JP3665169B2 - Manufacturing method of high strength and high ductility tungsten alloy - Google Patents

Manufacturing method of high strength and high ductility tungsten alloy Download PDF

Info

Publication number
JP3665169B2
JP3665169B2 JP03442297A JP3442297A JP3665169B2 JP 3665169 B2 JP3665169 B2 JP 3665169B2 JP 03442297 A JP03442297 A JP 03442297A JP 3442297 A JP3442297 A JP 3442297A JP 3665169 B2 JP3665169 B2 JP 3665169B2
Authority
JP
Japan
Prior art keywords
strengthening
processing
strength
ductility
tungsten alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03442297A
Other languages
Japanese (ja)
Other versions
JPH10219414A (en
Inventor
肇 黒政
清隆 今下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP03442297A priority Critical patent/JP3665169B2/en
Publication of JPH10219414A publication Critical patent/JPH10219414A/en
Application granted granted Critical
Publication of JP3665169B2 publication Critical patent/JP3665169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タングステン合金を高強度化するとともに良好な延性が得られる高強度高延性タングステン合金の製造方法に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
W−Fe−Ni合金は、タングステンの性質を利用して、高強度で高延性の材料として、各種用途に使用されている。この合金は、通常は、85〜98重量%のタングステンと、残部がバインダーとなるNiとFeからなる粉末を調製、混合した後、CIP(冷間等方加工プレス)などによって成形体とした後に、バインダーの液相線温度以上に加熱して焼結することによって製造されている。また、用途によっては、図3に示すように、さらに強度を向上させるために、焼結合金にスエージング加工などの冷間または温間の加工強化を行い、さらに所望によりその後、後熱処理を行っている。
【0003】
しかし、上記の方法では、高強度化は可能であるものの逆に延性が大きく低下するため、高い強度とともに良好な延性が要求される用途では、上記処理が施された合金は機械的性質としては不十分であるという問題がある。
本発明は、上記事情を背景としてなされたものであり、強度、延性ともに優れたタングステン合金が得られる高強度高延性タングステン合金の製造方法を提供することを目的とする。
【0004】
上記課題を解決するため本発明のうち、第1の発明の高強度高延性タングステン合金の製造方法は、Wを重量%で85〜98%含有し、残部がNi、Feであるタングステン合金に、加工率(断面減少率)8〜14%とした冷間または温間加工により加工強化を与え、該加工強化後に1000〜1200℃の温度で中間熱処理を与え、さらに加工率(断面減少率)16〜22%とした冷間または温間加工により再加工強化を与え、該再加工強化後に後熱処理を施すことを特徴とする
【0006】
さらに、第2の発明の高強度高延性タングステン合金の製造方法は、第2の発明において、加工強化と再加工強化の加工率(断面減少率)の合計が30%以下であることを特徴とする。
【0007】
なお、本発明が適用されるタングステン合金は、通常は焼結体として提供されるものであり、各成分粉末または合金粉末により成形体を製作し、これを焼結することにより得られる。この際に使用される粉末としては、例えばW粉末、その他の成分粉末ともに、3〜5μmとするのが望ましい。これにより優れた強度と延性を得ることが一層可能になる。但し、上記焼結体を含め、上記加工強化等が施されるタングステン合金を得るまでの工程は適宜選択可能であり、本発明として特にその内容が限定されるものではない。
【0008】
次に、上記タングステン合金に与えられる加工強化および再加工強化に際しては、その加工の種別は特に限定されず、加工強化と再加工強化において加工の種別を変えることも可能である。加工種としては、例えば、押抜き加工、スエージ加工等が採用される。また、各加工は1回で行う他に複数パスで行ってもよく、1回以上の回数で適宜のパス数が選択される。なお、加工を温間加工で行う際には、通常は400〜600℃の温度範囲内で行う。
【0009】
なお、本系合金で最良の性能が得られる時の例えば引張り破壊形態は、W粒のへき開破壊とマトリックス相の延性破壊(デインプル模様を呈す)の混在である。
加工強化後、W粒の硬さを加工強化前の硬さまで落とさず、かつマトリックス相を加工強化前の硬さレベルまで落ちるような条件を選定して中間熱処理を施した後、再加工強化を施すことにより、マトリックス相は、その再加工強化の分だけ強化し、それに応じた十分な延性を受けもつと同時に、W粒の方は、再加工強化前の状態で既に強化されているため、その分だけ強度が増加する。
その結果、主として引張強さはW粒の強度に支配され、引張り伸び(延性)はマトリックス相の延性に支配されることから、常法に比べて、同じ延性レベルで比較すると高強度となり、見方を変えて、同じ強度レベルで比較すると高延性になる。本発明者らは従来例と異なる図3に示す工程手順を採用することにより、優れた強度および延性が確保されることを見出しており、さらには、以下の条件を定めることにより上記作用がより有効に得られることも見い出している。
【0010】
[各条件限定理由]
(1)加工強化の加工率(8〜14%)
加工強化時に8%以上の加工率を与えないと、W粒に十分な加工強化を与えられず、以降の工程の効果が十分に得られない。また、加工率が14%を越えると、W粒の変形が大きくなり過ぎて十分な延性が得られなくなる。
以上の理由で加工強化の加工率を8〜14%とするのが望ましく、同様の理由でさらに加工率の上限を10%とするのが一層望ましい。
なお、本明細書では上記加工率は、被加工材の断面減少率を意味しており、以下に記述する加工率も全て同様である。
【0011】
(2)中間熱処理温度(1000〜1200℃)
上記加工強化後、マトリックス相の硬さレベルを加工強化前と同等まで低下させるために、1000℃以上を必要とし、かつW粒の硬さレベルを加工強化前より高いレベルに確保するために1200℃以下であることが必要とされる。したがって、中間熱処理温度として1000〜1200℃が望ましいものとし、さらに同様の理由で1050〜1150℃を一層望ましいものとした。なお、上記作用を確実かつ効率的に得るためには、上記温度範囲における中間熱処理の処理時間を8〜12時間とするのが望ましい。
【0010】
(3)再加工強化の加工率(16〜22%)
被処理物の断面内の硬さ分布は、主に再加工強化時の加工率に支配される。したがって、被処理物の断面内が均一に加工され、結果として、硬さが分布を持たず均一になるためには再加工強化時の加工率を16%以上にする必要がある。
また、再加工強化時の加工率が22%を越えると、W粒の変形が大きくなり過ぎ、十分な延性が得られなくなる。
以上の理由で再加工強化の加工率を16〜22%とするのが望ましく、同様の理由でさらに加工率の下限を18%、上限を20%とするのが一層望ましい。
【0011】
(4)加工強化と再加工強化の加工率の合計(30%以下)
加工強化および再加工強化の加工率を上記範囲内に定めた場合でも、両者の合計が30%を越えると、W粒への変形力が大きくなり、上記と同様にW粒の変形が大きくなって延性が低下する傾向がある。このため、それぞれの加工率の規定に加え、両者の合計を30%以下とするのが望ましい。
【0012】
(5)後熱処理
再加工強化後の合金のままでは、その機械的性質のバラツキが大きいため、このバラツキをなくし、適切な強度と延性のバランスが得られるように、再加工強化後、後熱処理を施す。なお、上記作用を得るためには、後熱処理温度を350℃以上とするのが望ましく、一方、1000℃を越えると、強度が低下するため、後熱処理温度は、目的の強度レベル、延性レベルに応じて350〜1000℃の範囲内で選択するのが望ましい。また、後熱処理による作用を十分かつ効率的に得るために、処理時間は8〜12時間とするのが望ましい。
なお、高強度側を狙う場合に、強度と延性のバランスが最も良いのは350〜450℃の温度域で後熱処理を行う場合である。上記温度範囲での後熱処理は、例えば、130kgf/mm2以上の強度を必要とする場合に有効であり、この場合にも10%以上の延性(引張伸び)が確保される。
また、低強度側でかつ延性の高いレベルを狙う場合に、強度と延性のバランスが最も良いのは800〜1000℃の温度域で後熱処理を行う場合である。この温度範囲での加熱は、例えば17%以上(引張伸び)の延性を必要とする場合に有効であり、この場合にも104〜128kgf/mm2の強度が確保される。
【0013】
【発明の実施の形態】
以下に本発明の一実施形態を図1のフローチャートを用いて説明する。
常法により製造した平均粒径約5μmのW粉末93重量%と、平均粒径約5μmのNiおよびFe粉末7重量%(ただし、Ni:Fe重量比が7/3)とを混合し(工程P1)、これを所定形状のゴム袋に充填して、静水圧成型によって圧縮して、50mm径の棒状圧粉体を得る(工程P2)。この圧粉体には必要に応じて機械加工を施し、次いで、予備焼結(工程P3)、本焼結(工程P4)を行う。
予備焼結は、圧粉体を1300〜1400℃に加熱し、4時間保持することにより行い、本焼結は、予備焼結後の圧粉体を1460〜1550℃に加熱し、1時間保持して行う。得られた焼結体には、1100℃×10時間の熱処理を行い(工程P5)、その後、必要な機削りを冷間で行う(工程P6)。
その後、本発明における加工強化法として押抜き加工を加工率8〜14%の範囲内で実施し(工程P7)、その後、1000〜1200℃の範囲内の温度で中間熱処理を施し(工程P8)、さらに再加工強化法として、加工率16〜22%の範囲内でスエージング加工を行い(工程P9)、その後、最後に350〜1000℃の範囲内の温度で後熱処理を施す(工程P10)。
【0014】
【実施例】
上記実施形態に示す焼結体を使用して、加工強化および再加工強化の加工率と、中間熱処理および後熱処理の温度、時間を表1に示す条件に選定し、上記実施形態と同様の手順により本発明の試験材(発明材)を得た。また、比較のため、加工強化した後、直ちに後熱処理を行ったもの(従来材に相当)と、上記加工率等の条件を発明の範囲外としたものを比較材として用意した。
上記により得られた発明材および比較材について引張試験を行い、その引張強度と引張伸びを表1に合わせた示した。また、これら数値を両者の関係において図2に示した。
【0015】
【表1】

Figure 0003665169
【0016】
表1及び図2から明らかなように、本発明材は、比較材に比べて強度、伸びが高い傾向を有しており、例えば、同一強度であれば、本発明材は比較材よりも高い伸び(延性)を示し、同一の伸びであれば、本発明材は比較材よりも高い強度を示している。したがって、本発明法によれば、タングステン合金の強度、延性が優れ、かつ両者が良好にバランスしていることが明らかになっている。
【0017】
【発明の効果】
以上説明したように、本発明の高強度高延性タングステン合金の製造方法によれば、Wを重量%で85〜98%含有し、残部がNi,Feを主成分としたタングステン合金に、加工強化・中間熱処理・再加工強化・後熱処理の処理を与えるので、高い強度が得られるとともに良好な延性が確保され、高強度高延性のタングステン合金が得られる。
【0018】
また、加工強化を加工率(断面減少率)8〜14%とした冷間または温間加工により与え、かつ該加工強化後の中間熱処理温度を1000〜1200℃とし、さらに再加工強化を加工率(断面減少率)16〜22%とした冷間または温間加工により与え、かつ該再加工強化後に後熱処理を施せば、上記効果がより確実になり、またその効果も増大する。
さらに、加工強化と再加工強化の加工率(断面減少率)の合計を30%以下とすれば、良好な延性をより確実に確保することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態におけるフローチャートを示す図である。
【図2】 同じく実施例における引張強さと引張伸びを示すグラフである。
【図3】 本発明法および従来法の概略フローチャートを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength and highly ductile tungsten alloy that can increase the strength of a tungsten alloy and obtain good ductility.
[0002]
[Background Art and Problems to be Solved by the Invention]
W-Fe-Ni alloys are used in various applications as materials having high strength and high ductility by utilizing the properties of tungsten. This alloy is usually prepared by mixing and mixing 85-98% by weight of tungsten and the balance of Ni and Fe, the balance being binder, and then forming the molded body by CIP (cold isotropic processing press) or the like. It is manufactured by heating and sintering above the liquidus temperature of the binder. Depending on the application, as shown in FIG. 3, in order to further improve the strength, the sintered alloy is subjected to cold or warm work strengthening such as swaging, and further subjected to post heat treatment if desired. ing.
[0003]
However, in the above method, although the strength can be increased, the ductility is greatly reduced. Therefore, in applications in which good ductility is required in addition to high strength, the alloy subjected to the above treatment is a mechanical property. There is a problem of being insufficient.
The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a method for producing a high-strength, high-ductility tungsten alloy from which a tungsten alloy excellent in both strength and ductility can be obtained.
[0004]
Of the present invention for solving the above problems, the method of producing a high strength and high ductility tungsten alloy of the first invention, a W containing 85 to 98% by weight, the balance being Ni, the tungsten alloy is Fe, Work strengthening is provided by cold working or warm working with a working rate (cross-sectional reduction rate) of 8 to 14%, intermediate heat treatment is applied at a temperature of 1000 to 1200 ° C. after the working strengthening, and a working rate (cross-sectional reduction rate) of 16 It is characterized in that rework strengthening is given by cold or warm working to -22%, and post heat treatment is performed after the rework strengthening.
Furthermore, the method for producing a high-strength, high-ductility tungsten alloy according to the second invention is characterized in that, in the second invention, the sum of the processing rates (cross-sectional reduction rate) of work strengthening and rework strengthening is 30% or less. To do.
[0007]
Incidentally, tungsten alloy to which the present invention is applied, usually it is offered as a sintered body, to prepare a molded body by each component powder or alloy powder is obtained by sintering the same. As the powder used at this time, for example, both W powder and other component powders are preferably 3 to 5 μm. This makes it possible to obtain excellent strength and ductility. However, the process up to obtaining the tungsten alloy subjected to the above-described work strengthening including the sintered body can be selected as appropriate, and the content thereof is not particularly limited as the present invention.
[0008]
Next, in the processing strengthening and rework strengthening given to the tungsten alloy, the type of processing is not particularly limited, and it is also possible to change the type of processing in processing strengthening and rework strengthening. As the processing type, for example, punching processing, swaging processing, or the like is employed. In addition, each processing may be performed by a plurality of passes in addition to one, and an appropriate number of passes is selected by one or more times. In addition, when processing by warm processing, it is normally performed within the temperature range of 400-600 degreeC.
[0009]
For example, the tensile fracture mode when the best performance is obtained with this alloy is a mixture of cleavage fracture of W grains and ductile fracture of matrix phase (showing a dimple pattern).
After processing strengthening, select a condition that does not reduce the hardness of the W grains to the hardness before processing strengthening and lower the matrix phase to the hardness level before processing strengthening, and after applying intermediate heat treatment, rework strengthening By applying, the matrix phase is strengthened by the amount of the rework strengthening and receives sufficient ductility accordingly. At the same time, the W grains are already strengthened in the state before the rework strengthening, The strength increases accordingly.
As a result, the tensile strength is mainly governed by the strength of the W grains, and the tensile elongation (ductility) is governed by the ductility of the matrix phase. When compared at the same strength level, high ductility is achieved. The present inventors have found that by adopting the process procedure shown in FIG. 3 different from the conventional example, excellent strength and ductility are ensured. It has also been found that it can be obtained effectively.
[0010]
[Reason for limitation of each condition]
(1) Processing rate of processing reinforcement (8-14%)
If the processing rate of 8% or more is not given at the time of processing strengthening, sufficient processing strengthening cannot be given to the W grains, and the effects of the subsequent steps cannot be sufficiently obtained. On the other hand, when the processing rate exceeds 14%, the deformation of the W grains becomes too large and sufficient ductility cannot be obtained.
For the above reason, it is desirable to set the processing rate of processing strengthening to 8 to 14%, and it is more desirable to further set the upper limit of the processing rate to 10% for the same reason.
In the present specification, the processing rate means the cross-sectional reduction rate of the workpiece, and the processing rates described below are all the same.
[0011]
(2) Intermediate heat treatment temperature (1000-1200 ° C)
In order to reduce the hardness level of the matrix phase to the same level as that before the processing strengthening after the processing strengthening, 1200 ° C. or higher is required, and 1200 in order to secure the hardness level of the W grains higher than that before the processing strengthening. It is necessary that the temperature be below ℃. Accordingly, the intermediate heat treatment temperature is preferably 1000 to 1200 ° C, and more preferably 1050 to 1150 ° C for the same reason. In order to obtain the above action reliably and efficiently, it is desirable that the processing time of the intermediate heat treatment in the above temperature range is 8 to 12 hours.
[0010]
(3) Processing rate of rework strengthening (16-22%)
The hardness distribution in the cross section of the workpiece is mainly governed by the processing rate at the time of rework strengthening. Therefore, in order for the cross section of the workpiece to be processed uniformly and, as a result, the hardness to be uniform without distribution, the processing rate at the time of rework strengthening needs to be 16% or more.
On the other hand, if the processing rate at the time of rework strengthening exceeds 22%, the deformation of W grains becomes too large and sufficient ductility cannot be obtained.
For the above reasons, it is desirable to set the processing rate for rework strengthening to 16 to 22%, and for the same reason, it is more desirable to set the lower limit of the processing rate to 18% and the upper limit to 20%.
[0011]
(4) Total of processing rate of processing strengthening and rework strengthening (30% or less)
Even when the processing rate of processing strengthening and rework strengthening is set within the above range, if the total of both exceeds 30%, the deformation force to W grains increases, and the deformation of W grains increases as described above. Therefore, the ductility tends to decrease. For this reason, in addition to the regulation of each processing rate, it is desirable that the total of both be 30% or less.
[0012]
(5) The post-heat treatment re-strengthened alloy has a large variation in its mechanical properties, so that this variation is eliminated and an appropriate balance between strength and ductility is obtained. Apply. In order to obtain the above action, it is desirable to set the post-heat treatment temperature to 350 ° C. or higher. On the other hand, if it exceeds 1000 ° C., the strength decreases, so the post-heat treatment temperature is set to the target strength level and ductility level. Accordingly, it is desirable to select within a range of 350 to 1000 ° C. Moreover, in order to obtain the effect | action by post-heat processing fully and efficiently, it is desirable that processing time is 8 to 12 hours.
When aiming at the high strength side, the best balance between strength and ductility is when post-heat treatment is performed in the temperature range of 350 to 450 ° C. The post heat treatment in the above temperature range is effective when, for example, a strength of 130 kgf / mm 2 or more is required, and in this case, a ductility (tensile elongation) of 10% or more is ensured.
Further, when aiming at a low strength side and a high ductility level, the balance between strength and ductility is best when post-heat treatment is performed in a temperature range of 800 to 1000 ° C. Heating in this temperature range is effective, for example, when ductility of 17% or more (tensile elongation) is required, and in this case as well, a strength of 104 to 128 kgf / mm 2 is ensured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the flowchart of FIG.
93 wt% of W powder having an average particle diameter of about 5 μm produced by a conventional method and 7 wt% of Ni and Fe powder having an average particle diameter of about 5 μm (where Ni: Fe weight ratio is 7/3) are mixed (process) P1), filling this into a rubber bag of a predetermined shape and compressing it by isostatic pressing to obtain a 50 mm diameter rod-shaped green compact (step P2). The green compact is machined as necessary, and then pre-sintering (process P3) and main sintering (process P4) are performed.
Pre-sintering is performed by heating the green compact to 1300 to 1400 ° C. and holding for 4 hours. In this sintering, the green compact after pre-sintering is heated to 1460 to 1550 ° C. and held for 1 hour. And do it. The obtained sintered body is heat-treated at 1100 ° C. for 10 hours (process P5), and then necessary machining is performed cold (process P6).
Thereafter, punching is performed within the range of 8 to 14% as a processing strengthening method in the present invention (step P7), and then an intermediate heat treatment is performed at a temperature within the range of 1000 to 1200 ° C. (step P8). Further, as a rework strengthening method, swaging is performed within a processing rate of 16 to 22% (step P9), and then a post heat treatment is finally performed at a temperature within a range of 350 to 1000 ° C. (step P10). .
[0014]
【Example】
Using the sintered body shown in the above embodiment, the processing rate of work strengthening and rework strengthening, the temperature and time of intermediate heat treatment and post heat treatment are selected in the conditions shown in Table 1, and the same procedure as in the above embodiment Thus, a test material (invention material) of the present invention was obtained. For comparison, a comparative material was prepared which was subjected to post-heat treatment immediately after work strengthening (corresponding to a conventional material) and a material whose processing rate and other conditions were outside the scope of the invention.
A tensile test was performed on the inventive material and the comparative material obtained as described above, and the tensile strength and tensile elongation thereof are shown in Table 1. Also, these numerical values are shown in FIG.
[0015]
[Table 1]
Figure 0003665169
[0016]
As is clear from Table 1 and FIG. 2, the material of the present invention tends to have higher strength and elongation than the comparative material. For example, if the strength is the same, the material of the present invention is higher than the comparative material. If it shows elongation (ductility) and is the same elongation, the material of the present invention shows higher strength than the comparative material. Therefore, according to the method of the present invention, it has been clarified that the strength and ductility of the tungsten alloy are excellent and both are well balanced.
[0017]
【The invention's effect】
As described above, according to the method for producing a high-strength and high-ductility tungsten alloy of the present invention, a tungsten alloy containing 85 to 98% by weight of W and the balance of Ni and Fe as main components is processed and strengthened. -Since intermediate heat treatment, rework strengthening, and post heat treatment are provided, high strength is obtained, good ductility is ensured, and a high strength and high ductility tungsten alloy is obtained.
[0018]
Further, the processing strengthening is given by cold or warm processing with a processing rate (cross-sectional reduction rate) of 8 to 14%, the intermediate heat treatment temperature after the processing strengthening is set to 1000 to 1200 ° C., and the rework strengthening is further performed at the processing rate. (Cross-section reduction rate) If given by cold or warm working of 16 to 22%, and if post-heat treatment is performed after the rework strengthening, the above effect becomes more reliable, and the effect also increases.
Furthermore, if the sum of the processing rates (cross-sectional reduction rate) of processing strengthening and rework strengthening is 30% or less, good ductility can be ensured more reliably.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a flowchart according to an embodiment of the present invention.
FIG. 2 is a graph showing tensile strength and tensile elongation in the example.
FIG. 3 is a diagram showing a schematic flowchart of the method of the present invention and the conventional method.

Claims (2)

Wを重量%で85〜98%含有し、残部がNi、Feであるタングステン合金に、加工率(断面減少率)8〜14%とした冷間または温間加工により加工強化を与え、該加工強化後に1000〜1200℃の温度で中間熱処理を与え、さらに加工率(断面減少率)16〜22%とした冷間または温間加工により再加工強化を与え、該再加工強化後に後熱処理を施すことを特徴とする高強度高延性タングステン合金の製造方法。A tungsten alloy containing 85 to 98% by weight of W and the balance being Ni and Fe is subjected to work strengthening by cold or warm working with a working rate (cross-sectional reduction rate) of 8 to 14%. After the strengthening, an intermediate heat treatment is given at a temperature of 1000 to 1200 ° C., and further a rework strengthening is given by cold or warm working with a processing rate (cross section reduction rate) of 16 to 22%. A method for producing a high-strength, high-ductility tungsten alloy. 加工強化と再加工強化の加工率(断面減少率)の合計が30%以下であることを特徴とする請求項1に記載の高強度高延性タングステン合金の製造方法。  The method for producing a high-strength and high-ductility tungsten alloy according to claim 1, wherein the total processing rate (cross-sectional reduction rate) of processing strengthening and rework strengthening is 30% or less.
JP03442297A 1997-02-03 1997-02-03 Manufacturing method of high strength and high ductility tungsten alloy Expired - Fee Related JP3665169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03442297A JP3665169B2 (en) 1997-02-03 1997-02-03 Manufacturing method of high strength and high ductility tungsten alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03442297A JP3665169B2 (en) 1997-02-03 1997-02-03 Manufacturing method of high strength and high ductility tungsten alloy

Publications (2)

Publication Number Publication Date
JPH10219414A JPH10219414A (en) 1998-08-18
JP3665169B2 true JP3665169B2 (en) 2005-06-29

Family

ID=12413779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03442297A Expired - Fee Related JP3665169B2 (en) 1997-02-03 1997-02-03 Manufacturing method of high strength and high ductility tungsten alloy

Country Status (1)

Country Link
JP (1) JP3665169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084749A1 (en) * 2011-12-07 2013-06-13 株式会社アライドマテリアル Sintered tungsten alloy
CN115478236B (en) * 2022-08-30 2023-02-28 广州市华司特合金制品有限公司 Heat treatment method of high specific gravity tungsten alloy

Also Published As

Publication number Publication date
JPH10219414A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US6413294B1 (en) Process for imparting high strength, ductility, and toughness to tungsten heavy alloy (WHA) materials
JPH08939B2 (en) Method for reducing variation in mechanical property values of tungsten-nickel-iron alloy
WO2010130805A2 (en) Implant and method for producing an implant
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
KR960014514B1 (en) Oxide-dispersion strengthened heat-resistant chromium-based sintered alloy
US4797155A (en) Method for making metal matrix composites
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
US6022508A (en) Method of powder metallurgical manufacturing of a composite material
JP3665169B2 (en) Manufacturing method of high strength and high ductility tungsten alloy
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
EP0045985B1 (en) Method of manufacturing a copper-based memory alloy
DE102004002714B3 (en) To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
JPWO2002077308A1 (en) Heat-resistant creep-resistant aluminum alloy, its billet, and method for producing them
US5561832A (en) Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith
JP2531624B2 (en) Method for producing cored W alloy sintered body having high toughness and high strength
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH0741882A (en) Production of sintered titanium alloy
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
JPH05148568A (en) High density powder titanium alloy for sintering
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JP2932658B2 (en) Powder sintered titanium and method for producing powder sintered titanium base alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees