JP3663969B2 - Assembly type transmission V belt - Google Patents

Assembly type transmission V belt Download PDF

Info

Publication number
JP3663969B2
JP3663969B2 JP10680999A JP10680999A JP3663969B2 JP 3663969 B2 JP3663969 B2 JP 3663969B2 JP 10680999 A JP10680999 A JP 10680999A JP 10680999 A JP10680999 A JP 10680999A JP 3663969 B2 JP3663969 B2 JP 3663969B2
Authority
JP
Japan
Prior art keywords
belt
curvature
endless band
radius
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10680999A
Other languages
Japanese (ja)
Other versions
JP2000297848A (en
Inventor
一浩 水宮
雄紀 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10680999A priority Critical patent/JP3663969B2/en
Publication of JP2000297848A publication Critical patent/JP2000297848A/en
Application granted granted Critical
Publication of JP3663969B2 publication Critical patent/JP3663969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Vベルト式無段変速機などで一対のV溝プーリ間に掛け渡して用いる組立式伝動Vベルトに関するものである。
【0002】
【従来の技術】
かかる用途の組立式伝動Vベルトは図1に1で示すように、軸線Oi 周りに回転駆動される入力プーリ11のプーリV溝と、軸線Oi に平行な軸線Oo 周りに回転される出力プーリ12のプーリV溝との間に掛け渡して実用に供する。
かかる巻き掛け伝動系において、入力プーリ11の回転は組立式伝動Vベルト1を介し出力プーリ12に伝達される。
そしてこの伝動中、両プーリ11,12のプーリV溝を形成する対向フランジのうち、可動フランジを軸線方向同方向に変位させれば、入出力プーリ11,12に対する組立式伝動Vベルト1の巻き掛け円弧径が連続的に変化し、無段変速を行わせることができる。
【0003】
ここで組立式伝動Vベルト1を、図2も参照しつつ以下に説明すると、これは従来、例えば特開平2−14634号公報に記載されている通り、プーリV溝を形成する対向フランジにそれぞれ摩擦接触する傾斜端面2aを有したV型ブロック2を多数個具え、これらV型ブロック2を、図1に示すごとくVベルトが形造られるよう無終端状に連続配置する。
そして、これらV型ブロック2の両端における肩部2bに夫々、一対の無終端バンド3を巻き掛けして設け、各無終端バンド3は無終端バンドエレメント3aの積層体で構成する。
V型ブロック2には更に、両側の肩部2b間に配して首部2cを設けると共に、この首部2cから上記肩部2bに対向するよう延在する腕部2dを設け、これら腕部2dによりV型ブロック2が無終端バンド3から外れるのを防止する。
【0004】
ところで従来は上記文献にも記載されているが、無終端バンド3を巻き掛けするV型ブロック2の肩部2bを夫々、図2に明示するごとくベルト走行方向に見て曲率半径がR1 の中高となるよう湾曲させたクラウニング面とし、これにより無終端バンド3が伝動作用中に肩部2bに対しバンド幅方向に自動調芯されるようにするのが一般的である。
【0005】
【発明が解決しようとする課題】
しかし、当該自動調芯のために肩部2bを中高となるよう湾曲させたクラウニング面に構成する場合、これに巻き掛けた無終端バンド3がプーリ11,12に対する巻き掛け領域にある時、特に無終端バンド3の幅方向中程部が応力的に不利になるのを免れないことを確かめた。
図3は、組立式伝動Vベルト1がプーリ11,12に対して図1の巻き掛け状態にある時の、つまり入力プーリ11が小径プーリであり、出力プーリ12が大径プーリである時の、走行領域ごとの無終端バンド(3)外周表面における引っ張り応力をバンド幅方向各部において計測したもので、この図から明らかなように無終端バンド3はプーリ11,12に対する巻き掛け領域にある時、幅方向中程部に大きな引っ張り応力を受けて強度上不利になる。
この傾向は、無終端バンド3が小径プーリ11に対する巻き掛け領域にある時特に顕著となる。
【0006】
請求項1に記載の第1発明は、上記無終端バンドの外周表面における引っ張り応力が、ベルト走行方向に見た上記クラウニング面の曲率半径に対する無終端バンドの幅方向における曲率半径の比によって大きく変化する事実をつきとめ、この比を適切に定めることにより無終端バンドの外周表面における引っ張り応力が従来よりも緩和されるようにし、もって上述の問題解決を実現した組立式伝動Vベルトを提案することを目的とする。
【0007】
請求項2に記載の第2発明は、上記両曲率半径に製造誤差に起因したバラツキがある場合においても第1発明の作用効果が確実に達成されるよう上記の比を決定した組立式伝動Vベルトを提案することを目的とする。
【0008】
【課題を解決するための手段】
これらの目的のため、先ず第1発明の組立式伝動Vベルトは、
プーリV溝の両側壁に摩擦接触する傾斜端面を個々に有した多数のV型ブロックを、Vベルトが形成されるよう無終端状に連続配置して具え、これらV型ブロックのクラウニング面に無終端バンドを巻き掛けして組み立てた組立式伝動Vベルトを前提とし、
ベルト走行方向に見た前記クラウニング面の曲率半径に対する前記無終端バンドの幅方向における曲率半径の比を0.21以上、0.35以下に設定したことを特徴とするものである。
【0009】
第2発明による組立式伝動Vベルトは、上記第1発明において、
前記の比を0.25以上、0.35以下に設定したことを特徴とするものである。
【0010】
【発明の効果】
第1発明の組立式伝動Vベルトは、無終端バンドを巻き掛けすべく各V型ブロックに設けたクラウニング面のベルト走行方向に見た曲率半径に対する無終端バンドの幅方向における曲率半径の比を0.21以上、0.35以下に設定したから、
無終端バンドを巻き掛けする各V型ブロックの面を、無終端バンドのバンド幅方向の自動調芯のためにクラウニング面にしても、プーリに対する巻き掛け領域において無終端バンドの外周表面が受ける引っ張り応力を従来のそれより小さくすることができ、無終端バンドの外周表面が応力的に不利になって前記強度上の問題を生ずるような弊害を回避することができる。
【0011】
第2発明の組立式伝動Vベルトは、上記両曲率半径の比を0.25以上、0.35以下に設定したから、以下の作用効果が得られる。
つまり、上記両曲率半径の比を0.25未満にする場合、上記両曲率半径の比の変化に対する無終端バンドの外周表面における引っ張り応力の変化が急峻になって、製造誤差による上記両曲率半径のバラツキでも無終端バンドの外周表面に作用する引っ張り応力が従来のそれより大きくなって上記第1発明の作用効果を奏し得なくなることがあるが、上記両曲率半径の比を0.25以上、0.35以下にする第2発明の場合、上記急峻な領域を使用しないことから、このような弊害を生ずることがなくて第1発明の作用効果を上記両曲率半径のバラツキにかかわらず確実なものにすることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
図4および図5は、本発明による一実施の形態になる組立式伝動Vベルトを構成するV型ブロック2および無終端バンド3を示し、
本実施の形態においては、無終端バンド3を掛け渡すV型ブロック2の肩部2bを図4のごとくバンド走行方向に見て中高に湾曲させたクラウニング面にするだけでなく、
無終端バンド3についてもこれを、肩部2bのクラウニング面に対応させて図5に示すごとく、バンド幅方向に中高となるよう湾曲させる。
【0013】
ここで、さまざまな仕様の組立式伝動Vベルトのもと、ベルト走行方向に見たクラウニング面2bの曲率半径R1 に対する無終端バンド3の曲率半径R2 の比(R2 /R1 )を種々に変化させて無終端バンド3の外周表面における最大引っ張り応力σmax を計測したところ、両者間には図6に示すような関係が存在し、無終端バンド3の外周表面における引っ張り応力の大きさは曲率半径R1 ,R2 の大きさではなくて両者間の比に左右されることを確かめた。
【0014】
参考までに、上記の曲率半径比(R2 /R1 )が図6のa点に対応したものである場合において無終端バンド3の外周表面に作用する引っ張り応力σを図7(a)に示し、同図(b),(c),(d)はそれぞれ、曲率半径比(R2 /R1 )が図6のb点(R2 /R1 =0.25の点)、c点、d点に対応したものである場合において無終端バンド3の外周表面に作用する引っ張り応力σを示す。
図7(a),(b),(c),(d)の何れにおいても、無終端バンド3の外周表面に作用する引っ張り応力σは、無終端バンド3の走行領域ごとに、そしてバンド幅方向各部において計測した結果である。
【0015】
図7(a),(b),(c),(d)における無終端バンド(3)外周表面の最大引っ張り応力はそれぞれσamax,σbmax,σcmax,σdmaxであり、これらを図6のa点、b点、c点、d点で示すようにプロットすると共に、他の曲率半径比(R2 /R1 )について計測した無終端バンド外周表面の最大引っ張り応力も同様に、同図上にプロットすることにより、図6の関係線図を得ることができる。
ところで、図6のb点(R2 /R1 =0.25の点)を境に、R2 /R1 ≧0.25の大きな曲率半径比の領域では、図7(b),(c),(d)から明らかなように無終端バンド3が小径プーリ巻き付き部において外周表面のバンド幅方向中央面に最大引っ張り応力σbmax,σcmax,σdmaxを受け、
2 /R1 <0.25の小さな曲率半径比の領域では、図7(a)から明らかなように無終端バンド3が同じく小径プーリ巻き付き部ながら外周表面のバンド幅方向両側端面に最大引っ張り応力σamaxを受ける。
【0016】
しかして従来は、図2に示すように無終端バンド3をバンド幅方向に湾曲させるものでなかったため、使用状態でバンド張力により無終端バンド3がプーリ巻き掛け領域においてバンド幅方向に湾曲形状にされることがあっても、曲率半径比(R2 /R1 )が0.35以下になることはなく、図6のαで示す曲率半径比の領域で実用することとなっていた。
これがため従来は前記したように、無終端バンド3が特に小径プーリ11に対する巻き掛け領域にある時にバンド幅方向中程部に大きな引っ張り応力を受けて強度上不利になるのを免れなかった。
【0017】
そこで本実施の形態においては前記したように、無終端バンド3についてもこれを、肩部2bのクラウニング面に対応させて図5に示すごとく、バンド幅方向に中高となるよう湾曲させ、更に加えてその曲率半径R2 を、ベルト走行方向に見たクラウニング面2bの曲率半径R1 に対する無終端バンド3の曲率半径R2 の比(R2 /R1 )が無終端バンド(3)外周表面の最大引っ張り応力の低減を保証するような曲率半径にする。
当該保証を可能にする曲率半径比(R2 /R1 )を考察するに、従来はこの曲率半径比(R2 /R1 )が0.35以下になることがないために無終端バンド3がバンド幅方向中程部に大きな引っ張り応力を受けていたことから、曲率半径比(R2 /R1 )が0.35以下になるよう無終端バンド3の曲率半径R2 を決定すればよい。
【0018】
次いで曲率半径比(R2 /R1 )の許容下限値を考察するに、曲率半径比(R2 /R1 )が上記した許容上限値0.35である時の無終端バンド3の最大引っ張り応力が図6にσjmaxで示すごときものであることから、無終端バンド3の最大引っ張り応力を当該σjmax以下にする曲率半径比(R2 /R1 )の領域、つまり図6にβで示す領域を規定する曲率半径比(R2 /R1 )の下限値0.21が求めるべき曲率半径比(R2 /R1 )の許容下限値である。
従って、曲率半径比(R2 /R1 )が0.21以上になるよう無終端バンド3の曲率半径R2 を決定すればよい。
【0019】
本実施の形態においては上記の事実に鑑み、無終端バンド3をV型ブロック2のクラウニング面2bに対応させてバンド幅方向に中高となるよう湾曲させ、更に加えてその曲率半径R2 を、クラウニング面2bの曲率半径R1 に対する曲率半径比(R2 /R1 )が図6にβで示す範囲内の値、つまり0.21以上、0.35以下になるよう決定する。
これがため本実施の形態においては、無終端バンド3を巻き掛けするV型ブロックの面2bをバンドの自動調芯のためにクラウニング面にしても、無終端バンド3の外周表面が受ける最大引っ張り応力を図6から明らかなように従来のそれより小さくすることができ、無終端バンド3の外周表面が応力的に不利になって前記強度上の問題を生ずるような弊害を回避することができる。
【0020】
なお図6から明らかなように、曲率半径比(R2 /R1 )が0.25未満の領域では、図7(a)のごとく無終端バンド3が外周表面のバンド幅方向両側端面に最大引っ張り応力σamaxを受けることから、曲率半径比(R2 /R1 )の変化に対する無終端バンド(3)外周表面の最大引っ張り応力σmax の変化が急峻になって、製造誤差による上記両曲率半径R1 ,R2 のバラツキでも曲率半径比(R2 /R1 )が許容下限値0.21未満になってしまう虞れを払拭し切れない場合がある。
この場合、無終端バンド3の外周表面に作用する最大引っ張り応力が従来のそれより大きくなって前記の作用効果を奏し得ず、本来の目的を達し得ないこととなる。
【0021】
この懸念を回避するためには、曲率半径比(R2 /R1 )の下限値を上記の0.25とし、図6にγで示す範囲内の値、つまり0.25以上、0.35以下になるよう決定することがきる。
かかる実施の形態においては、曲率半径比(R2 /R1 )の変化に対する無終端バンド外周表面の最大引っ張り応力σmax の変化が急峻になる領域を使用しないために、製造誤差による両曲率半径R1 ,R2 のバラツキで曲率半径比(R2 /R1 )が許容下限値0.21未満になる虞れを払拭することができ、これが原因で無終端バンド外周表面の最大引っ張り応力が従来のそれより大きくなって本来の目的を達し得なくなる懸念をなくすことができる。
【図面の簡単な説明】
【図1】従来の組立式伝動Vベルトを、一対のプーリ間に掛け渡した実用状態で示す側面図である。
【図2】従来の組立式伝動Vベルトを、ベルト走行方向を横切る面内で断面として示す横断面図である。
【図3】従来の組立式伝動Vベルトにおいて、その無終端バンドの外周表面に作用する引っ張り応力を、ベルト走行域ごとに示す3次元線図である。
【図4】本発明による一実施の形態になる組立式伝動VベルトのV型ブロックの正面図である。
【図5】同一実施の形態になる組立式伝動Vベルトの無終端バンドを示す断面図である。
【図6】組立式伝動Vベルトにおいて、無終端バンドを掛け渡すためにV型ブロックに設けたクラウニング面の曲率半径に対する無終端バンドの曲率半径の曲率半径比と、無終端バンド外周表面に作用する最大引っ張り応力との関係を示す線図である。
【図7】(a)は、図6のa点における曲率半径比とした時に無終端バンド外周表面に作用する引っ張り応力をベルト走行領域ごとに示す3次元線図、
(b)は、図6のb点における曲率半径比とした時に無終端バンド外周表面に作用する引っ張り応力をベルト走行領域ごとに示す3次元線図、
(c)は、図6のc点における曲率半径比とした時に無終端バンド外周表面に作用する引っ張り応力をベルト走行領域ごとに示す3次元線図、
(d)は、図6のd点における曲率半径比とした時に無終端バンド外周表面に作用する引っ張り応力をベルト走行領域ごとに示す3次元線図である。
【符号の説明】
1 組立式伝動Vベルト
2 V型ブロック
2a 傾斜端面
2b 肩部(クラウニング面)
3 無終端バンド
11 入力プーリ
12 出力プーリ
1 クラウニング面の曲率半径
2 無終端バンドの曲率半径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembly-type transmission V-belt that is used across a pair of V-groove pulleys in a V-belt type continuously variable transmission or the like.
[0002]
[Prior art]
KD transmission V-belt of such applications as shown by 1 in Figure 1, is rotated and the pulley V grooves of the input pulley 11 which is driven to rotate around the axis O i, an axis parallel O o around the axis O i It is spanned between the output pulley 12 and the pulley V groove for practical use.
In such a winding transmission system, the rotation of the input pulley 11 is transmitted to the output pulley 12 via the assembly-type transmission V-belt 1.
During this transmission, if the movable flange of the opposing flanges forming the pulley V grooves of both pulleys 11 and 12 is displaced in the same axial direction, the assembly type transmission V belt 1 is wound around the input / output pulleys 11 and 12. The hanging arc diameter changes continuously, and continuously variable transmission can be performed.
[0003]
Here, the assembly-type transmission V-belt 1 will be described below with reference to FIG. 2 as well. Conventionally, as described in, for example, Japanese Patent Laid-Open No. 2-14634, each of the opposing transmission V-belts 1 is provided with an opposing flange that forms a pulley V-groove. A large number of V-shaped blocks 2 having inclined end surfaces 2a that make frictional contact are provided, and these V-shaped blocks 2 are continuously arranged in an endless manner so that a V-belt is formed as shown in FIG.
A pair of endless bands 3 are wound around the shoulder portions 2b at both ends of the V-shaped block 2, and each endless band 3 is formed of a laminate of endless band elements 3a.
The V-shaped block 2 is further provided with a neck portion 2c arranged between the shoulder portions 2b on both sides, and an arm portion 2d extending from the neck portion 2c so as to face the shoulder portion 2b. The V-shaped block 2 is prevented from coming off from the endless band 3.
[0004]
However although the conventional has been described in the literature, the shoulder portion 2b of the V-block 2 to wound the endless band 3 respectively, the radius of curvature as viewed in the direction of belt travel as clearly shown in Figure 2 is R 1 In general, the crowning surface is curved so as to have a middle height so that the endless band 3 is automatically aligned in the band width direction with respect to the shoulder 2b during transmission.
[0005]
[Problems to be solved by the invention]
However, when the shoulder 2b is configured to be a crowned surface that is curved so as to have a medium height for the automatic alignment, particularly when the endless band 3 wound around the shoulder 2b is in a region where the pulleys 11 and 12 are wound. It was confirmed that the middle part in the width direction of the endless band 3 is inevitable in terms of stress.
FIG. 3 shows a state in which the assembly type transmission V-belt 1 is in the state of FIG. 1 wound around the pulleys 11 and 12, that is, when the input pulley 11 is a small diameter pulley and the output pulley 12 is a large diameter pulley. The endless band for each running region (3) The tensile stress on the outer peripheral surface was measured at each part in the band width direction. As is clear from this figure, the endless band 3 is in the region where the pulleys 11 and 12 are wound. In the middle in the width direction, a large tensile stress is applied, which is disadvantageous in strength.
This tendency is particularly prominent when the endless band 3 is in a region around the small-diameter pulley 11.
[0006]
In the first aspect of the present invention, the tensile stress on the outer peripheral surface of the endless band varies greatly depending on the ratio of the curvature radius in the width direction of the endless band to the curvature radius of the crowning surface as viewed in the belt running direction. In view of the above facts, by appropriately determining this ratio, the tensile stress on the outer peripheral surface of the endless band can be relaxed more than in the past, thereby proposing an assembly type transmission V-belt that realizes the above-mentioned problem solving. Objective.
[0007]
According to a second aspect of the present invention, in the assembly type transmission V in which the above ratio is determined so that the function and effect of the first aspect of the invention can be reliably achieved even when there is a variation due to manufacturing errors in both the radii of curvature. The purpose is to propose a belt.
[0008]
[Means for Solving the Problems]
For these purposes, first, the assembly-type transmission V-belt of the first invention is
A large number of V-shaped blocks each having an inclined end surface that is in frictional contact with both side walls of the pulley V-groove are continuously arranged in an endless manner so as to form a V-belt, and there is no need for the crowning surfaces of these V-shaped blocks. Assuming an assembly-type transmission V-belt assembled by wrapping a terminal band,
The ratio of the radius of curvature in the width direction of the endless band to the radius of curvature of the crowning surface viewed in the belt traveling direction is set to 0.21 or more and 0.35 or less.
[0009]
The assembly type transmission V belt according to the second invention is the above-mentioned first invention,
The ratio is set to 0.25 or more and 0.35 or less.
[0010]
【The invention's effect】
The assembly type transmission V-belt of the first invention has a ratio of the radius of curvature in the width direction of the endless band to the radius of curvature seen in the belt running direction of the crowning surface provided in each V-shaped block to wind the endless band. Since it was set to 0.21 or more and 0.35 or less,
Even if the surface of each V-shaped block around which the endless band is wound is a crowning surface for automatic centering in the band width direction of the endless band, the tensile force received by the outer peripheral surface of the endless band in the winding region with respect to the pulley The stress can be made smaller than that of the prior art, and the disadvantage that the outer peripheral surface of the endless band becomes disadvantageous in terms of stress and causes the above-mentioned problem in strength can be avoided.
[0011]
Since the assembly type transmission V-belt of the second invention sets the ratio of the above-mentioned curvature radii to 0.25 or more and 0.35 or less, the following effects can be obtained.
That is, when the ratio of both radii of curvature is less than 0.25, the change of the tensile stress on the outer peripheral surface of the endless band with respect to the change of the ratio of both radii of curvature becomes steep, and the both radii of curvature due to manufacturing errors. Even if there is a variation, the tensile stress acting on the outer peripheral surface of the endless band may become larger than that of the conventional one, and the effect of the first invention may not be achieved, but the ratio of the two radii of curvature is 0.25 or more, In the case of the second invention of 0.35 or less, since the steep region is not used, such an adverse effect does not occur, and the operational effect of the first invention can be ensured regardless of the variation in both the curvature radii. Can be a thing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
4 and 5 show a V-shaped block 2 and an endless band 3 constituting an assembly type transmission V belt according to an embodiment of the present invention.
In the present embodiment, not only the shoulder portion 2b of the V-shaped block 2 that spans the endless band 3 is a crowning surface that is curved to a medium and high when viewed in the band traveling direction as shown in FIG.
The endless band 3 is also curved so as to have a middle height in the band width direction, as shown in FIG. 5, corresponding to the crowning surface of the shoulder 2b.
[0013]
Here, the ratio (R 2 / R 1 ) of the radius of curvature R 2 of the endless band 3 to the radius of curvature R 1 of the crowning surface 2b viewed in the belt traveling direction under the assembly-type transmission V-belt of various specifications. When the maximum tensile stress σ max on the outer peripheral surface of the endless band 3 was measured in various ways, a relationship as shown in FIG. 6 exists between them, and the magnitude of the tensile stress on the outer peripheral surface of the endless band 3 is large. It was confirmed that the length depends not on the radius of curvature R 1 and R 2 but on the ratio between them.
[0014]
For reference, FIG. 7A shows the tensile stress σ acting on the outer peripheral surface of the endless band 3 in the case where the radius of curvature ratio (R 2 / R 1 ) corresponds to the point a in FIG. (B), (c), and (d) show the curvature radius ratio (R 2 / R 1 ) of point b (point R 2 / R 1 = 0.25) and point c in FIG. , A tensile stress σ acting on the outer peripheral surface of the endless band 3 in a case corresponding to the point d.
In any of FIGS. 7A, 7B, 7C, and 7D, the tensile stress σ acting on the outer peripheral surface of the endless band 3 is different for each traveling region of the endless band 3 and the band width. It is the result measured in each direction part.
[0015]
The maximum tensile stresses on the outer surface of the endless band (3) in FIGS. 7 (a), (b), (c), and (d) are σ amax , σ bmax , σ cmax , and σ dmax , respectively. Similarly, the maximum tensile stress of the outer peripheral surface of the endless band measured with respect to other curvature radius ratios (R 2 / R 1 ) is plotted as shown by points a, b, c, and d. By plotting above, the relationship diagram of FIG. 6 can be obtained.
By the way, in the region of a large curvature radius ratio of R 2 / R 1 ≧ 0.25 from the point b in FIG. 6 (point of R 2 / R 1 = 0.25), FIGS. ), (D), the endless band 3 receives the maximum tensile stresses σ bmax , σ cmax , σ dmax on the central surface in the bandwidth direction of the outer peripheral surface at the small diameter pulley winding portion,
In the region of a small radius of curvature ratio of R 2 / R 1 <0.25, as is apparent from FIG. Subject to stress σ amax .
[0016]
In the prior art, however, the endless band 3 was not curved in the bandwidth direction as shown in FIG. 2, so that the endless band 3 was curved in the band width direction in the pulley winding region due to the band tension in use. Even if this occurs, the radius-of-curvature ratio (R 2 / R 1 ) never becomes 0.35 or less, and it has been put to practical use in the region of the radius of curvature indicated by α in FIG.
For this reason, as described above, when the endless band 3 is in the region where the small-diameter pulley 11 is wound around, it is inevitable that the middle portion in the band width direction receives a large tensile stress and is disadvantageous in terms of strength.
[0017]
Therefore, in the present embodiment, as described above, the endless band 3 is also curved so as to have a middle height in the band width direction as shown in FIG. 5 in correspondence with the crowning surface of the shoulder 2b. its radius of curvature R 2, the ratio of the radius of curvature R 2 of the endless band 3 with respect to the radius of curvature R 1 of the crowning surface 2b as seen in the direction of belt travel (R 2 / R 1) is endless band (3) the outer peripheral surface Te The curvature radius is set so as to guarantee the reduction of the maximum tensile stress.
Considering the radius-of-curvature ratio (R 2 / R 1 ) that enables the guarantee, the radius-of-curvature ratio (R 2 / R 1 ) has never been less than 0.35 in the prior art. since but had received a large tensile stress in the band width direction middle portion, the curvature radius ratio (R 2 / R 1) may be determined radius of curvature R 2 of the endless band 3 so as to be 0.35 or less .
[0018]
Then to consider the allowable lower limit value of the curvature radius ratio (R 2 / R 1), pulling up of the endless band 3 when the curvature radius ratio (R 2 / R 1) is allowable upper limit value 0.35 as described above Since the stress is as shown by σ jmax in FIG. 6, the region of the curvature radius ratio (R 2 / R 1 ) that makes the maximum tensile stress of the endless band 3 less than σ jmax , that is, β in FIG. The lower limit value 0.21 of the curvature radius ratio (R 2 / R 1 ) that defines the region to be shown is the allowable lower limit value of the curvature radius ratio (R 2 / R 1 ) to be obtained.
Accordingly, the curvature radius ratio (R 2 / R 1) may be determined radius of curvature R 2 of the endless band 3 so as to be 0.21 or more.
[0019]
In the present embodiment, in view of the above fact, the endless band 3 is curved so as to have a middle height in the band width direction corresponding to the crowning surface 2b of the V-shaped block 2, and in addition, the radius of curvature R 2 is The curvature radius ratio (R 2 / R 1 ) with respect to the curvature radius R 1 of the crowning surface 2b is determined to be a value within the range indicated by β in FIG. 6, that is, 0.21 or more and 0.35 or less.
Therefore, in the present embodiment, even if the surface 2b of the V-shaped block around which the endless band 3 is wound is used as a crowning surface for automatic band alignment, the maximum tensile stress received by the outer peripheral surface of the endless band 3 As can be clearly seen from FIG. 6, the outer peripheral surface of the endless band 3 is disadvantageous in terms of stress, thereby avoiding the adverse effect of causing the above-mentioned strength problem.
[0020]
As is clear from FIG. 6, in the region where the radius-of-curvature ratio (R 2 / R 1 ) is less than 0.25, the endless band 3 is maximum on both end faces in the bandwidth direction of the outer peripheral surface as shown in FIG. Since the tensile stress σ amax is received, the change in the maximum tensile stress σ max on the outer surface of the endless band (3) with respect to the change in the radius-of-curvature ratio (R 2 / R 1 ) becomes steep, and both the above-mentioned curvatures due to manufacturing errors Even if the radii R 1 and R 2 vary, there is a case where the possibility that the radius-of-curvature ratio (R 2 / R 1 ) becomes less than the allowable lower limit value 0.21 cannot be completely wiped out.
In this case, the maximum tensile stress acting on the outer peripheral surface of the endless band 3 becomes larger than that of the conventional one, so that the above-mentioned effects cannot be achieved, and the original purpose cannot be achieved.
[0021]
In order to avoid this concern, the lower limit value of the radius-of-curvature ratio (R 2 / R 1 ) is set to the above 0.25, and a value within the range indicated by γ in FIG. 6, that is, 0.25 or more, 0.35 You can decide to be:
In such an embodiment, a region where the change in the maximum tensile stress σ max of the endless band outer peripheral surface with respect to the change in the radius-of-curvature ratio (R 2 / R 1 ) becomes steep is not used. The possibility that the radius-of-curvature ratio (R 2 / R 1 ) may be less than the allowable lower limit of 0.21 due to variations in R 1 and R 2 can be eliminated. This causes the maximum tensile stress on the outer surface of the endless band. It is possible to eliminate the concern that it becomes larger than the conventional one and the original purpose cannot be achieved.
[Brief description of the drawings]
FIG. 1 is a side view showing a practical assembly-type transmission V-belt in a practical state in which a conventional assembly-type transmission V-belt is stretched between a pair of pulleys.
FIG. 2 is a cross-sectional view showing a conventional assembly-type transmission V-belt as a cross section in a plane crossing the belt running direction.
FIG. 3 is a three-dimensional diagram showing tensile stress acting on the outer peripheral surface of an endless band in a conventional assembly-type transmission V-belt for each belt travel region.
FIG. 4 is a front view of a V-shaped block of an assembly-type transmission V-belt according to an embodiment of the present invention.
FIG. 5 is a sectional view showing an endless band of the assembly-type transmission V-belt according to the same embodiment.
FIG. 6 shows the ratio of the curvature radius of the curvature radius of the endless band to the radius of curvature of the crowning surface provided in the V-shaped block for bridging the endless band in the assembly type transmission V-belt, and acts on the outer peripheral surface of the endless band. It is a diagram which shows the relationship with the largest tensile stress to do.
7A is a three-dimensional diagram showing the tensile stress acting on the outer peripheral surface of the endless band for each belt travel region when the curvature radius ratio at the point a in FIG.
(B) is a three-dimensional diagram showing the tensile stress acting on the outer peripheral surface of the endless band for each belt travel region when the curvature radius ratio at the point b in FIG.
(C) is a three-dimensional diagram showing the tensile stress acting on the outer peripheral surface of the endless band for each belt travel region when the curvature radius ratio at the point c in FIG.
FIG. 7D is a three-dimensional diagram showing the tensile stress acting on the outer peripheral surface of the endless band for each belt travel region when the curvature radius ratio at the point d in FIG. 6 is used.
[Explanation of symbols]
1 Assembly type transmission V belt 2 V type block
2a Inclined end face
2b Shoulder (crowning surface)
3 Endless band
11 Input pulley
12 Output pulley R 1 Curvature radius of curvature R 2 Endless band radius of curvature

Claims (2)

プーリV溝の両側壁に摩擦接触する傾斜端面を個々に有した多数のV型ブロックを、Vベルトが形成されるよう無終端状に連続配置して具え、これらV型ブロックのクラウニング面に無終端バンドを巻き掛けして組み立てた組立式伝動Vベルトにおいて、
ベルト走行方向に見た前記クラウニング面の曲率半径に対する前記無終端バンドの幅方向における曲率半径の比を0.21以上、0.35以下に設定したことを特徴とする組立式伝動Vベルト。
A large number of V-shaped blocks each having an inclined end surface that is in frictional contact with both side walls of the pulley V-groove are continuously arranged in an endless manner so as to form a V-belt, and there is no need for the crowning surfaces of these V-shaped blocks. In the assembly-type transmission V-belt assembled by winding the end band,
An assembly-type transmission V-belt characterized in that the ratio of the radius of curvature in the width direction of the endless band to the radius of curvature of the crowning surface as viewed in the belt running direction is set to 0.21 or more and 0.35 or less.
請求項1において、前記の比を0.25以上、0.35以下に設定したことを特徴とする組立式伝動Vベルト。The assembly-type transmission V-belt according to claim 1, wherein the ratio is set to 0.25 or more and 0.35 or less.
JP10680999A 1999-04-14 1999-04-14 Assembly type transmission V belt Expired - Fee Related JP3663969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10680999A JP3663969B2 (en) 1999-04-14 1999-04-14 Assembly type transmission V belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10680999A JP3663969B2 (en) 1999-04-14 1999-04-14 Assembly type transmission V belt

Publications (2)

Publication Number Publication Date
JP2000297848A JP2000297848A (en) 2000-10-24
JP3663969B2 true JP3663969B2 (en) 2005-06-22

Family

ID=14443186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10680999A Expired - Fee Related JP3663969B2 (en) 1999-04-14 1999-04-14 Assembly type transmission V belt

Country Status (1)

Country Link
JP (1) JP3663969B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406283B2 (en) 2000-08-11 2003-05-12 本田技研工業株式会社 Belt for continuously variable transmission
JP4626103B2 (en) * 2001-07-25 2011-02-02 トヨタ自動車株式会社 Power transmission belt
JP3935060B2 (en) * 2002-11-28 2007-06-20 本田技研工業株式会社 Metal belt for continuously variable transmission

Also Published As

Publication number Publication date
JP2000297848A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
EP0014013B1 (en) A composite driving belt with transverse elements provided with mutual coupling means
US6440023B2 (en) Metal V-belt
EP0259997A2 (en) Chain-belt
JP2004125173A (en) Drive belt and continuously variable transmission using the drive belt
JP3663969B2 (en) Assembly type transmission V belt
JP2009063164A (en) Transmission chain
JPH06307510A (en) V-belt type continuously variable transmission
US20060058142A1 (en) Endless belt for transmission
US4666421A (en) Drive chain belt
US2627756A (en) Power transmission chain
JP2002031215A (en) Belt-type cvt pulley and v-belt for pulley
JPH0783288A (en) Chain belt
EP1304502B1 (en) Method for measuring free-state diameter of metal ring
JP2002349638A (en) Compression belt for cvt
KR20030022137A (en) V-belt for low-loss power transmission
JP2848039B2 (en) Transmission belt
US4768999A (en) Fan-folded belt
US5147253A (en) Variable speed transmission device
US20070298921A1 (en) Plate-link chain and rocker member for a belt-driven conical-pulley transmission
JPH05296306A (en) Continuously variable transmission
JPS61171936A (en) Rubber v-belt
JP2002295614A (en) V-belt type continuously variable transmission
JP2002139114A (en) Belt drive system
JP3686857B2 (en) V-belt for high load transmission and belt transmission device using the same
KR20230062407A (en) Chain

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees