JP3666121B2 - Grinding method - Google Patents

Grinding method Download PDF

Info

Publication number
JP3666121B2
JP3666121B2 JP14451296A JP14451296A JP3666121B2 JP 3666121 B2 JP3666121 B2 JP 3666121B2 JP 14451296 A JP14451296 A JP 14451296A JP 14451296 A JP14451296 A JP 14451296A JP 3666121 B2 JP3666121 B2 JP 3666121B2
Authority
JP
Japan
Prior art keywords
grindstone
grinding
workpiece
width
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14451296A
Other languages
Japanese (ja)
Other versions
JPH09323243A (en
Inventor
賀生 若園
久修 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP14451296A priority Critical patent/JP3666121B2/en
Publication of JPH09323243A publication Critical patent/JPH09323243A/en
Application granted granted Critical
Publication of JP3666121B2 publication Critical patent/JP3666121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、円筒部に隣接して段部を有する工作物の端面を研削する研削方法に関するものである。
【0002】
【従来の技術】
研削部の幅よりも小さい幅の砥石を用いて円筒部に隣接して段部を有する工作物、例えばクランクシャフトのジャーナル部とその両端面を研削する場合には、砥石の外周面でジャーナル部を研削するとともに、工作物の軸線方向に砥石を移動させて砥石の両端面でジャーナル部の両端面の研削を行う。
【0003】
この場合、予め砥石の幅寸法データを記憶しておき、ジャーナル部の仕上げ寸法と砥石の幅寸法データの差から研削時の砥石の移動量を求めて研削を行っているので、砥石の幅寸法データを正確に管理しないと高精度な端面研削を行うことができない。
砥石の両端面により端面研削を繰り返すと砥石の両端面は少しずつ摩耗し、記憶されている砥石の幅寸法データと実際の幅寸法が一致しなくなり、やがては仕上げ寸法が公差に収まらなくなるので、従来は、接触検知によるツルーイングによって予め記憶されている砥石の幅寸法データの更新を行い、更新された砥石の幅寸法データを用いて次回の端面研削を行っている。つまり、ツルーイングの前後に接触検知を行って求めた砥石端面位置の差からツルーイング後の砥石幅の減少量を求め、砥石の幅寸法データを更新するようにしている。そして、工作物の仕上げ寸法が公差に収まる範囲のある一定数の工作物を研削後、ツルーイングを行うようにしている。
【0004】
【発明が解決しようとする課題】
仕上げ寸法の公差が厳しい工作物を研削する場合には、ツルーイング終了後、次回のツルーイングまでの間(以下、ツルーイングインターバルと称する)に、仕上げ寸法が公差に収まらなくなることがあるので、これを防ぐためにツルーイングインターバルを短くして、仕上げ寸法が公差に収まらなくなる前に次のツルーイングを行えばよい。しかしながら、CBN砥石はその砥石層が薄いため、ツルーイングインターバルを短くしてツルーイングの頻度を増すと、砥石寿命が短くなり、高価なCBN砥石ではツールコストが増大するという問題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、請求項1のものについては、予め記憶された砥石の幅寸法データを用いて、砥石の両端面により工作物の両端面の研削を行い、研削した前記工作物の両端面間の距離を測定し、この測定した距離に基づいて前記予め記憶された砥石の幅寸法データを補正し、補正した砥石の幅寸法データと測定した工作物の両端面間の距離に基づいて、次回の端面研削時における砥石と工作物の相対移動量を求めるようにしたことを特徴とする。
【0006】
請求項2のものについては、予め記憶された砥石の幅寸法データを用いて、砥石の両端面により工作物の両端面の研削を行い、研削した前記工作物の両端面間の距離を測定し、この両端面間の距離および、前記研削時における砥石と工作物の相対移動量の差に基づいて現在の砥石の幅寸法を演算し、前記予め記憶された砥石の幅寸法データを前記現在の砥石の幅寸法に更新し、更新した現在の砥石の幅寸法データと測定した工作物の両端面間の距離に基づいて、次回の端面研削時における砥石と工作物の相対移動量を求めるようにしたことを特徴とするものである。
【0007】
(作用)
請求項1においては、予め記憶された砥石の幅寸法データを用いて工作物の端面研削を行い、研削した両端面間の距離を測定する。そして、測定した距離に基づいて予め記憶された砥石の幅寸法データを補正し、そのデータを用いて次回の端面研削を行う。
【0008】
請求項2においては、予め記憶された砥石の幅寸法データを用いて工作物の端面研削を行い、研削した両端面間の距離を測定する。そして、この測定値および端面研削時の砥石と工作物の相対移動量の差から予め記憶された砥石の幅寸法データを更新し、そのデータを用いて次回の端面研削を行う。
【0009】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づいて説明する。
図1において、ベッド10には第1サーボモータ16により図中上下方向(X軸)に進退移動される砥石台14と、第2サーボモータ18により図中左右方向(Z軸)に往復移動されるテーブル11とが設けられている。
【0010】
砥石台14には砥石駆動用モータ15により回転駆動される砥石24がZ軸と平行な軸線回りに回転可能に支持されている。この砥石24は図2に示すように円板24bの外周に超硬質のCBN砥粒の砥石層24aが設けられており、外周面である第1砥石面25aと両端面である第2砥石面25bおよび第3砥石面25cから成っている。そして、砥石24の幅は後述の工作物Wの研削幅よりも小さい幅に設定されている。
【0011】
また、砥石台14には端面測定装置60が取付けられており、端面測定装置60は測定対象と接触して接触信号を出すためのプローブ61と、プローブ61を支持する測定ヘッド62とから成り、研削中は他の部品との干渉を避けるため、旋回モータ63によりZ軸と平行なO軸回りに旋回して図中点線の位置に退避される。
【0012】
テーブル11には主軸台13と心押台12が対向して設けられており、クランクシャフト等の工作物Wが主軸台センタ13aと心押台センタ12aに両端を支持されている。この工作物Wは図略の主軸駆動用モータにより回転駆動される主軸13bに取付けられた駆動ピン13cによって回転駆動されるようになっている。
【0013】
主軸台13には砥石修正装置40と接触検知装置50が設けられている。砥石修正装置40にはツルア41が取付られており、ツルア41は図2に示すように、第1砥石面25a用の第1修正研削面41a、第2砥石面25b用の第2修正研削面41b、第3砥石面25c用の第3修正研削面41cにより構成され、ツルア駆動用モータ42によって回転駆動されるようになっている。
【0014】
接触検知装置50は、主軸台13にAEセンサ51を介して検知ピンヘッド52が取付られ、検知ピンヘッド52には図2に示すように第1砥石面25a用のX軸方向に突出した第1検知ピン53a、第2砥石面25bおよび第3砥石面25c用のZ軸方向に突出した第2検知ピン53bおよび第3検知ピン53cが設けられている。
【0015】
数値制御装置30はCPU31と、種々のプログラムやデータが記憶されたメモリ32と、インターフェース33、34とから構成されており、インターフェース33にはエンコーダ17、19、モータ駆動回路20、21が接続され、インターフェース34には入出力装置22、接触検知装置50の接触信号の増幅装置23、端面測定装置60が接続されている。前記メモリ32には研削プログラム、砥石修正プログラム、砥石の径および幅寸法データ(図2のR0およびL0)、段差データ(図2のH1、H2、H3)等が記憶されている。また、前記入出力装置22にはデータの入出力を行うキーボード、データの表示を行うCRT等の表示装置が備えられている。
【0016】
第1サーボモータ16と第2サーボモータ18に接続されている各モータ駆動装置20、21は、数値制御装置30から制御信号が入力されるように接続されており、第1サーボモータ16と第2サーボモータ18の各エンコーダ17、19は、砥石台14のX軸方向の位置およびテーブル11のZ軸方向の位置を検出し、それを数値制御装置30に入力するようになっている。
【0017】
上記構成の研削盤により、クランクシャフト等の工作物Wのジャーナル部Jとその両端面J1、J2を研削する場合には、予め砥石24の幅寸法データL0を記憶しておき、ジャーナル部Jの仕上げ寸法H0と砥石24の幅寸法データL0の差から研削時における砥石24の移動量(H0−L0)を求めて研削を行う。このようにして、予め記憶されている砥石24の幅寸法データL0を用いて砥石24の両端面25b、25cにより工作物Wの端面研削を繰り返すと、砥石24の両端面25b、25cが摩耗し、予め記憶されている砥石24の幅寸法データL0と実際の幅寸法が一致しなくなる。そして、やがてはデータ上での仕上げ寸法H0と実際に研削された寸法が一致しなくなり、実際の研削寸法が公差に収まらなくなり、工作物Wの端面研削が正確に行えなくなるので、砥石24の幅寸法データL0を正確に管理する必要がある。
【0018】
次に、この砥石24の幅寸法データL0を正確に管理して、高精度な端面研削を実施する方法について、図3、4に基づいて説明する。
まず、予め記憶されている砥石24の幅寸法データL0を用いて工作物Wのジャーナル部Jとその両端面J1、J2に対して、仕上げ寸法H0からある一定量研削代を残した試研削を行う。
【0019】
ジャーナル部Jとその両端面J1、J2の研削は、図4(a)に示すように、第2砥石面25bがジャーナル部Jの左端面J1の位置になるようにテーブル11は図1中で右方へ移動し、砥石台14はジャーナル部Jに対して所定量切込む位置(Z10)まで前進し、第2砥石面25bでジャーナル部Jの左端面J1を研削するとともに、第1砥石面25aでジャーナル部Jを研削する。そして、テーブル11はジャーナル部Jの右端面J2に対して第3砥石面25cが所定量切込む位置(Z11)まで移動し、第1砥石面25aでジャーナル部Jを研削するとともに、第3砥石面25cでジャーナル部Jの右端面J2を研削する。研削加工終了後、砥石台14は工作物Wから離れるように後退する。(ステップ130)
そして、CPU31においてこの研削時のテーブル11の移動量(A=Z11−Z10)が演算され、メモリ32に記憶される。(ステップ131)
次に、図4(b)に示すように、端面測定装置60により先程研削したジャーナル部Jの左右両端面J1、J2間の距離を測定する。つまり、端面測定装置のプローブ61がジャーナル部Jの左端面J1と対向する位置まで砥石台14が前進する。そして、テーブル11が図1中で右方向に移動し、プローブ61が左端面J1と当接して接触信号がONし、その接触信号がCPU31に入力され、その接触時点のテーブル11の位置(Z20)がメモリ32に記憶される。次に、テーブル11が図1中で左方向に移動し、プローブ61が右端面J2と当接して接触信号がONし、その接触信号がCPU31に入力され、その接触時点のテーブル11の位置(Z21)がメモリ32に記憶される。(ステップ132)
次に、CPU31においてこの測定時のテーブル11の位置から、研削後のジャーナル部Jの幅(H=Z21−Z20)が演算され、メモリ32に記憶される。(ステップ133)
そして、これらのデータを基に研削時の砥石24の幅寸法(L0=H−A)を演算し、新たな幅寸法データL0としてメモリ32に記憶する。(ステップ134)
そして、更新された砥石24の幅寸法L0を用いて、図4(a)と同様にして次回の端面研削を行う。(ステップ135)
以上のように、予め記憶されている砥石24の幅寸法データL0を用いて端面研削を行い、研削した両端面J1、J2間を端面測定装置60で測定し、この測定値と研削時のテーブル11の移動量から砥石24の幅寸法データL0を更新し、更新した幅寸法データL0を用いて次回の端面研削を行うようにしたので、砥石の幅寸法データを更新するためのツルーイングを行わなくても正確に砥石の幅寸法データを管理して高精度な端面研削ができるので、ツールコストが増大しない。
【0020】
なお、この実施の形態においては、試研削を行って砥石24の幅寸法データL0の更新をしたが、研削代を残さないで正規の研削を行い、砥石24の幅寸法データL0を更新しても同様な効果が得られる。
また、この実施の形態においては、クランクシャフトのジャーナル部などの内側に端面を有する工作物の端面研削について述べたが、図5(a)、(b)の形状のように外側に端面を有する工作物の寸法K1、K2の精度確保にも適用できる。
【0021】
【発明の効果】
以上述べたように本発明は、予め記憶された砥石の幅寸法データを用いて、砥石の両端面により工作物の両端面の研削を行い、研削した前記工作物の両端面間の距離を測定し、この測定した距離に基づいて前記予め記憶された砥石の幅寸法データを補正し、補正した砥石の幅寸法データと測定した工作物の両端面間の距離に基づいて、次回の端面研削時における砥石と工作物の相対移動量を求めるようにしたので、砥石の幅寸法データを更新するためのツルーイングを行わなくても正確に砥石の幅寸法データを管理して高精度な端面研削ができ、ツールコストが増大しない。しかも、特別な定寸装置を設けなくとも端面研削を高精度に行い得る。
【図面の簡単な説明】
【図1】本発明の実施の形態による研削盤の平面図である。
【図2】本発明の実施の形態における砥石修正装置と接触検知装置との関係説明図である。
【図3】本発明の実施の形態における研削方法のフローチャートである。
【図4】本発明の実施の形態における研削方法の説明図である。
【図5】本発明の他の実施の形態におけるフランジ部および軸部を有する工作物の形状を示す図である。
【符号の説明】
10 ベッド
11 テーブル
14 砥石台
24 砥石
30 数値制御装置
40 砥石修正装置
41 ツルア
50 接触検知装置
51 AEセンサ
53a〜53c 検知ピン
60 端面測定装置
61 プローブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grinding method for grinding an end face of a workpiece having a step portion adjacent to a cylindrical portion.
[0002]
[Prior art]
When grinding a workpiece having a stepped portion adjacent to the cylindrical portion using a grindstone having a width smaller than the width of the grinding portion, for example, the journal portion of the crankshaft and both end faces thereof, the journal portion is formed on the outer peripheral surface of the grindstone. In addition, the grindstone is moved in the axial direction of the workpiece, and the both end faces of the journal portion are ground by the both end faces of the grindstone.
[0003]
In this case, the grinding wheel width dimension data is stored in advance, and grinding is performed by obtaining the movement amount of the grinding wheel during grinding from the difference between the finishing dimension of the journal portion and the grinding wheel width dimension data. If the data is not managed accurately, high-precision end face grinding cannot be performed.
When end face grinding is repeated with both end faces of the grindstone, both end faces of the grindstone are gradually worn, and the width dimension data stored in the grindstone does not match the actual width dimension, and eventually the finished dimensions will not be within tolerance. Conventionally, the width dimension data of the grindstone stored in advance is updated by truing by contact detection, and the next end face grinding is performed using the updated width dimension data of the grindstone. That is, the reduction amount of the grindstone width after truing is obtained from the difference in the grindstone end face position obtained by performing contact detection before and after truing, and the width dimension data of the grindstone is updated. Then, truing is performed after grinding a certain number of workpieces within a range where the finished dimension of the workpiece is within tolerance.
[0004]
[Problems to be solved by the invention]
When grinding a workpiece with tight tolerances on the finished dimensions, the finished dimensions may not fit within the tolerance between the end of truing and the next truing (hereinafter referred to as the truing interval). In order to prevent this, the truing interval is shortened, and the next truing may be performed before the finished dimension does not fit within the tolerance. However, since the CBN grindstone has a thin grindstone layer, if the truing interval is shortened and the truing frequency is increased, the grindstone life is shortened, and the expensive CBN grindstone has a problem that the tool cost increases.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems. In the first aspect, the both end surfaces of the workpiece are ground by the both end surfaces of the grindstone using the preliminarily stored width dimension data of the grindstone. , Measure the distance between both end faces of the ground workpiece, correct the previously stored grinding wheel width dimension data based on the measured distance, and correct the corrected grinding wheel width dimension data and the measured workpiece The relative movement amount of the grindstone and the workpiece in the next end face grinding is obtained based on the distance between both end faces.
[0006]
With respect to the second aspect of the present invention, the width dimension data of the grindstone stored in advance is used to grind both end faces of the workpiece with the both end faces of the grindstone, and the distance between the both end faces of the ground workpiece is measured. The current wheel width dimension is calculated on the basis of the distance between the both end faces and the relative movement amount of the grindstone and the workpiece during the grinding, and the previously stored wheel width dimension data is calculated as the current wheel width dimension data. Updated to the wheel width dimension, and based on the updated current wheel width dimension data and the measured distance between both end faces of the workpiece, the relative movement between the wheel and the workpiece during the next end face grinding is calculated. It is characterized by that.
[0007]
(Function)
According to the first aspect, the end face grinding of the workpiece is performed using the preliminarily stored width dimension data of the grindstone, and the distance between the ground end faces is measured. Then, based on the measured distance, the width dimension data of the grindstone stored in advance is corrected, and the next end face grinding is performed using the data.
[0008]
According to the second aspect of the present invention, the end face grinding of the workpiece is performed using the preliminarily stored width dimension data of the grindstone, and the distance between the ground end faces is measured. Then, the width dimension data of the grindstone stored in advance is updated from the difference between the measured value and the relative movement amount of the grindstone and the workpiece during end face grinding, and the next end face grinding is performed using the data.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, a bed 10 is reciprocated in the horizontal direction (Z axis) in the drawing by a second servomotor 18 and a grindstone base 14 that is moved back and forth in the vertical direction (X axis) in the drawing by a first servo motor 16. The table 11 is provided.
[0010]
A grindstone 24 that is rotationally driven by a grindstone driving motor 15 is supported on the grindstone base 14 so as to be rotatable about an axis parallel to the Z axis. As shown in FIG. 2, the grindstone 24 is provided with a grindstone layer 24a of super hard CBN abrasive grains on the outer periphery of a disc 24b, and a first grindstone surface 25a as an outer peripheral surface and a second grindstone surface as both end surfaces. 25b and the 3rd grindstone surface 25c. And the width | variety of the grindstone 24 is set to the width | variety smaller than the grinding width of the workpiece W mentioned later.
[0011]
Further, an end face measuring device 60 is attached to the grindstone table 14, and the end face measuring device 60 is composed of a probe 61 for contacting the measurement object and outputting a contact signal, and a measuring head 62 for supporting the probe 61. During grinding, in order to avoid interference with other parts, the turning motor 63 turns around the O axis parallel to the Z axis and is retracted to the position of the dotted line in the figure.
[0012]
The table 11 is provided with a headstock 13 and a tailstock 12 facing each other, and a workpiece W such as a crankshaft is supported at both ends by the spindle base 13a and the tailstock center 12a. The workpiece W is rotationally driven by a drive pin 13c attached to a main shaft 13b that is rotated by a main shaft driving motor (not shown).
[0013]
The headstock 13 is provided with a grindstone correcting device 40 and a contact detection device 50. A tourer 41 is attached to the grindstone correcting device 40. As shown in FIG. 2, the tourer 41 has a first corrected grinding surface 41a for the first grinding wheel surface 25a and a second modified grinding surface for the second grinding wheel surface 25b. 41b, a third modified grinding surface 41c for the third grindstone surface 25c, and is rotationally driven by a truer driving motor 42.
[0014]
In the contact detection device 50, a detection pin head 52 is attached to the headstock 13 via an AE sensor 51, and the detection pin head 52 protrudes in the X-axis direction for the first grindstone surface 25a as shown in FIG. A second detection pin 53b and a third detection pin 53c projecting in the Z-axis direction for the pin 53a, the second grindstone surface 25b, and the third grindstone surface 25c are provided.
[0015]
The numerical controller 30 includes a CPU 31, a memory 32 storing various programs and data, and interfaces 33 and 34. The interface 33 is connected to encoders 17 and 19 and motor drive circuits 20 and 21. The interface 34 is connected to the input / output device 22, the contact signal amplification device 23 of the contact detection device 50, and the end face measurement device 60. The memory 32 stores a grinding program, a grinding wheel correction program, grinding wheel diameter and width dimension data (R0 and L0 in FIG. 2), step data (H1, H2, and H3 in FIG. 2), and the like. The input / output device 22 includes a keyboard for inputting / outputting data and a display device such as a CRT for displaying data.
[0016]
The motor driving devices 20 and 21 connected to the first servo motor 16 and the second servo motor 18 are connected so that a control signal is input from the numerical control device 30. The encoders 17 and 19 of the two-servo motor 18 detect the position of the grindstone table 14 in the X-axis direction and the position of the table 11 in the Z-axis direction, and input them to the numerical controller 30.
[0017]
When the journal portion J of the workpiece W such as a crankshaft and its both end faces J1 and J2 are ground by the grinding machine having the above configuration, the width dimension data L0 of the grindstone 24 is stored in advance, and the journal portion J Grinding is performed by obtaining the moving amount (H0-L0) of the grinding wheel 24 during grinding from the difference between the finishing dimension H0 and the width dimension data L0 of the grinding wheel 24. Thus, when the end surface grinding of the workpiece W is repeated by the both end faces 25b, 25c of the grindstone 24 using the width dimension data L0 of the grindstone 24 stored in advance, the both end faces 25b, 25c of the grindstone 24 are worn. The width dimension data L0 of the grindstone 24 stored in advance does not match the actual width dimension. Eventually, the finish dimension H0 in the data and the actually ground dimension do not coincide with each other, the actual grinding dimension does not fall within the tolerance, and the end face grinding of the workpiece W cannot be performed accurately. It is necessary to manage the dimension data L0 accurately.
[0018]
Next, a method of accurately managing the width dimension data L0 of the grindstone 24 and performing high-precision end face grinding will be described with reference to FIGS.
First, trial grinding with a certain amount of grinding allowance from the finishing dimension H0 is performed on the journal portion J of the workpiece W and its both end faces J1 and J2 using the width dimension data L0 of the grindstone 24 stored in advance. Do.
[0019]
As shown in FIG. 4A, the table 11 is shown in FIG. 1 so that the second grindstone surface 25b is positioned at the left end surface J1 of the journal portion J. The wheel head 14 moves to the right, advances to a position (Z10) where a predetermined amount is cut with respect to the journal portion J, grinds the left end surface J1 of the journal portion J with the second grinding wheel surface 25b, and the first grinding wheel surface. The journal part J is ground by 25a. Then, the table 11 moves to the position (Z11) where the third grindstone surface 25c cuts by a predetermined amount with respect to the right end surface J2 of the journal portion J, and the third grindstone is ground with the first grindstone surface 25a. The right end surface J2 of the journal portion J is ground by the surface 25c. After the grinding process is completed, the grindstone table 14 moves backward away from the workpiece W. (Step 130)
Then, the CPU 31 calculates the amount of movement (A = Z11−Z10) of the table 11 during grinding and stores it in the memory 32. (Step 131)
Next, as shown in FIG. 4B, the distance between the left and right end faces J1 and J2 of the journal part J previously ground by the end face measuring device 60 is measured. That is, the grindstone base 14 advances to a position where the probe 61 of the end face measuring device faces the left end face J1 of the journal portion J. Then, the table 11 moves rightward in FIG. 1, the probe 61 comes into contact with the left end surface J1, the contact signal is turned on, the contact signal is input to the CPU 31, and the position of the table 11 at the time of contact (Z20) ) Is stored in the memory 32. Next, the table 11 moves to the left in FIG. 1, the probe 61 comes into contact with the right end surface J2, the contact signal is turned on, the contact signal is input to the CPU 31, and the position of the table 11 at the time of the contact ( Z21) is stored in the memory 32. (Step 132)
Next, the CPU 31 calculates the width (H = Z21−Z20) of the journal portion J after grinding from the position of the table 11 at the time of measurement, and stores it in the memory 32. (Step 133)
Based on these data, the width dimension (L0 = HA) of the grinding wheel 24 at the time of grinding is calculated and stored in the memory 32 as new width dimension data L0. (Step 134)
Then, using the updated width L0 of the grindstone 24, the next end face grinding is performed in the same manner as in FIG. (Step 135)
As described above, end surface grinding is performed using the preliminarily stored width dimension data L0 of the grindstone 24, the distance between the grounded both end surfaces J1 and J2 is measured by the end surface measuring device 60, and this measured value and the table at the time of grinding are measured. Since the width dimension data L0 of the grindstone 24 is updated from the amount of movement 11 and the next end face grinding is performed using the updated width dimension data L0, truing for updating the width dimension data of the grindstone is not performed. However, the tool cost is not increased because the edge width data of the grindstone can be accurately managed and the end face can be ground with high accuracy.
[0020]
In this embodiment, trial grinding is performed to update the width dimension data L0 of the grindstone 24. However, regular grinding is performed without leaving a grinding allowance, and the width dimension data L0 of the grindstone 24 is updated. The same effect can be obtained.
In this embodiment, the end face grinding of the workpiece having the end face on the inner side such as the journal portion of the crankshaft has been described. However, the end face is provided on the outer side as shown in FIGS. 5 (a) and 5 (b). It can also be applied to ensure the accuracy of the workpiece dimensions K1, K2.
[0021]
【The invention's effect】
As described above, the present invention grinds both end faces of a workpiece with both end faces of the grindstone using pre-stored width dimension data of the grindstone, and measures the distance between both end faces of the ground workpiece. and, the said corrected width data of previously stored grindstone on the basis of the measured distance, based on the distance between the end faces of the workpiece and the measured width data corrected grindstone, the next of the end face grinding Since the relative movement of the grinding wheel and workpiece in the machine is calculated, the width dimension data of the grinding wheel can be accurately managed and high-precision end grinding can be performed without performing truing to update the width dimension data of the grinding wheel. The tool cost does not increase. In addition, end surface grinding can be performed with high accuracy without providing a special sizing device.
[Brief description of the drawings]
FIG. 1 is a plan view of a grinding machine according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a relationship between a grindstone correcting device and a contact detection device according to an embodiment of the present invention.
FIG. 3 is a flowchart of a grinding method according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a grinding method according to an embodiment of the present invention.
FIG. 5 is a diagram showing the shape of a workpiece having a flange portion and a shaft portion in another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Bed 11 Table 14 Grinding wheel stand 24 Grinding wheel 30 Numerical control apparatus 40 Grinding wheel correction apparatus 41 Truer 50 Contact detection apparatus 51 AE sensors 53a-53c Detection pin 60 End surface measurement apparatus 61 Probe

Claims (2)

研削部の幅よりも小さい幅の砥石を用いて研削する研削方法において、予め記憶された砥石の幅寸法データを用いて、砥石の両端面により工作物の両端面の研削を行い、研削した前記工作物の両端面間の距離を測定し、この測定した距離に基づいて前記予め記憶された砥石の幅寸法データを補正し、補正した砥石の幅寸法データと測定した工作物の両端面間の距離に基づいて、次回の端面研削時における砥石と工作物の相対移動量を求めるようにしたことを特徴とする研削方法。In the grinding method of grinding using a grindstone having a width smaller than the width of the grinding part, using the grinding wheel width dimension data stored in advance, the both end faces of the workpiece are ground by the both end faces of the grindstone, and the ground The distance between both end faces of the workpiece is measured, and the width dimension data of the previously stored grindstone is corrected based on the measured distance, and the corrected width dimension data of the grindstone and the measured both end faces of the workpiece are corrected . A grinding method characterized in that a relative movement amount of a grindstone and a workpiece at the next end face grinding is obtained based on the distance . 研削部の幅よりも小さい幅の砥石を用いて研削する研削方法において、予め記憶された砥石の幅寸法データを用いて、砥石の両端面により工作物の両端面の研削を行い、研削した前記工作物の両端面間の距離を測定し、この両端面間の距離および、前記研削時における砥石と工作物の相対移動量の差に基づいて現在の砥石の幅寸法を演算し、前記予め記憶された砥石の幅寸法データを前記現在の砥石の幅寸法に更新し、更新した現在の砥石の幅寸法データと測定した工作物の両端面間の距離に基づいて、次回の端面研削時における砥石と工作物の相対移動量を求めるようにしたことを特徴とする研削方法。In the grinding method of grinding using a grindstone having a width smaller than the width of the grinding part, using the grinding wheel width dimension data stored in advance, the both end faces of the workpiece are ground by the both end faces of the grindstone, and the ground The distance between both end faces of the workpiece is measured, and the current width of the grindstone is calculated based on the distance between the both end faces and the difference in the relative movement amount of the grindstone and the work piece during the grinding, and is stored in advance. It has been updated the width data of the grinding wheel to the width of the current grinding wheel, based on the distance between the end faces of the workpiece and the measured width data of the updated current grinding wheel, the grinding wheel during the next end face grinding A grinding method characterized in that a relative movement amount of a workpiece is obtained .
JP14451296A 1996-06-06 1996-06-06 Grinding method Expired - Fee Related JP3666121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14451296A JP3666121B2 (en) 1996-06-06 1996-06-06 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14451296A JP3666121B2 (en) 1996-06-06 1996-06-06 Grinding method

Publications (2)

Publication Number Publication Date
JPH09323243A JPH09323243A (en) 1997-12-16
JP3666121B2 true JP3666121B2 (en) 2005-06-29

Family

ID=15364086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14451296A Expired - Fee Related JP3666121B2 (en) 1996-06-06 1996-06-06 Grinding method

Country Status (1)

Country Link
JP (1) JP3666121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911810B2 (en) * 2000-06-23 2012-04-04 コマツNtc株式会社 Workpiece grinding apparatus and grinding method
JP5962242B2 (en) * 2012-06-15 2016-08-03 日本精工株式会社 Grinding equipment

Also Published As

Publication number Publication date
JPH09323243A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JPH0241872A (en) Numerical control grinder
JPH0698568B2 (en) Method for grinding two or more cams on a camshaft
JP2007000945A (en) Grinding method and device
JPS62176758A (en) Super-polishing grinding working method and grinder
JPH01234151A (en) Numerically controlled grinder
JPH05111851A (en) Gear measuring method and gear grinder commonly used for gear measurement
JP3666121B2 (en) Grinding method
JPH11320402A (en) Grinding wheel shaping error correction method, grinding wheel shaping/straight groove molding grinding work error correction method and error correction device for them
JP2011045940A (en) Cylinder grinding method and device used for the same
EP0950214B1 (en) Method of controlling a machine tool
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JPH0911128A (en) Wheel correcting device
JP3627225B2 (en) Truing device for grinding wheel
JP3350784B2 (en) Cam grinding machine, cam grinding method using this grinding machine, and method for creating final cam grinding information in this grinding machine
JP2003071713A (en) Grinding apparatus and thickness managing method for wafer
JPH0521707B2 (en)
JP2002066918A (en) Profile correction grinding method in roll grinding processing and roll grinding processing control device
JPS63114877A (en) Grindstone processing device in numerically controlled grinder
JPH07164314A (en) Grinding wheel dimension measuring method and device in grinding machine
JPH0929628A (en) Measuring method and device for shape of grinding wheel of grinding device, and machining method using the method
JP3812869B2 (en) Cylindrical grinding method and apparatus
JPH11282519A (en) Numerical controller for grinder and grinding method
JP2539620Y2 (en) Numerically controlled grinding machine
JPS6215075A (en) Method for determining coordinates of nc grinder
JP3651082B2 (en) Grinding equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees