JP2005037476A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2005037476A
JP2005037476A JP2003197697A JP2003197697A JP2005037476A JP 2005037476 A JP2005037476 A JP 2005037476A JP 2003197697 A JP2003197697 A JP 2003197697A JP 2003197697 A JP2003197697 A JP 2003197697A JP 2005037476 A JP2005037476 A JP 2005037476A
Authority
JP
Japan
Prior art keywords
layer
charge
photosensitive layer
photoreceptor
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197697A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Nobuyuki Sekine
伸行 関根
Noriko Kotani
則子 小谷
Kenichi Okura
健一 大倉
Motohiro Takeshima
基浩 竹嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Imaging Device Co Ltd
Original Assignee
Fuji Electric Imaging Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Imaging Device Co Ltd filed Critical Fuji Electric Imaging Device Co Ltd
Priority to JP2003197697A priority Critical patent/JP2005037476A/en
Publication of JP2005037476A publication Critical patent/JP2005037476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly sensitive, positive electrification type electrophotographic photoreceptor for a copying machine and printer by using a new compound not used thus far as an electron transferable charge transfer substance in a photosensitive layer. <P>SOLUTION: The electrophotographic photoreceptor is provided with the photosensitive layer containing a charge generating substance and the charge transfer substance formed on a conductive base body, in which the photosensitive layer contains at least one kind of the compound expressed by general formula (I). In the formula, each of R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>may be the same or different and independently represents a hydrogen atom, halogen atom, 1-8C alkyl group which may have a substituent or aryl group which may have a substituent; R<SP>4</SP>represents a hydrogen atom or 1-8C alkyl group; X represents a sulfur atom or oxygen atom; (n) represents an integer from 1 to 3; respective R<SP>2</SP>and R<SP>3</SP>of the case (n) is 2 or 3 may be different from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子写真用感光体に関し、詳しくは、導電性基体上に形成せしめた光導電層(感光層)中に、電子輸送性を有する特定の化合物を含有させてなる電子写真用感光体に関する。
【0002】
【従来の技術】
従来は、電子写真用感光体の感光層として、セレンまたはセレン合金などの無機光導電性物質や、酸化亜鉛または硫化カドミウムなどの無機光導電性物質を樹脂結着剤中に分散させたものが用いられてきた。近年では、有機光導電性物質を用いた電子写真用感光体の研究が進み、感度や耐久性などが改善されて実用化されてきている。
【0003】
また、感光体には暗所で表面電荷を保持する機能と、光を受容して電荷を発生する機能と、同じく光を受容して電荷を輸送する機能とが必要であるが、一つの層でこれらの機能を併せ持ったいわゆる単層型感光体と、主として電荷発生に寄与する層と暗所での表面電荷の保持および光受容時の電荷輸送に寄与する層とに機能分離した層を積層した、いわゆる積層型感光体がある。これらの感光体を用いた電子写真法による画像形成には、例えば、カールソン方式が適用される。この方式での画像形成は、暗所での感光体へのコロナ放電による帯電と、帯電された感光体表面上への原稿の文字や絵などの静電潜像の形成と、形成された静電潜像のトナーによる現像と、現像されたトナー像の紙などの支持体への定着とにより行われ、トナー像転写後の感光体は、除電、残留トナーの除去、光除電などを行った後、再使用に供される。
【0004】
実用化されている有機感光体は、無機感光体に比べ、可とう性、膜形成性、低コスト、安全性などの利点があり、材料の多様性から、さらに、感度や耐久性などの改善が進められている。有機感光体のほとんどは、電荷発生層と電荷輸送層とに機能を分離した積層型の感光体である。一般に、積層型有機感光体は、導電性基体上に、顔料や染料などの電荷発生物質を含む電荷発生層と、ヒドラゾンやトリフェニルアミンなどの電荷輸送物質を含む電荷輸送層とが順に形成されてなり、電子供与性である電荷輸送物質の性質上、正孔移動型となり、感光体表面を負帯電したときに感度を有する。ところが負帯電では、正帯電に比べ帯電時に用いるコロナ放電が不安定であり、また、オゾンや窒素酸化物などを発生するので、これらが感光体表面に吸着して、物理的、化学的劣化を引き起こしやすく、さらに、環境を悪化するという問題がある。このような点から、感光体としては、負帯電感光体よりも使用条件の自由度の大きい正帯電型感光体の方が、その適用範囲は広く有利である。
【0005】
そこで、正帯電で使用するための感光体が種々提案されている。例えば、電荷発生物質と電荷輸送物質とを同時に樹脂バインダ中に分散させて、単層の感光層として使用する方法が提案され、一部実用化されている。しかし、これは高速機に適用するには感度が十分ではなく、また、繰り返し特性などの点からも、さらに改良が必要である。また、高感度化を目的として機能分離型の積層構造とするため、電荷輸送層上に電荷発生層を積層して感光体を形成し、正帯電で使用する方法が考えられる。しかし、この方式では電荷発生層が表面に形成されるため、コロナ放電や光照射、機械的摩耗などにより、繰り返し使用時における安定性などに問題がある。この場合、電荷発生層の上のさらに保護層を設けることも提案されているが、機械的摩耗は改善されるものの、感度など電気特性の低下を招くなどの問題がある。
【0006】
さらに、電荷発生層上に電子輸送性の電荷輸送層を積層して感光体を形成する方法も提案されている。電子輸送性材料としては、2,4,7−トリニトロ−9−フルオレノンなどが知られているが、この物質は発ガン性があり、安全上問題がある。その他、シアノ化合物やキノン系化合物などが、特許文献1〜特許文献4などにおいて提案されているが、実用化に十分な電子輸送能を有する化合物は得られていないのが実情である。
【0007】
【特許文献1】
特開昭50−131941号公報
【特許文献2】
特開平6−59483号公報
【特許文献3】
特開平6−123986号公報
【特許文献4】
特開平9−190003号公報
【0008】
【発明が解決しようとする課題】
そこで本発明の目的は、上述の問題を解消して、感光層に電子輸送性の電荷輸送物質として今まで用いられたことのない新しい化合物を用いることにより、高感度な複写機用およびプリンター用の正帯電型電子写真用感光体を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を解決するために、本発明の電子写真用感光体は、導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(I)、

Figure 2005037476
(式(I)中、R、RおよびRは、同一または異なって、夫々水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基または置換基を有してもよいアリール基を表し、Rは水素原子または炭素数1〜8のアルキル基を表し、Xは硫黄原子あるいは酸素原子を表し、nは1〜3の整数を表し、nが2または3の場合の夫々のRおよびRは互いに異なっていてもよい)で示される化合物の少なくとも一種を含有することを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、詳細に説明する。
前記一般式(I)で示される化合物の具体例を、下記構造式(I−1)〜(I−15)に示すが、本発明においては、これらの化合物に限定されるものではない。
【0011】
Figure 2005037476
【0012】
Figure 2005037476
【0013】
本発明に係る前記一般式(I)の化合物は、通常の方法により合成することができる。例えば、前記構造式(I−1)で示される化合物は、下記構造式(II)および(III)、
Figure 2005037476
で示される化合物を、適当な触媒(例えば、p−トルエンスルホン酸など)で脱水することにより、容易に合成することができる。
【0014】
以下、本発明の感光体の好適例の具体的構成について、図面を参照しながら詳細に説明する。
図1および図2は、感光体の各種構成例を示す模式的断面図である。各図中、符号1は導電性基体、2および5は感光層、3は電荷発生層、4は電荷輸送層、6は被覆層を、夫々示す。
【0015】
図1は、通常、単層型感光体と称せられる構成を示しており、導電性基体1上に、電荷発生物質と電荷輸送物質とを樹脂バインダ(結着剤)中に分散した感光層2が設けられてなる。また、必要に応じて被覆層6を設けることもできる。
【0016】
図1に示す感光体は、電荷発生物質を電荷輸送物質および樹脂バインダを溶解した溶液中に分散せしめ、この分散液を導電性基体上に塗布することによって作製することができる。さらに、必要な場合には、被覆層を塗布形成することができる。
【0017】
図2は、通常、積層型感光体と称せられる構成を示しており、導電性基体1上に、電荷発生物質を主体とする電荷発生層3と、電荷輸送物質を含有する電荷輸送層4とが積層された感光層5が設けられてなる。
【0018】
図2に示す感光体は、導電性基体上に、電荷発生物質を真空蒸着するか、あるいは電荷発生物質の粒子を溶剤または樹脂バインダ中に分散して得た分散液を塗布、乾操して電荷発生層を形成し、その上に電荷輸送物質および樹脂バインダを溶解した溶液を塗布、乾操して電荷輸送層を形成することにより、作製することができる。
【0019】
また、図示はしていないが、いずれのタイプの感光体においても、導電性基体と感光層との間に下引き層を設けることができる。下引き層は、導電性基体から感光層への不要な電荷の注入防止や、基体表面上の欠陥被覆、感光層の接着性向上等の目的で必要に応じて設けることができ、樹脂を主成分とする層や、アルマイト等の酸化皮膜からなる。
【0020】
なお、本発明のいずれのタイプの感光体も、感光層中に、電荷輸送物質として、前記一般式(I)で示される本発明に係る電子輸送性を有する化合物の少なくとも一種を含有する。
【0021】
以下、本発明の感光体の具体的な実施の形態を図2に示す積層型感光体について説明するが、本発明は以下の具体例に限定されるものではない。
【0022】
導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体となっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂などの上に導電処理を施したものを用いることができる。
【0023】
電荷発生層3は、上記したように電荷発生物質の粒子を樹脂バインダ中に分散させた材料を塗布するか、あるいは、真空蒸着するなどの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層4への注入性が重要であり、電場依存性が少なく低電場でも注入の良いことが望ましい。
【0024】
電荷発生物質としては、無金属フタロシアニンやチタニルフタロシアニンなどのフタロシアニン化合物、各種アゾ、キノン、インジゴ、シアニン、スクアリリウム、アズレニウム、ピリリウム化合物などの顔料あるいは染料や、セレンまたはセレン化合物などが用いられ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。電荷発生層は電荷発生機能を有すればよいので、その膜厚は電荷発生物質の光吸収係数により決まり、一般的には5μm以下であり、好適には2μm以下である。また、電荷発生層は、電荷発生物質を主体として、これに電荷輸送物質などを添加して使用することも可能である。
【0025】
電荷発生層用の樹脂バインダとしては、ポリカーボネート、ポリエステル、ポリアミド、ポリウレタン、塩化ビニル、フェノキシ樹脂、ポリビニルブチラール、ジアリルフタレート樹脂、メタクリル酸エステルの重合体および共重合体などを適宜組合せて使用することが可能である。
【0026】
電荷輸送層4は、樹脂バインダ中に電荷輸送物質を分散させた塗膜であり、暗所では絶縁体層として感光体の電荷を保持し、光受容時には電荷発生層から注入される電荷を輸送する機能を発揮する。前述したように、本発明においては、かかる電荷輸送物質として、本発明に係る前記一般式(I)で示される電子輸送性を有する化合物の少なくとも一種を含有させることが必要であるが、他の電荷輸送物質を含有させてもよい。本発明に係る化合物の好適添加量は、電荷輸送層中に含まれる材料全体に対して、好適には10〜60重量%であり、より好適には15〜50重量%である。
【0027】
電荷輸送層用の樹脂バインダとしては、ポリカーボネート、ポリエステル、ポリスチレン、メタクリル酸エステルの重合体および共重合体などを用いることができる。また、感光体を使用する際に使用上障害となるオゾン劣化などを防止する目的で、電荷輸送層6にアミン系、フェノール系、硫黄系、亜リン酸エステル系、リン系などの酸化防止剤を含有させることも可能である。
【0028】
図1に示す被覆層6は、暗所ではコロナ放電の電荷を受容して保持する機能を有しており、かつ、感光層が感応する光を透過する性能を有し、露光時に光を透過して感光層に到達させ、発生した電荷の注入を受けて表面電荷を中和消滅させることが必要である。被覆層の材料としては、有機系の材料として、ポリエステル、ポリアミドなどの有機絶縁性皮膜形成材料を適用することができる。また、これら有機材料と、ガラス樹脂、SiOなどの無機材料、さらには金属、金属酸化物などの電気抵抗を低減せしめる材料とを混合して用いることができる。無機系の材料としては、非晶質のケイ素−炭素(SiC)複合膜被覆層等の気相成長法により成膜された層などを適用することができる。被覆材料は、前述の通り電荷発生物質の光の吸収極大の波長領域においてできるだけ透明であることが望ましい。
【0029】
被覆層自体の膜厚は、被覆層の配合組成にも依存するが、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定することができる。
【0030】
なお、図1に示す単層型感光体の場合においても、前記一般式(I)で示される本発明に係る電子輸送性を有する化合物の少なくとも一種を感光層2中に含有させることが必要であるが、その他の材料等は、上述の積層型感光体と同様のものを用いることができ、特に制限されるものではない。好適には、電荷輸送物質として前記一般式(I)で示される化合物と共に、正孔輸送物質を含有させる。
正孔輸送物質としては、ベンジジン誘導体やトリフェニルアミン誘導体などが好ましい。この場合、これらの好適添加量としては、感光層形成塗膜中に含まれる材料全体に対して、本発明に係る化合物については好適には10〜60重量%であり、より好適には15〜50重量%であり、正孔輸送物質については好適には10〜60重量%であり、より好適には20〜50重量%である。
【0031】
また、感光体の表面層(被覆層を設けた場合には被覆層、被覆層を設けない場合には最外層にあたる感光層)には、レベリング材として、シリコーンオイルを添加したり、潤滑性を付与する等の目的で、シリコーンオイル、四フッ化エチレン等のフッ素樹脂微粒子、シリコーン樹脂微粒子、フッ素系クシ型グラフトポリマー等のシリコンやフッ素を含有するポリマーを含有させることが可能である。
【0032】
【実施例】
以下、本発明の実施例について説明する。
実施例1
X型無金属フタロシアニン(HPc)20重量部と、前記構造式(I−1)で示される化合物100重量部とを、ポリエステル樹脂(商品名:バイロン200、東洋紡(株)製)100重量部およびテトラヒドロフラン(THF)溶剤とともに3時間混合機により混練して塗布液を調製し、導電性基体としての外径30mm、長さ260mmのアルミニウム製ドラム上に、乾燥後の膜厚が15μmになるように塗布して感光層を形成し、単層型感光体を作製した。
【0033】
実施例2
X型無金属フタロシアニン(HPc)2重量部と、前記構造式(I−3)で示される化合物40重量部と、下記式、
Figure 2005037476
で示されるベンジジン誘導体60重量部と、ポリカーボネート樹脂(商品名:PCZ−200、三菱ガス化学(株)製)100重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に、乾燥後の膜厚が20μmになるように塗布して感光層を形成して、単層型感光体を作製した。
【0034】
実施例3
チタニルフタロシアニン(TiOPc)2重量部と、前記構造式(I−4)で示される化合物40重量部と、下記式、
Figure 2005037476
で示されるベンジジン誘導体60重量部と、ポリカーボネート樹脂(商品名:BP−PC、出光興産(株)製)100重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に、乾燥後の膜厚が20μmになるように塗布して感光層を形成し、単層型感光体を作製した。
【0035】
実施例4
実施例3において、チタニルフタロシアニンに代えて下記式、
Figure 2005037476
で示されるスクアリリウム化合物を用い、また、前記構造式(I−4)で示される化合物に代えて前記構造式(I−5)で示される化合物を用いた以外は実施例3と同様にして、単層型感光体を作製した。
【0036】
実施例5
チタニルフタロシアニン(TiOPc)70重量部と、塩化ビニル共重合体(商品名:MR−110、日本ゼオン(株)製)30重量部とを、塩化メチレンとともに3時間混合機により混練して塗布液を調製し、アルミニウム支持体上に、乾燥後の膜厚が1μmになるよう塗布して、電荷発生層を形成した。次に、前記構造式(I−6)で示される化合物100重量部と、ポリカーボネート樹脂(商品名:PCZ−200、三菱ガス化学(株)製)100重量部と、シリコーンオイル0.1重量部とを、塩化メチレンとともに混合して塗布液を調製し、電荷発生層上に乾燥後の膜厚が7μmとなるように塗布して電荷輸送層を形成し、積層型感光体を作製した。
【0037】
実施例6
実施例3において、チタニルフタロシアニンに代えて下記構造式、
Figure 2005037476
で示されるビスアゾ顔料を用い、また、前記構造式(I−4)で示される化合物に代えて前記構造式(I−7)で示される化合物を用いた以外は実施例3と同様にして、単層型感光体を作製した。
【0038】
実施例7
実施例3において、チタニルフタロシアニンに代えて下記構造式、
Figure 2005037476
で示されるビスアゾ顔料を用い、また、前記構造式(I−4)で示される化合物に代えて前記構造式(I−3)で示される化合物を用いた以外は実施例3と同様にして、単層型感光体を作製した。
【0039】
このようにして得られた実施例1〜7の感光体の電子写真特性を、以下に示すようにして測定した。
暗所で+4.5kVのコロナ放電を行って感光体表面を正帯電せしめたときの初期の表面電位をVs(V)とし、続いてコロナ放電を中止した状態で5秒間暗所にて保持したときの表面電位Vd(V)を測定して、さらに続いて感光体表面に照度100ルックスの白色光を照射してVdが半分になるまでの時間(秒)を求め、感度El/2(1ux・s)とした。また、照度100ルックスの白色光を10秒間照射したときの表面電位を残留電位Vr(V)とした。また、実施例1〜5の感光体については、長波長光での高感度が期待できるので、波長780nmの単色光を用いたときの電子写真特性も同時に測定した。即ち、Vdまでは同様に測定して、次に、白色光の代わりに1μWの単色光(780nm)を照射して半減衰露光量を求め、感度(μJ/cm)とした。また、この光を10秒間感光体表面に照射したときの残留電位Vr(V)を測定した。これらの測定結果を下記の表1中に示す。
【0040】
【表1】
Figure 2005037476
【0041】
【発明の効果】
以上説明してきたように、本発明によれば、導電性基体上に設けた感光層中に、電荷輸送物質として前記一般式(I)で示される電子輸送性を有する化合物を用いることとしたため、正帯電において高感度で電気特性に優れた感光体を得ることが可能となった。また、電荷発生物質は露光光源の種類に対応して好適な物質を選ぶことができ、フタロシアニン化合物、スクアリリウム化合物、ビスアゾ化合物などを用いることにより、半導体レーザプリンターや複写機に好適に使用可能な感光体を得ることができる。さらに、必要に応じて表面に被覆層を設置して、耐久性を向上することが可能である。
【図面の簡単な説明】
【図1】本発明の感光体の一構成例を示す概念的断面図である。
【図2】本発明の感光体の他の構成例を示す概念的断面図である。
【符号の説明】
1 導電性基体
2 感光層
3 電荷発生層
4 電荷輸送層
5 感光層(積層)
6 被覆層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, and more particularly, to an electrophotographic photoreceptor in which a specific compound having an electron transporting property is contained in a photoconductive layer (photosensitive layer) formed on a conductive substrate. .
[0002]
[Prior art]
Conventionally, as a photosensitive layer of an electrophotographic photoreceptor, an inorganic photoconductive substance such as selenium or a selenium alloy or an inorganic photoconductive substance such as zinc oxide or cadmium sulfide is dispersed in a resin binder. Has been used. In recent years, research on electrophotographic photoreceptors using organic photoconductive materials has progressed, and sensitivity and durability have been improved and put into practical use.
[0003]
In addition, the photosensitive member needs to have a function of holding a surface charge in the dark, a function of receiving light to generate a charge, and a function of receiving light and transporting a charge. In addition, a so-called single-layer type photoconductor that combines these functions and a layer that separates the functions into a layer that mainly contributes to charge generation and a layer that contributes to the retention of surface charge in the dark and the charge transport during photoreception. There is a so-called laminated type photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. In this method, the image is formed by charging the photoconductor in the dark by corona discharge, forming an electrostatic latent image such as text or a picture of an original on the charged photoconductor surface, and forming a static image. The electrostatic latent image was developed by toner and the developed toner image was fixed on a support such as paper. The photoconductor after the toner image was transferred was subjected to charge removal, residual toner removal, and light charge removal. Later, it is used again.
[0004]
Organic photoreceptors in practical use have advantages such as flexibility, film formation, low cost, and safety compared to inorganic photoreceptors, and further improvements in sensitivity and durability due to the variety of materials. Is underway. Most of the organic photoreceptors are multi-layer photoreceptors in which functions are separated into a charge generation layer and a charge transport layer. In general, in a multilayer organic photoreceptor, a charge generation layer containing a charge generation material such as a pigment or a dye and a charge transport layer containing a charge transport material such as hydrazone or triphenylamine are sequentially formed on a conductive substrate. In view of the nature of the electron transporting charge transporting substance, it becomes a hole transfer type and has sensitivity when the surface of the photoreceptor is negatively charged. However, with negative charging, corona discharge used during charging is more unstable than with positive charging, and ozone and nitrogen oxides are generated. These adsorb on the surface of the photoconductor, causing physical and chemical degradation. There is a problem that it is easy to cause, and further worsens the environment. From this point of view, the positively charged type photoconductor having a greater degree of freedom of use conditions than the negatively charged photoconductor has a wider application range and is advantageous.
[0005]
Therefore, various photoreceptors for use with positive charging have been proposed. For example, a method in which a charge generation material and a charge transport material are simultaneously dispersed in a resin binder and used as a single photosensitive layer has been proposed and partially put into practical use. However, this is not sensitive enough to be applied to a high-speed machine, and further improvement is necessary from the viewpoint of repeatability. In order to achieve a function-separated layered structure for the purpose of increasing sensitivity, a method of forming a photoconductor by laminating a charge generation layer on a charge transport layer and using it in a positive charge can be considered. However, in this method, since the charge generation layer is formed on the surface, there is a problem in stability during repeated use due to corona discharge, light irradiation, mechanical wear, and the like. In this case, it has been proposed to further provide a protective layer on the charge generation layer. However, although mechanical wear is improved, there are problems such as a reduction in electrical characteristics such as sensitivity.
[0006]
Furthermore, a method of forming a photoconductor by laminating an electron transporting charge transport layer on a charge generation layer has also been proposed. As the electron transporting material, 2,4,7-trinitro-9-fluorenone and the like are known, but this substance has carcinogenicity and has a safety problem. In addition, cyano compounds and quinone compounds have been proposed in Patent Literature 1 to Patent Literature 4 and the like, but the actual situation is that a compound having an electron transport ability sufficient for practical use has not been obtained.
[0007]
[Patent Document 1]
JP 50-131941 A [Patent Document 2]
JP-A-6-59483 [Patent Document 3]
JP-A-6-123986 [Patent Document 4]
Japanese Patent Laid-Open No. 9-190003
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to solve the above-described problems and use a new compound that has not been used as an electron transporting charge transport material in the photosensitive layer, thereby enabling high sensitivity copying machines and printers. An object of the present invention is to provide a positively charged electrophotographic photoreceptor.
[0009]
[Means for Solving the Problems]
In order to solve the above-described object, the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor in which a photosensitive layer containing a charge generating substance and a charge transporting substance is provided on a conductive substrate. The following general formula (I),
Figure 2005037476
(In the formula (I), R 1 , R 2 and R 3 are the same or different and each has a hydrogen atom, a halogen atom or an optionally substituted alkyl group or substituent having 1 to 8 carbon atoms. R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, X represents a sulfur atom or an oxygen atom, n represents an integer of 1 to 3, and n is 2 or Each of R 2 and R 3 in the case of 3 may be different from each other).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Specific examples of the compound represented by the general formula (I) are shown in the following structural formulas (I-1) to (I-15), but the present invention is not limited to these compounds.
[0011]
Figure 2005037476
[0012]
Figure 2005037476
[0013]
The compound of the general formula (I) according to the present invention can be synthesized by a usual method. For example, the compound represented by the structural formula (I-1) is represented by the following structural formulas (II) and (III),
Figure 2005037476
Can be easily synthesized by dehydration with a suitable catalyst (for example, p-toluenesulfonic acid).
[0014]
Hereinafter, a specific configuration of a preferred example of the photoreceptor of the present invention will be described in detail with reference to the drawings.
1 and 2 are schematic cross-sectional views showing various configuration examples of the photoreceptor. In each figure, reference numeral 1 is a conductive substrate, 2 and 5 are photosensitive layers, 3 is a charge generation layer, 4 is a charge transport layer, and 6 is a coating layer.
[0015]
FIG. 1 shows a configuration generally referred to as a single-layer type photoreceptor, and a photosensitive layer 2 in which a charge generating substance and a charge transporting substance are dispersed in a resin binder (binder) on a conductive substrate 1. Is provided. Moreover, the coating layer 6 can also be provided as needed.
[0016]
The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating substance in a solution in which a charge transporting substance and a resin binder are dissolved, and applying this dispersion onto a conductive substrate. Furthermore, if necessary, a coating layer can be formed by coating.
[0017]
FIG. 2 shows a configuration generally referred to as a multi-layer photoreceptor, and a charge generation layer 3 mainly composed of a charge generation material and a charge transport layer 4 containing a charge transport material on a conductive substrate 1. Is provided.
[0018]
The photoreceptor shown in FIG. 2 is obtained by vacuum-depositing a charge generation material on a conductive substrate, or applying and drying a dispersion obtained by dispersing charge generation material particles in a solvent or resin binder. The charge generation layer can be formed by forming a charge transport layer by applying and drying a solution in which a charge transport material and a resin binder are dissolved.
[0019]
Although not shown, an undercoat layer can be provided between the conductive substrate and the photosensitive layer in any type of photoreceptor. The undercoat layer can be provided as necessary for the purpose of preventing injection of unnecessary charges from the conductive substrate to the photosensitive layer, covering defects on the substrate surface, and improving the adhesion of the photosensitive layer. It consists of a layer as a component and an oxide film such as alumite.
[0020]
In addition, any type of the photoreceptor of the present invention contains at least one of the compounds having an electron transport property according to the present invention represented by the general formula (I) as a charge transport material in the photosensitive layer.
[0021]
Hereinafter, a specific embodiment of the photoreceptor of the present invention will be described with respect to the multilayer photoreceptor shown in FIG. 2, but the present invention is not limited to the following specific examples.
[0022]
The conductive substrate 1 serves as a support for each of the other layers as well as serving as an electrode of the photoreceptor, and may be any of a cylindrical shape, a plate shape, and a film shape. A metal or a material obtained by conducting a conductive treatment on glass, resin, or the like can be used.
[0023]
The charge generation layer 3 is formed by applying a material in which particles of a charge generation material are dispersed in a resin binder as described above, or by vacuum evaporation, and generates charge by receiving light. . In addition, since the charge generation efficiency is high, the injection property of the generated charges into the charge transport layer 4 is important, and it is desirable that the injection is good even in a low electric field with little electric field dependency.
[0024]
As the charge generation material, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, pigments or dyes such as various azo, quinone, indigo, cyanine, squarylium, azurenium and pyrylium compounds, selenium or selenium compounds, etc. are used for image formation. A suitable substance can be selected according to the light wavelength region of the exposure light source used for the above. Since the charge generation layer only needs to have a charge generation function, the film thickness is determined by the light absorption coefficient of the charge generation material, and is generally 5 μm or less, and preferably 2 μm or less. In addition, the charge generation layer can be used by mainly using a charge generation material and adding a charge transport material or the like to the charge generation material.
[0025]
As the resin binder for the charge generation layer, polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, phenoxy resin, polyvinyl butyral, diallyl phthalate resin, methacrylic ester polymer and copolymer may be used in appropriate combination. Is possible.
[0026]
The charge transport layer 4 is a coating film in which a charge transport material is dispersed in a resin binder. The charge transport layer 4 retains the charge of the photoreceptor as an insulator layer in the dark, and transports the charge injected from the charge generation layer when receiving light. Demonstrate the ability to As described above, in the present invention, as the charge transport material, it is necessary to contain at least one kind of the compound having an electron transport property represented by the general formula (I) according to the present invention. A charge transport material may be included. The preferred amount of addition of the compound according to the present invention is preferably 10 to 60% by weight, more preferably 15 to 50% by weight, based on the entire material contained in the charge transport layer.
[0027]
As the resin binder for the charge transport layer, polycarbonate, polyester, polystyrene, methacrylic ester polymers and copolymers, and the like can be used. Further, for the purpose of preventing ozone deterioration, which is an obstacle to use when using a photoreceptor, an antioxidant such as amine, phenol, sulfur, phosphite, or phosphorus is added to the charge transport layer 6. It is also possible to contain.
[0028]
The coating layer 6 shown in FIG. 1 has a function of receiving and holding the electric charge of corona discharge in a dark place, and has a capability of transmitting light sensitive to the photosensitive layer, and transmits light during exposure. Thus, it is necessary to reach the photosensitive layer and neutralize and extinguish the surface charge upon receiving the generated charge injection. As a material for the coating layer, an organic insulating film forming material such as polyester or polyamide can be applied as an organic material. In addition, these organic materials can be used in combination with a glass resin, an inorganic material such as SiO 2, or a material that reduces electrical resistance, such as a metal or a metal oxide. As the inorganic material, a layer formed by a vapor deposition method such as an amorphous silicon-carbon (SiC) composite film coating layer or the like can be used. As described above, it is desirable that the coating material be as transparent as possible in the wavelength range of the light absorption maximum of the charge generation material.
[0029]
The film thickness of the coating layer itself depends on the blend composition of the coating layer, but can be arbitrarily set within a range where no adverse effect such as an increase in residual potential occurs when it is repeatedly used continuously.
[0030]
Even in the case of the single-layer type photoreceptor shown in FIG. 1, it is necessary to include in the photosensitive layer 2 at least one of the compounds having an electron transporting property according to the present invention represented by the general formula (I). However, the other materials and the like can be the same as those of the above-described laminated photoreceptor, and are not particularly limited. Preferably, a hole transport material is contained together with the compound represented by the general formula (I) as a charge transport material.
As the hole transport material, a benzidine derivative, a triphenylamine derivative, or the like is preferable. In this case, these preferred addition amounts are preferably 10 to 60% by weight, more preferably 15 to the compound according to the present invention with respect to the entire material contained in the photosensitive layer forming coating film. It is 50% by weight, and the hole transport material is preferably 10 to 60% by weight, and more preferably 20 to 50% by weight.
[0031]
In addition, silicone oil can be added as a leveling material to the surface layer of the photoreceptor (a coating layer when a coating layer is provided, or a photosensitive layer that is the outermost layer when a coating layer is not provided), or lubricity can be increased. For the purpose of imparting, it is possible to contain silicon or fluorine-containing polymers such as silicone oil, fluororesin fine particles such as tetrafluoroethylene, silicone resin fine particles, and fluorine-based comb type graft polymer.
[0032]
【Example】
Examples of the present invention will be described below.
Example 1
20 parts by weight of X-type metal-free phthalocyanine (H 2 Pc) and 100 parts by weight of the compound represented by the structural formula (I-1) are added to 100 parts of a polyester resin (trade name: Byron 200, manufactured by Toyobo Co., Ltd.) A coating solution is prepared by kneading with a mixer and a tetrahydrofuran (THF) solvent for 3 hours to prepare a coating solution, and the film thickness after drying is 15 μm on an aluminum drum having an outer diameter of 30 mm and a length of 260 mm as a conductive substrate. The photosensitive layer was formed by coating in the manner described above to produce a single layer type photoreceptor.
[0033]
Example 2
2 parts by weight of X-type metal-free phthalocyanine (H 2 Pc), 40 parts by weight of the compound represented by the structural formula (I-3),
Figure 2005037476
A coating solution was prepared by kneading 60 parts by weight of a benzidine derivative represented by the above and 100 parts by weight of a polycarbonate resin (trade name: PCZ-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a methylene chloride for 3 hours. On the aluminum support, a photosensitive layer was formed by coating so that the film thickness after drying was 20 μm, and a single layer type photoreceptor was produced.
[0034]
Example 3
2 parts by weight of titanyl phthalocyanine (TiOPc), 40 parts by weight of the compound represented by the structural formula (I-4),
Figure 2005037476
60 parts by weight of a benzidine derivative represented by the above and 100 parts by weight of a polycarbonate resin (trade name: BP-PC, manufactured by Idemitsu Kosan Co., Ltd.) are kneaded with a methylene chloride for 3 hours to prepare a coating solution, On the aluminum support, a photosensitive layer was formed by coating so that the film thickness after drying was 20 μm, and a single layer type photoreceptor was produced.
[0035]
Example 4
In Example 3, instead of titanyl phthalocyanine, the following formula:
Figure 2005037476
In the same manner as in Example 3, except that the squarylium compound represented by the formula (I-4) was used, and the compound represented by the structural formula (I-5) was used instead of the compound represented by the structural formula (I-4). A single layer type photoreceptor was produced.
[0036]
Example 5
70 parts by weight of titanyl phthalocyanine (TiOPc) and 30 parts by weight of a vinyl chloride copolymer (trade name: MR-110, manufactured by Nippon Zeon Co., Ltd.) are kneaded together with methylene chloride for 3 hours using a mixer to obtain a coating solution. The charge generation layer was formed by coating the aluminum support so that the film thickness after drying was 1 μm. Next, 100 parts by weight of the compound represented by the structural formula (I-6), 100 parts by weight of a polycarbonate resin (trade name: PCZ-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.), and 0.1 parts by weight of silicone oil Were mixed with methylene chloride to prepare a coating solution, and applied on the charge generation layer so that the film thickness after drying was 7 μm to form a charge transporting layer, thereby producing a multilayer photoreceptor.
[0037]
Example 6
In Example 3, instead of titanyl phthalocyanine, the following structural formula:
Figure 2005037476
In the same manner as in Example 3 except that the compound represented by the structural formula (I-7) was used instead of the compound represented by the structural formula (I-4), and the bisazo pigment represented by the structural formula (I-4) was used. A single layer type photoreceptor was produced.
[0038]
Example 7
In Example 3, instead of titanyl phthalocyanine, the following structural formula:
Figure 2005037476
In the same manner as in Example 3 except that the compound represented by the structural formula (I-3) was used instead of the compound represented by the structural formula (I-4). A single layer type photoreceptor was produced.
[0039]
The electrophotographic characteristics of the photoreceptors of Examples 1 to 7 thus obtained were measured as shown below.
The initial surface potential when the photoconductor surface was positively charged by performing +4.5 kV corona discharge in a dark place was set to Vs (V), and then the corona discharge was stopped and held in the dark place for 5 seconds. Time surface potential Vd (V) is measured, and then the time (seconds) until Vd is halved by irradiating the photosensitive member surface with white light having an illuminance of 100 lux is obtained, and sensitivity E l / 2 ( 1 ux · s). The surface potential when irradiated with white light having an illuminance of 100 lux for 10 seconds was defined as a residual potential Vr (V). In addition, since the photoconductors of Examples 1 to 5 can be expected to have high sensitivity with long wavelength light, the electrophotographic characteristics when using monochromatic light with a wavelength of 780 nm were also measured at the same time. That is, the same measurement was performed up to Vd, and then a 1 μW monochromatic light (780 nm) was irradiated instead of white light to determine the half-attenuated exposure amount, and the sensitivity (μJ / cm 2 ) was obtained. Further, the residual potential Vr (V) when this light was irradiated on the surface of the photoreceptor for 10 seconds was measured. These measurement results are shown in Table 1 below.
[0040]
[Table 1]
Figure 2005037476
[0041]
【The invention's effect】
As described above, according to the present invention, in the photosensitive layer provided on the conductive substrate, the compound having the electron transport property represented by the general formula (I) is used as the charge transport material. It has become possible to obtain a photoreceptor having high sensitivity and excellent electrical characteristics in positive charging. As the charge generation material, a suitable material can be selected according to the type of exposure light source. By using a phthalocyanine compound, a squarylium compound, a bisazo compound, etc., a photosensitive material that can be suitably used for a semiconductor laser printer or a copying machine. You can get a body. Furthermore, it is possible to improve durability by installing a coating layer on the surface as necessary.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing a structural example of a photoreceptor of the present invention.
FIG. 2 is a conceptual cross-sectional view showing another configuration example of the photoconductor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Photosensitive layer 3 Charge generation layer 4 Charge transport layer 5 Photosensitive layer (lamination)
6 Coating layer

Claims (1)

導電性基体上に電荷発生物質および電荷輸送物質を含有する感光層を設けた電子写真用感光体において、該感光層が、下記一般式(I)、
Figure 2005037476
(式(I)中、R、RおよびRは、同一または異なって、夫々水素原子、ハロゲン原子、置換基を有してもよい炭素数1〜8のアルキル基または置換基を有してもよいアリール基を表し、Rは水素原子または炭素数1〜8のアルキル基を表し、Xは硫黄原子あるいは酸素原子を表し、nは1〜3の整数を表し、nが2または3の場合の夫々のRおよびRは互いに異なっていてもよい)で示される化合物の少なくとも一種を含有することを特徴とする電子写真用感光体。
In the electrophotographic photoreceptor in which a photosensitive layer containing a charge generation material and a charge transport material is provided on a conductive substrate, the photosensitive layer has the following general formula (I),
Figure 2005037476
(In the formula (I), R 1 , R 2 and R 3 are the same or different and each has a hydrogen atom, a halogen atom or an optionally substituted alkyl group or substituent having 1 to 8 carbon atoms. R 4 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, X represents a sulfur atom or an oxygen atom, n represents an integer of 1 to 3, and n is 2 or And R 2 and R 3 in the case of 3 may be different from each other).
JP2003197697A 2003-07-16 2003-07-16 Electrophotographic photoreceptor Pending JP2005037476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197697A JP2005037476A (en) 2003-07-16 2003-07-16 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197697A JP2005037476A (en) 2003-07-16 2003-07-16 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2005037476A true JP2005037476A (en) 2005-02-10

Family

ID=34207750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197697A Pending JP2005037476A (en) 2003-07-16 2003-07-16 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2005037476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128544A (en) * 2007-11-21 2009-06-11 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic cartridge, image forming apparatus and image forming method
WO2010104118A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Branched compound, and organic thin film and organic thin film element each comprising same
WO2010104131A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Conjugated compound, and organic thin film and organic thin film element each comprising same
CN114560789A (en) * 2018-10-09 2022-05-31 宁波卢米蓝新材料有限公司 Compound containing polycyclic ring, application and organic electroluminescent device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128544A (en) * 2007-11-21 2009-06-11 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic cartridge, image forming apparatus and image forming method
WO2010104118A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Branched compound, and organic thin film and organic thin film element each comprising same
WO2010104131A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Conjugated compound, and organic thin film and organic thin film element each comprising same
CN114560789A (en) * 2018-10-09 2022-05-31 宁波卢米蓝新材料有限公司 Compound containing polycyclic ring, application and organic electroluminescent device
CN114560789B (en) * 2018-10-09 2023-12-19 宁波卢米蓝新材料有限公司 Compound containing multiple rings, application and organic electroluminescent device

Similar Documents

Publication Publication Date Title
JP3717320B2 (en) Electrophotographic photoreceptor
JP3666262B2 (en) Electrophotographic photoreceptor
US6268095B1 (en) Photoconductor for electrophotography
JP2005037476A (en) Electrophotographic photoreceptor
JP4228334B2 (en) Electrophotographic photoreceptor
JP3781362B2 (en) Electrophotographic photoreceptor
JP2001066805A (en) Electrophotographic photoreceptor
JP2001022107A (en) Electrophotographic photoreceptor
JP2002062673A (en) Electrophotographic photoreceptor
JP2001215742A (en) Electrophotographic photoreceptor
JPH1184695A (en) Electrophotographic photoreceptor
JP3937336B2 (en) Quinomethane compound, electrophotographic photoreceptor and electrophotographic apparatus
JP2004325587A (en) Electrophotographic photoreceptor
JPH10282699A (en) Electrophotographic photoreceptor
JP2000330306A (en) Electrophotographic photoreceptor
JP2001142239A (en) Electrophotographic photoreceptor
JP2003029436A (en) Electrophotographic photoreceptor
JP2002278112A (en) Electrophotographic photoreceptor
JP2005122044A (en) Electrophotographic photoreceptor
JPH1069106A (en) Electrophotographic photoreceptor
JP2005024871A (en) New quinone compound, electrophotographic photoreceptor and electrophotographic apparatus
JP2005035901A (en) New cyano compound, electrophotographic photoreceptor and electrophotographic apparatus
JP2000242009A (en) Electrophotographic photoreceptor
JPH10232502A (en) Electrophotographic photoreceptor
JP2003076046A (en) Electrophotographic photoreceptor