなるように感光層を塗布形成して、単層型感光体を作製した。
【0042】
実施例4
チタニルフタロシアニン(TiOPc)2重量部と、前記構造式(I−12)で示される化合物30重量部と、正孔輸送物質としての下記式、
Figure 2004325587
で示されるトリフェニルアミン誘導体60重量部と、ポリカーボネート樹脂(商品名BP−PC:出光興産(株))60重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が20μmとなるように感光層を塗布形成して、単層型感光体を作製した。
【0043】
実施例5
実施例2において、前記構造式(I−6)で示される化合物に代えて、前記構造式(II−4)で示される化合物を用いた以外は実施例2と同様にして、単層型感光体を作製した。
【0044】
実施例6
チタニルフタロシアニン(TiOPc)70重量部と、塩化ビニル共重合体(商品名MR−110:日本ゼオン(株)製)30重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に乾燥後の膜厚が1μmになるように塗布して、電荷発生層を形成した。次に、前記構造式(II−7)で示される化合物100重量部と、ポリカーボネート樹脂(PCZ−200:三菱ガス化学(株)製)100重量部と、シリコーンオイル0.1重量部とを塩化メチレンと混合し、電荷発生層上に、乾燥後の膜厚が7μmとなるように塗布して電荷輸送層を形成して、積層型感光体を作製した。
【0045】
実施例7
実施例3において、チタニルフタロシアニンに代えて下記式、
Figure 2004325587
で示されるビスアゾ顔料を用いた以外は実施例3と同様にして、単層型感光体を作製した。
【0046】
実施例8
実施例3において、チタニルフタロシアニンに代えて、下記式、
Figure 2004325587
で示されるビスアゾ顔料を用い、また、前記構造式(I−7)で示される化合物に代えて前記構造式(II−11)で示される化合物を用いた以外は実施例3と同様にして、単層型感光体を作製した。
【0047】
このようにして得られた各実施例の感光体の電子写真特性につき測定を行った。
暗所にて+4.5kVのコロナ放電を行って感光体表面を正帯電せしめたときの初期の表面電位をVs(V)とし、続いてコロナ放電を中止した状態で5秒間暗所保持したときの表面電位Vd(V)を測定した。次に、照度100ルックスの白色光を照射して、Vdが半分になるまでの時間(秒)を求め、感度E1/2(lux・s)とした。また、実施例1〜6については1μWの単色光(780nm)を照射した際の半減衰露光量(μJ/cm)も求めた。さらに、夫々の場合につき、白色光または単色光を10秒間感光体表面に照射したときの残留電位Vr(V)を測定した。これらの測定結果を下記の表1中に示す。
【0048】
【表1】
Figure 2004325587
【0049】
【発明の効果】
以上説明してきたように、本発明によれば、導電性基体上に設けた感光層中に電荷輸送物質として前記一般式(I)または(II)で示される電子輸送性を有する化合物を用いたことにより、正帯電において高感度で電気特性に優れた感光体を得ることが可能となった。また、電荷発生物質は露光光源の種類に対応して好適な物質を選ぶことができ、フタロシアニン化合物、スクアリリウム化合物、ビスアゾ化合物などを用いることにより、半導体レーザプリンタや複写機に使用可能な感光体を得ることができる。さらに、必要に応じて表面に被覆層を設置して耐久性を向上することが可能である。
【図面の簡単な説明】
【図1】本発明の一例の単層型電子写真用感光体を示す概念的断面図である。
【図2】本発明の他の例の積層型電子写真用感光体を示す概念的断面図である。
【符号の説明】
1 導電性基体
2 感光層
3 電荷発生層
4 電荷輸送層
5 感光層(積層)
6 被覆層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photoreceptor for electrophotography (hereinafter, also simply referred to as a “photoreceptor”), and more particularly, to an electrophotographic printer, a copying machine, or the like having a photosensitive layer containing an organic material on a conductive substrate. The present invention relates to a photoconductor for electrophotography used.
[0002]
[Prior art]
Conventionally, as a photosensitive layer of an electrophotographic photoreceptor, a material in which an inorganic photoconductive material such as selenium or a selenium alloy or an inorganic photoconductive material such as zinc oxide or cadmium sulfide is dispersed in a resin binder is used. I have been. In recent years, research on electrophotographic photoreceptors using an organic photoconductive substance has been advanced, and some of them have been put to practical use with improved sensitivity and durability.
[0003]
In addition, the photoreceptor needs a function of retaining surface charges in a dark place, a function of receiving light to generate charges, and a function of receiving light and transporting charges. A so-called single-layer type photoreceptor that combines these functions in layers, and a layer that separates functions into a layer that mainly contributes to charge generation and a layer that contributes to charge retention and surface transport in dark places and to charge transport during photoreception. , A so-called laminated photoreceptor.
[0004]
For example, the Carlson method is applied to image formation by electrophotography using these photoconductors. Image formation in this method involves charging a photoconductor by corona discharge in a dark place, forming an electrostatic latent image such as a character or a picture of a document on the charged photoconductor surface, and forming the formed static image. The latent image was developed with toner and the developed toner image was fixed on a support such as paper. After the toner image was transferred, the photoconductor was subjected to static elimination, removal of residual toner, light neutralization, and the like. Later, it is used again.
[0005]
Commercially available organic photoreceptors have advantages over inorganic photoreceptors, such as flexibility, film forming properties, low cost, and safety.Because of the variety of materials, further improvements in sensitivity, durability, etc. Is underway.
[0006]
Most of the organic photoreceptors are stacked organic photoreceptors in which functions are separated into a charge generation layer and a charge transport layer. Generally, a laminated organic photoreceptor has a charge generating layer containing a charge generating substance such as a pigment or a dye, and a charge transporting layer containing a charge transporting substance such as hydrazone or triphenylamine formed on a conductive substrate in this order. It is a hole transport type due to the nature of the electron transporting charge transport material, and has sensitivity when the surface of the photoreceptor is negatively charged. However, in the negative charging type, the corona discharge used at the time of charging is unstable as compared with the positive charging type, and in order to generate ozone and nitrogen oxides, these are adsorbed on the surface of the photoreceptor, and physical and There is a problem that chemical deterioration is likely to occur, and further, the environment is deteriorated. From such a point, a positively charged photoreceptor having a greater degree of freedom in use conditions is more widely and advantageously used as a photoreceptor than a negatively charged photoreceptor.
[0007]
Therefore, in order to use a positive charge type, a method has been proposed in which a charge generating substance and a charge transporting substance are simultaneously dispersed in a resin binder and used as a single photosensitive layer, and some of them have been put to practical use. However, the single-layer type photoreceptor does not have sufficient sensitivity to be applied to a high-speed machine, and further improvement is required in terms of repetition characteristics and the like.
[0008]
In addition, in order to obtain a function-separated type laminated structure for the purpose of increasing the sensitivity, a method of laminating a charge generation layer on a charge transport layer to form a photoreceptor, and using a positively charged type is also considered. In this case, since the charge generation layer is formed on the surface, problems such as stability during repeated use arise due to corona discharge, light irradiation, mechanical abrasion, and the like. In this case, it has been proposed to further provide a protective layer on the charge generation layer. However, although mechanical abrasion is improved, problems such as deterioration of electrical characteristics such as sensitivity are not solved.
[0009]
Furthermore, a method has been proposed in which a photoreceptor is formed by laminating a charge transporting layer having an electron transporting property on a charge generating layer.
[0010]
As the electron transporting charge transporting material, for example, 2,4,7-trinitro-9-fluorenone and the like are known, but since this substance has carcinogenicity, there is a problem in safety. In addition, Patent Documents 1 to 6 and the like propose a cyano compound, a quinone-based compound, and the like, but none of them have a sufficient electron transporting ability for practical use.
[0011]
On the other hand, the present inventors have proposed various photoconductors containing a substance having excellent electron transporting ability (for example, described in Patent Documents 7 to 10).
[0012]
[Patent Document 1]
JP-A-1-206349 [Patent Document 2]
JP-A-6-59483 [Patent Document 3]
JP-A-9-190002 [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-190003 [Patent Document 5]
Japanese Patent Application Laid-Open No. 8-278463 [Patent Document 6]
JP 2002-37755 A [Patent Document 7]
Japanese Patent Application Laid-Open No. 2000-75520 [Patent Document 8]
JP 2000-199979 A [Patent Document 9]
JP 2000-143607 A [Patent Document 10]
JP 2001-142239 A
[Problems to be solved by the invention]
However, in recent years, there has been a demand for a high-sensitivity photoreceptor to realize a high-performance photoreceptor by using a new charge transporting substance having an excellent electron transporting ability.
[0014]
Accordingly, an object of the present invention is to use a novel organic material, which has never been used, as a charge transport material in a photosensitive layer to provide a highly sensitive, positively charged electrophotographic photosensitive member for copying machines and printers. Is to provide.
[0015]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on various organic materials to achieve the above object, and as a result, by using a specific compound represented by the following general formula (I) or (II) as a charge transporting substance, The inventors have found that a highly sensitive photoreceptor usable in positive charging can be obtained, and have completed the present invention.
[0016]
In order to solve the above problems, the electrophotographic photoconductor of the present invention is an electrophotographic photoconductor provided with a photosensitive layer containing a charge generating substance and a charge transport substance on a conductive substrate, wherein the photosensitive layer is The following general formula (I),
Figure 2004325587
(In the formula (I), R 1 and R 2 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent. R 3 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent, R 4 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent, and m represents an integer of 0 to 4) Or at least one compound.
[0017]
Further, another electrophotographic photoconductor of the present invention is an electrophotographic photoconductor in which a photosensitive layer containing a charge generating substance and a charge transporting substance is provided on a conductive substrate, wherein the photosensitive layer has the following general formula ( II),
Figure 2004325587
(In the formula (II), R 5 and R 6 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent. R 7 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent, R 8 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent; X represents a sulfur atom or an oxygen atom; (Representing an integer of 0 to 3).
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Specific examples of the compound represented by the general formula (I) or (II) are represented by the following structural formulas (I-1) to (I-18) and (II-1) to (II-18), respectively. However, the present invention is not limited to these compounds.
[0019]
Figure 2004325587
[0020]
Figure 2004325587
[0021]
Figure 2004325587
[0022]
Figure 2004325587
[0023]
The compounds represented by the general formulas (I) and (II) can be synthesized by a usual method.
For example, the compounds represented by the structural formulas (I-2) and (II-4) are represented by the following structural formulas (III) and (IV), respectively.
Figure 2004325587
Can be easily synthesized by dehydrating the compound represented by the formula (1) with a suitable catalyst (for example, p-toluenesulfonic acid or the like).
[0024]
Hereinafter, specific embodiments of the electrophotographic photoconductor of the present invention will be described in detail with reference to the drawings. 1 and 2 are schematic cross-sectional views showing various configuration examples of the photoconductor.
FIG. 1 shows an example of a configuration of a so-called single-layer type photoconductor, in which a charge generating substance and a charge transporting substance are dispersed in a resin binder (binder) on a conductive substrate 1. 2 are provided, and a coating layer (protective layer) 6 is further laminated as necessary. This single-layer type photoreceptor can be manufactured by dispersing a charge generating substance in a solution in which a charge transporting substance and a resin binder are dissolved, and applying this dispersion on a conductive substrate. Further, if necessary, the coating layer 6 can be formed by application.
[0025]
FIG. 2 shows an example of a configuration of a so-called laminated photoconductor, in which a charge generation layer 3 mainly composed of a charge generation substance and a charge transport layer 4 containing a charge transport substance are formed on a conductive substrate 1. The photosensitive layers 5 are sequentially laminated. This layered photoreceptor generates a charge generation substance by vacuum-depositing a charge generation substance on a conductive substrate, or applying a dispersion obtained by dispersing particles of the charge generation substance in a solvent or a resin binder and drying. A layer can be formed by forming a layer, then applying a solution in which a charge transporting substance and a resin binder are dissolved, and drying to form a charge transporting layer.
[0026]
Although not shown, an undercoat layer can be provided between the conductive substrate and the photosensitive layer in any type of photoconductor. The undercoat layer can be provided as necessary for the purpose of preventing injection of unnecessary charges from the conductive substrate to the photosensitive layer, covering defects on the surface of the substrate, improving the adhesiveness of the photosensitive layer, and the like. It is composed of a layer as a main component, an oxide film such as alumite or the like.
[0027]
Incidentally, any type of photoreceptor of the present invention contains, as a charge transporting substance, at least one of the compounds having an electron transporting property according to the present invention represented by the above general formula (I) or (II).
[0028]
Hereinafter, a preferred embodiment of the photoconductor of the present invention will be described with reference to the laminated photoconductor shown in FIG. 2, but the present invention is not limited to the following specific examples.
[0029]
The conductive substrate 1 serves not only as an electrode of the photoreceptor but also as a support for the other layers, and may be cylindrical, plate-like, or film-like, and may be made of aluminum, stainless steel, nickel, or the like. It is possible to use metal, glass, resin, or the like which is subjected to a conductive treatment.
[0030]
The charge generation layer 3 is formed by applying a material in which particles of a charge generation substance are dispersed in a resin binder as described above, or by vacuum deposition, and generates light by receiving light. . In addition, it is important that the charge generation efficiency is high, and at the same time, the injected property of the generated charge into the charge transporting layer 4 is small.
[0031]
Examples of the charge generating substance include metal-free phthalocyanines, phthalocyanine compounds such as titanyl phthalocyanine, pigments or dyes such as various azo, quinone, indigo, cyanine, squarylium, azurenium, and pyrylium compounds, and selenium or selenium compounds. A suitable substance can be selected according to the light wavelength range of the exposure light source used for the above. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance, and is generally 5 μm or less, preferably 2 μm or less. Further, the charge generation layer can be mainly composed of a charge generation substance and added with a charge transport substance and the like.
[0032]
As the resin binder for the charge generation layer 3, a polycarbonate, a polyester, a polyamide, a polyurethane, a vinyl chloride, a phenoxy resin, a polyvinyl butyral, a diallyl phthalate resin, a polymer and a copolymer of a methacrylic acid ester, and the like are used in an appropriate combination. Is possible.
[0033]
The charge transport layer 4 is a coating film in which a charge transport material is dispersed in a resin binder. The charge transport layer 4 retains the charge of the photoreceptor as an insulator layer in a dark place, and transports the charge injected from the charge generation layer when receiving light. Demonstrate the function to do. As described above, in the present invention, it is necessary to include at least one of the compounds having an electron transporting property according to the present invention represented by the general formula (I) or (II) as the charge transporting substance. However, other charge transport materials may be included. The preferable addition amount of the compound according to the present invention is preferably 10 to 60% by weight, more preferably 15 to 50% by weight, based on the whole material contained in the charge transport layer 4.
[0034]
As the resin binder for the charge transport layer 4, polymers, copolymers, and the like of polycarbonate, polyester, polystyrene, and methacrylate can be used.
[0035]
Also, in order to prevent ozone deterioration which is a hindrance in using the photoreceptor, an antioxidant such as an amine type, a phenol type, a sulfur type, a phosphite type or a phosphorus type is added to the charge transport layer 4. Can also be contained.
[0036]
The coating layer 6 shown in FIG. 1 has a function of receiving and holding the charge of corona discharge in a dark place, and has a performance of transmitting light that the photosensitive layer responds to, and transmitting light at the time of exposure. It is necessary to cause the photosensitive layer to reach the photosensitive layer and to inject generated charges to neutralize and eliminate surface charges. As a material of the coating layer, an organic insulating film forming material such as polyester and polyamide can be applied. In addition, a mixture of these organic materials and an inorganic material such as glass and SiO 2 , and further a material such as a metal or a metal oxide that reduces electric resistance can be used. As described above, it is desirable that the material of the coating layer is as transparent as possible in the wavelength region where the light absorption of the charge generating substance is maximum.
[0037]
The thickness of the coating layer itself depends on the composition of the coating layer, but can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.
[0038]
In the case of the single-layer photoreceptor shown in FIG. 1, at least one of the compounds having an electron transporting property according to the present invention represented by the general formula (I) or (II) is contained in the photosensitive layer 2. However, other materials and the like may be the same as those of the above-described laminated type photoreceptor, and are not particularly limited. Preferably, a hole transport material is contained together with the compound represented by the general formula (I) or (II) as the charge transport material. As the hole transporting substance, a benzidine derivative, a triphenylamine derivative, or the like is preferable. In this case, the preferable addition amount of the compound according to the present invention is preferably 10 to 60% by weight, more preferably 15 to 60% by weight, based on the whole material contained in the photosensitive layer-forming coating film. 50% by weight, preferably 10 to 60% by weight, more preferably 20 to 50% by weight for the hole transport material.
[0039]
【Example】
Hereinafter, examples of the present invention will be described.
Example 1
20 parts by weight of x-type metal-free phthalocyanine (H 2 Pc) and 100 parts by weight of the compound represented by the structural formula (I-2) were mixed with 100 parts by weight of a polyester resin (trade name: Byron 200: manufactured by Toyobo Co., Ltd.). And a tetrahydrofuran (THF) solvent for 3 hours to prepare a coating solution by kneading with a mixer to form a photosensitive layer on an aluminum support so that the thickness after drying is 13 μm. Was prepared.
[0040]
Example 2
2 parts by weight of x-type metal-free phthalocyanine (H 2 Pc), 40 parts by weight of the compound represented by the structural formula (I-6), and the following formula as a hole transport material:
Figure 2004325587
60 parts by weight of a benzidine derivative represented by the following formula and 100 parts by weight of a polycarbonate resin (trade name PCZ200: manufactured by Mitsubishi Gas Chemical Co., Ltd.) were kneaded with methylene chloride by a mixer for 3 hours to prepare a coating solution, and aluminum support was used. A photosensitive layer was applied and formed on the body so that the film thickness after drying was 20 μm, thereby producing a single-layer photosensitive body.
[0041]
Example 3
2 parts by weight of titanyl phthalocyanine (TiOPc), 40 parts by weight of the compound represented by the structural formula (I-7), and the following formula as a hole transport material:
Figure 2004325587
Is mixed with methylene chloride for 3 hours using a mixer to prepare a coating solution, and 60 parts by weight of a benzidine derivative represented by the following formula (1) and 100 parts by weight of a polycarbonate resin (trade name: BP-PC: Idemitsu Kosan Co., Ltd.) are prepared. A photosensitive layer was applied and formed on the body so that the film thickness after drying was 20 μm, thereby producing a single-layer photosensitive body.
[0042]
Example 4
2 parts by weight of titanyl phthalocyanine (TiOPc), 30 parts by weight of the compound represented by the structural formula (I-12), and the following formula as a hole transport material:
Figure 2004325587
And 60 parts by weight of a triphenylamine derivative represented by the following formula and 60 parts by weight of a polycarbonate resin (trade name: BP-PC: Idemitsu Kosan Co., Ltd.) were kneaded with methylene chloride by a mixer for 3 hours to prepare a coating solution. A photosensitive layer was applied and formed on an aluminum support so that the film thickness after drying was 20 μm, thereby producing a single-layer photosensitive member.
[0043]
Example 5
In Example 2, a single-layer type photosensitive material was prepared in the same manner as in Example 2 except that the compound represented by the structural formula (II-4) was used instead of the compound represented by the structural formula (I-6). The body was made.
[0044]
Example 6
70 parts by weight of titanyl phthalocyanine (TiOPc) and 30 parts by weight of a vinyl chloride copolymer (trade name: MR-110: manufactured by Nippon Zeon Co., Ltd.) are kneaded with methylene chloride by a mixer for 3 hours to prepare a coating solution. Then, the resultant was coated on an aluminum support so that the film thickness after drying was 1 μm to form a charge generation layer. Next, 100 parts by weight of the compound represented by the structural formula (II-7), 100 parts by weight of a polycarbonate resin (PCZ-200: manufactured by Mitsubishi Gas Chemical Co., Ltd.), and 0.1 part by weight of silicone oil were chlorinated. It was mixed with methylene, and applied on the charge generation layer so that the film thickness after drying was 7 μm to form a charge transport layer, thereby producing a laminated photoreceptor.
[0045]
Example 7
In Example 3, the following formula was used instead of titanyl phthalocyanine:
Figure 2004325587
A single-layer type photoreceptor was produced in the same manner as in Example 3 except that the bisazo pigment represented by the following formula was used.
[0046]
Example 8
In Example 3, instead of titanyl phthalocyanine, the following formula:
Figure 2004325587
In the same manner as in Example 3, except that a compound represented by the structural formula (II-11) was used instead of the compound represented by the structural formula (I-7), A single-layer photoreceptor was prepared.
[0047]
The electrophotographic characteristics of the photoreceptors of the respective examples thus obtained were measured.
The initial surface potential when the photoreceptor surface is positively charged by performing a +4.5 kV corona discharge in a dark place is defined as Vs (V), and then the corona discharge is stopped and the dark place is maintained for 5 seconds. Was measured for surface potential Vd (V). Next, white light having an illuminance of 100 lux was irradiated, and a time (second) until Vd was reduced to half was obtained, and the sensitivity was set to E1 / 2 (lux · s). For Examples 1 to 6, the half-attenuation exposure amount (μJ / cm 2 ) when 1 μW monochromatic light (780 nm) was irradiated was also determined. Furthermore, in each case, the residual potential Vr (V) when the surface of the photoconductor was irradiated with white light or monochromatic light for 10 seconds was measured. The results of these measurements are shown in Table 1 below.
[0048]
[Table 1]
Figure 2004325587
[0049]
【The invention's effect】
As described above, according to the present invention, the compound having an electron transporting property represented by the general formula (I) or (II) is used as the charge transporting substance in the photosensitive layer provided on the conductive substrate. This makes it possible to obtain a photosensitive member having high sensitivity and excellent electrical characteristics in positive charging. In addition, a charge generating substance can select a suitable substance according to the type of exposure light source, and by using a phthalocyanine compound, a squarylium compound, a bisazo compound, and the like, a photoreceptor that can be used in a semiconductor laser printer or a copier is used. Obtainable. Further, it is possible to improve durability by providing a coating layer on the surface as needed.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing a single-layer type electrophotographic photoreceptor of one example of the present invention.
FIG. 2 is a conceptual cross-sectional view showing a laminated electrophotographic photosensitive member according to another example of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 conductive substrate 2 photosensitive layer 3 charge generation layer 4 charge transport layer 5 photosensitive layer (lamination)
6 coating layer

Claims (2)

導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(I)、
Figure 2004325587
(式(I)中、RおよびRは、同一または異なって、水素原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Rは、置換基を有してもよい炭素数1〜6のアルキル基、置換基を有してもよいアリール基、または置換基を有してもよい複素環基を表し、Rは、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、mは0〜4の整数を表す)で示される化合物の少なくとも一種を含有することを特徴とする電子写真用感光体。
In an electrophotographic photoreceptor provided with a photosensitive layer containing a charge generating substance and a charge transporting substance on a conductive substrate, the photosensitive layer has the following general formula (I):
Figure 2004325587
(In the formula (I), R 1 and R 2 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent. R 3 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent, R 4 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent, and m represents an integer of 0 to 4) A photoconductor for electrophotography, comprising at least one compound selected from the group consisting of:
導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(II)、
Figure 2004325587
(式(II)中、RおよびRは、同一または異なって、水素原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Rは、置換基を有してもよい炭素数1〜6のアルキル基、置換基を有してもよいアリール基、または置換基を有してもよい複素環基を表し、Rは、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、または置換基を有してもよいアリール基を表し、Xは硫黄原子または酸素原子を表し、nは0〜3の整数を表す)で示される化合物の少なくとも一種を含有することを特徴とする電子写真用感光体。
In an electrophotographic photoreceptor in which a photosensitive layer containing a charge generating substance and a charge transporting substance is provided on a conductive substrate, the photosensitive layer has the following general formula (II):
Figure 2004325587
(In the formula (II), R 5 and R 6 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent. R 7 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent, an aryl group which may have a substituent, or a heterocyclic group which may have a substituent, R 8 represents a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group which may have a substituent; X represents a sulfur atom or an oxygen atom; (Representing an integer of 0 to 3).
JP2003117273A 2003-04-22 2003-04-22 Electrophotographic photoreceptor Pending JP2004325587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117273A JP2004325587A (en) 2003-04-22 2003-04-22 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117273A JP2004325587A (en) 2003-04-22 2003-04-22 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2004325587A true JP2004325587A (en) 2004-11-18

Family

ID=33497213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117273A Pending JP2004325587A (en) 2003-04-22 2003-04-22 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2004325587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013573A (en) * 2016-07-20 2018-01-25 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013573A (en) * 2016-07-20 2018-01-25 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP3717320B2 (en) Electrophotographic photoreceptor
JP3666262B2 (en) Electrophotographic photoreceptor
US6268095B1 (en) Photoconductor for electrophotography
JP4239133B2 (en) Electrophotographic photoreceptor and method for producing the same
JP4228334B2 (en) Electrophotographic photoreceptor
JP2005037476A (en) Electrophotographic photoreceptor
JP2991150B2 (en) Electrophotographic photoreceptor
JP2001066805A (en) Electrophotographic photoreceptor
JP2004325587A (en) Electrophotographic photoreceptor
JP3781362B2 (en) Electrophotographic photoreceptor
JP2001022107A (en) Electrophotographic photoreceptor
JP2002062673A (en) Electrophotographic photoreceptor
JP2001215742A (en) Electrophotographic photoreceptor
JPH1184695A (en) Electrophotographic photoreceptor
JP3114394B2 (en) Electrophotographic photoreceptor
JP2000330306A (en) Electrophotographic photoreceptor
JPH10282699A (en) Electrophotographic photoreceptor
JP2003029436A (en) Electrophotographic photoreceptor
JP2001142239A (en) Electrophotographic photoreceptor
JP2002278112A (en) Electrophotographic photoreceptor
JP2000258936A (en) Electrophotographic photoreceptor
JP2000242009A (en) Electrophotographic photoreceptor
JP2005122044A (en) Electrophotographic photoreceptor
JP2005024871A (en) New quinone compound, electrophotographic photoreceptor and electrophotographic apparatus
JPH10142821A (en) Electrophotographic photoreceptor