JP2002031215A - Belt-type cvt pulley and v-belt for pulley - Google Patents

Belt-type cvt pulley and v-belt for pulley

Info

Publication number
JP2002031215A
JP2002031215A JP2000210012A JP2000210012A JP2002031215A JP 2002031215 A JP2002031215 A JP 2002031215A JP 2000210012 A JP2000210012 A JP 2000210012A JP 2000210012 A JP2000210012 A JP 2000210012A JP 2002031215 A JP2002031215 A JP 2002031215A
Authority
JP
Japan
Prior art keywords
angle
pulley
sheave
belt
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210012A
Other languages
Japanese (ja)
Other versions
JP2002031215A5 (en
Inventor
Kazuhiro Mizumiya
一浩 水宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000210012A priority Critical patent/JP2002031215A/en
Publication of JP2002031215A publication Critical patent/JP2002031215A/en
Publication of JP2002031215A5 publication Critical patent/JP2002031215A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the core deviation amount of a V-belt. SOLUTION: A profile curve in the section including the central axis of a pulley, of a sheave surface 1a of the belt-type CVT pulley 1 is a gentle projecting curved line having the sheave angle gradually changed. The side surface angle of the belt to be used for the pulley 1 is continuously changed from the inner peripheral side to the outer peripheral side between the angle equal to the maximum sheave angle to the angle equal to the minimum sheave angle. In the profile curve in the section including the central axis of the pulley of the sheave surface, the axial distance direction X from a point of a radius Ro to a point of a radius R of the gear ratio of 1 is X=R×tanαO+ K/(RO- Rmin)×(R-RO)2=(0<K<=0.02) in relation to the reference sheave angle αO and the minimum radius Rmin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明のベルト式CVT
(無段変速機)用のプーリおよび、そのプーリ用のVベ
ルトに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a pulley for a (stepless transmission) and a V-belt for the pulley.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
のベルト式CVT用プーリとしては、例えば特開昭55
−100443号にて開示された、図11に示す如きも
のが知られており、この従来のものでは無段変速機構の
入力用および出力用の各プーリ1の、Vベルト2と接す
るシーブ面1aのシーブ角αが半径方向位置にかかわら
ず一定の構成となっていたため、図12中特性線Aで示
すように、変速に伴ってVベルトに変速比1の時を最大
とする大きな芯ずれが生じ、その結果Vベルトが片当た
りして過度に摩耗したり大きな騒音を生じたりするとい
う問題があった。
2. Description of the Related Art A conventional belt type CVT pulley is disclosed in
As shown in FIG. 11 disclosed in US Pat. No. 100443, a sheave surface 1a of each of input and output pulleys 1 of a continuously variable transmission mechanism which comes into contact with a V-belt 2 is known. 12, the sheave angle α is constant regardless of the position in the radial direction. Therefore, as shown by the characteristic line A in FIG. As a result, there has been a problem that the V-belt is one-sided and excessively worn and generates loud noise.

【0003】そこで、かかる問題を解決すべく従来、本
願出願人は先に特開平6−307510号公報にて、図
13に示すように、入力用および出力用の各プーリ1
の、Vベルト2と接するシーブ面1aのシーブ角を、半
径方向外方側の部分の角αが半径方向内方側の部分の角
βより大きくなるように二段階に形成し、併せてVベル
ト2の側面角も、内周寄りの部分の角αが外周寄りの部
分の角βより大きくなるように二段階に形成した構成を
開示している。
In order to solve such a problem, the present applicant has previously disclosed in Japanese Patent Application Laid-Open No. Hei 6-307510, as shown in FIG.
The sheave angle of the sheave surface 1a in contact with the V-belt 2 is formed in two stages so that the angle α of the radially outward portion is greater than the angle β of the radially inward portion. Also disclosed is a configuration in which the side surface angle of the belt 2 is formed in two stages such that the angle α of the portion closer to the inner circumference is larger than the angle β of the portion closer to the outer circumference.

【0004】しかしながらこの後者の従来技術でも、図
12中特性線B〜Dで角α,βの三種類の組合せについ
て示すように、前者の従来技術よりは大幅に芯ずれが小
さくなったものの、芯ずれを低減できる限界があり、
0.3mm程度は芯ずれが残ってしまうという問題があ
った。
However, in the latter prior art as well, as shown in the characteristic lines B to D in FIG. 12 for the three types of combinations of the angles α and β, although the misalignment is much smaller than the former prior art, There is a limit that can reduce the misalignment,
There was a problem that the misalignment remained about 0.3 mm.

【0005】[0005]

【課題を解決するための手段およびその作用・効果】こ
の発明は、上記課題を有利に解決したベルト式CVT用
プーリおよびそのプーリ用ベルトを提供することを目的
とするものであり、この発明のベルト式CVT用プーリ
は、前記ベルト式CVT用プーリのシーブ面の、そのプ
ーリの中心軸線を含む断面での輪郭曲線が、シーブ角が
連続的に変化する滑らかな凸曲線であることを特徴とす
るものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pulley for a belt type CVT and a belt for the pulley which advantageously solve the above problems. The belt-type CVT pulley is characterized in that a contour curve of a sheave surface of the belt-type CVT pulley in a section including a center axis of the pulley is a smooth convex curve in which a sheave angle changes continuously. Is what you do.

【0006】かかるプーリによれば、シーブ面の断面輪
郭線が凸曲線であることから、変速比1の半径方向位置
に対し半径方向内外方位置での変速に伴う芯ずれ量を減
少させ、もしくはなくすことができるので、Vベルトの
片当たりによる過度の摩耗や騒音を有効に減少させるこ
とができる。
According to this pulley, since the cross-sectional contour of the sheave surface is a convex curve, the amount of misalignment due to shifting at radially inward and outward positions with respect to the radial position of the gear ratio 1 is reduced, or Since it can be eliminated, excessive abrasion and noise due to one side contact of the V-belt can be effectively reduced.

【0007】なお、この発明のプーリでは、前記シーブ
面の、前記プーリの中心軸線を含む断面での輪郭曲線
の、変速比1の半径R0の点から半径Rの点までの軸線
方向距離xが、基準シーブ角α0,最小半径Rminに
対し、 x=R×tanα0+{k/(R0−Rmin)}×
(R−R0)2 であり、前記kが0<k≦0.021であっても良く、
かかる輪郭曲線のシーブ面によれば、k=0.021の
時に変速に伴う芯ずれ量を0とすることができ、0<k
<0.021の時にそのkの値に応じて従来よりも芯ず
れ量を減らすことができる。
In the pulley according to the present invention, the axial distance x from the radius R0 point of the gear ratio 1 to the radius R point of the contour curve of the cross section including the center axis of the pulley on the sheave surface is determined. , With respect to the reference sheave angle α0 and the minimum radius Rmin, x = R × tan α0 + {k / (R0−Rmin)} ×
(R-R0) 2 , wherein k may be 0 <k ≦ 0.021,
According to the sheave surface of such a contour curve, when k = 0.021, the amount of misalignment due to shifting can be set to 0, and 0 <k
When <0.021, the amount of misalignment can be reduced according to the value of k as compared with the related art.

【0008】また、この発明のプーリでは、側面角が前
記基準シーブ角に等しいα0であるVベルトに用いられ
る場合に、前記kが0<k≦0.0018であっても良
く、kを0<k≦0.0018の範囲にすれば、変速比
が1以上2.5以下の範囲においてVベルトの側面角α
0とプーリのシーブ面のシーブ角αとの差を0.2°以
下とし得て、トルク容量を増加させることができる。
In the pulley according to the present invention, when the side surface angle is used for a V-belt having α0 equal to the reference sheave angle, k may be 0 <k ≦ 0.0018. <K ≦ 0.0018, the lateral angle α of the V-belt in the range of the speed ratio of 1 to 2.5.
The difference between 0 and the sheave angle α of the sheave surface of the pulley can be set to 0.2 ° or less, so that the torque capacity can be increased.

【0009】この一方、前記kが0.0018<k≦
0.021である前記ベルト式CVT用プーリに用いら
れるこの発明のプーリ用Vベルトは、側面角が内周側か
ら外周側へ向けて前記プーリの最大シーブ角αmaxに
等しい角度γmaxから前記プーリの最小シーブ角αm
inに等しい角度γminまで連続的に変化しているこ
とを特徴としている。
On the other hand, k is 0.0018 <k ≦
The V-belt for a pulley of the present invention, which is used for the belt-type CVT pulley of 0.021, has a side surface angle from an inner peripheral side to an outer peripheral side, the angle of which is equal to the maximum sheave angle αmax of the pulley. Minimum sheave angle αm
It is characterized in that it continuously changes up to an angle γmin equal to in.

【0010】kが0.0018<k≦0.021の場合
は、Vベルトの側面角が一定であるとその側面角とプー
リのシーブ面のシーブ角αとの差が0.2°以上となっ
てトルク容量が減少する場合がでてくる処、上記Vベル
トによれば、側面角が内周側から外周側へ向けて前記プ
ーリの最大シーブ角αmaxに等しい角度γmaxから
前記プーリの最小シーブ角αminに等しい角度γmi
nまで連続的に変化しているので、Vベルトがその側面
の、シーブ面のシーブ角に対応する角度の部分でシーブ
面に接触し得て、トルク容量の減少を有効に防止するこ
とができる。
When k is 0.0018 <k ≦ 0.021, if the side angle of the V-belt is constant, the difference between the side angle and the sheave angle α of the sheave surface of the pulley is 0.2 ° or more. According to the above-mentioned V-belt, when the torque capacity decreases, the V-belt has a minimum side sheave of the pulley from an angle γmax equal to the maximum sheave angle αmax of the pulley from the inner peripheral side to the outer peripheral side. Angle γmi equal to angle αmin
Since the V-belt continuously changes to n, the V-belt can come into contact with the sheave surface at a portion of the side surface at an angle corresponding to the sheave angle of the sheave surface, and a reduction in torque capacity can be effectively prevented. .

【0011】[0011]

【発明の実施の形態】以下に、この発明の実施の形態を
実施例によって、図面に基づき詳細に説明する。ここ
に、図1は、この発明のベルト式CVT用プーリの一実
施例を示す、そのプーリの中心軸線を含む断面図であ
り、図中符号1はその実施例のプーリ(図では左半部の
み示す)、1aはシーブ面を示す。この実施例では、図
示しないVベルトを巻き掛ける無段変速機構の入力用お
よび出力用のプーリ1(図では片側のみ示す)間の軸間
距離が160mm、Vベルトの周長が700mmとさ
れ、それら入出力用のプーリ1が、変速比=0.4で芯
ずれ量が0となるようにセットされており、基準シーブ
角α0は11°とされている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a belt type CVT pulley according to an embodiment of the present invention, including a center axis of the pulley. In the drawing, reference numeral 1 denotes a pulley of the embodiment (the left half in the drawing). 1a) indicates a sheave surface. In this embodiment, the distance between the shafts between the input and output pulleys 1 (only one side is shown in the drawing) of the continuously variable transmission mechanism around which a V-belt (not shown) is wound is 160 mm, and the circumference of the V-belt is 700 mm. The pulleys 1 for input and output are set so that the misalignment amount becomes 0 at a gear ratio = 0.4, and the reference sheave angle α0 is 11 °.

【0012】この実施例のプーリ1のシーブ面1aは、
凸曲面状に形成されており、そのシーブ面1aの、プー
リ1の中心軸線を含む断面での輪郭曲線は、図1に示す
ように、シーブ角が連続的に変化するように滑らかな凸
曲線とされている。すなわちここにおけるシーブ面1a
の断面輪郭曲線は、変速比1となる半径R0の点で、従
来のシーブ角一定のプーリのシーブ角に等しい基準シー
ブ角α0=11°となり、その曲線上の半径Rの点の、
上記半径R0の点に対する軸線方向距離xは、次式の二
次方程式で表されるものとなっている。
The sheave surface 1a of the pulley 1 of this embodiment is
The contour curve of the sheave surface 1a in a section including the central axis of the pulley 1 has a smooth convex curve such that the sheave angle changes continuously as shown in FIG. It has been. That is, the sheave surface 1a here
Is a reference sheave angle α0 = 11 ° which is equal to the sheave angle of the conventional pulley having a constant sheave angle at a point of a radius R0 at which the gear ratio is 1, and the point of the radius R on the curve is
The axial distance x with respect to the point having the radius R0 is represented by the following quadratic equation.

【数1】 (Equation 1)

【0013】ここで、変速比と半径Rの点におけるシー
ブ角αとの関係は、係数kによって変化し、k=0.0
08のときは、図2に示すようになる。このときの変速
比と芯ずれ量との関係は、図3に示すようになり、直線
形状の断面輪郭線を持つ従来のシーブ面に対し、最大芯
ずれ量が約0.4mm減少することがわかる。
Here, the relationship between the gear ratio and the sheave angle α at the point of the radius R is changed by a coefficient k, and k = 0.0
At the time of 08, it becomes as shown in FIG. The relationship between the gear ratio and the amount of misalignment at this time is as shown in FIG. 3, and the maximum amount of misalignment can be reduced by about 0.4 mm with respect to the conventional sheave surface having a linear cross-sectional profile. Understand.

【0014】すなわち、k=0.021までは、kを大
きくする程芯ずれ量が減少し、k=0.021のとき、
変速比とシーブ角αとの関係が図4に示すようになっ
て、変速比と芯ずれ量との関係は、図5に示すように、
変速比の変化にかかわらず常に芯ずれ量が実質上0とな
る。
That is, up to k = 0.021, the misalignment decreases as k increases, and when k = 0.021,
The relationship between the gear ratio and the sheave angle α is as shown in FIG. 4, and the relationship between the gear ratio and the misalignment amount is as shown in FIG.
The amount of misalignment always becomes substantially zero irrespective of the change in the gear ratio.

【0015】そして、kを0.021よりもさらに大き
くすると、基準シーブ角α0からのシーブ角のずれが大
きくなる一方、芯ずれ量はむしろ増加する。従って、こ
の実施例では、kを0<k≦0.021の範囲に設定し
ており、この実施例のプーリ1の他の部分(溝幅を変化
させる機構部等)の構成は、従来のプーリ1と同様であ
る。
If k is made larger than 0.021, the deviation of the sheave angle from the reference sheave angle α0 increases, while the amount of misalignment increases. Therefore, in this embodiment, k is set in the range of 0 <k ≦ 0.021, and the other parts of the pulley 1 of this embodiment (such as a mechanism for changing the groove width) are the same as the conventional ones. Same as the pulley 1.

【0016】かかる実施例のプーリ1によれば、変速比
1の半径方向位置に対し半径方向内外方位置での変速に
伴う芯ずれ量をkの値に応じて減少させ、もしくはなく
すことができるので、Vベルトの片当たりによる過度の
摩耗や騒音を有効に減少させることができる。
According to the pulley 1 of this embodiment, the amount of misalignment due to shifting at radially inner and outer positions with respect to the radial position of the gear ratio 1 can be reduced or eliminated according to the value of k. As a result, excessive wear and noise due to one-sided contact of the V-belt can be effectively reduced.

【0017】ところで、シーブ角がVベルトの側面角と
異なっていると、Vベルトのトルク容量が増減する可能
性がある。これにつき本願出願人は先に特開平11−0
18176号公報にて、Vベルトの側面角とシーブ角と
の差と、滑り限界トルク比との関係を開示しており、そ
の関係は図6(a)に示す如きものである。なお、ここ
では図6(b)に示すように、Vベルトの側面角をγ、
シーブ角をαとしている。このグラフから明らかなよう
に、Vベルトの側面角とシーブ角との差(γ−α)が
0.2°以下の場合は滑り限界トルク比ひいてはトルク
容量が1よりも大きくなるが、その差が0.2°を超え
ると、滑り限界トルク比が1よりも小さくなく可能性が
ある。
If the sheave angle is different from the side angle of the V-belt, the torque capacity of the V-belt may increase or decrease. To this end, the applicant of the present application has previously described in
Japanese Patent No. 18176 discloses a relationship between a difference between a side angle and a sheave angle of a V-belt and a slip limit torque ratio, and the relationship is as shown in FIG. Here, as shown in FIG. 6B, the side angle of the V-belt is γ,
The sheave angle is α. As is clear from this graph, when the difference (γ-α) between the side angle of the V-belt and the sheave angle is 0.2 ° or less, the slip limit torque ratio and, consequently, the torque capacity become larger than 1. Exceeds 0.2 °, the slip limit torque ratio may not be smaller than 1.

【0018】すなわち、図7はk=0.0018のとき
の変速比とシーブ角との関係を示していて、このときの
最大変速比におけるVベルトの側面角とシーブ角との差
が約0.2°であるから、kの値が0<k≦0.001
8の範囲であれば、変速比が1以上かつ2.5以下の範
囲で、0<β−α≦0.2°となり、トルク容量が増加
する。
That is, FIG. 7 shows the relationship between the gear ratio and the sheave angle when k = 0.0018, and the difference between the side angle and the sheave angle of the V-belt at the maximum gear ratio at this time is about 0. .2 °, the value of k is 0 <k ≦ 0.001
In the range of 8, when the speed ratio is in the range of 1 or more and 2.5 or less, 0 <β−α ≦ 0.2 °, and the torque capacity increases.

【0019】そこで上記実施例では、側面角γが上記基
準シーブ角α0に等しいVベルトに用いられるプーリ1
について、特に、上記kの値を0<k≦0.0018の
範囲に設定する。かかるプーリ1によれば、変速比が1
以上かつ2.5以下の範囲において、Vベルトの側面角
γ=α0とシーブ面のシーブ角αとの差を0.2°以下
とし得て、トルク容量を増加させることができる。しか
も、そのときの芯ずれ量は、図8に示すように、直線形
状の断面輪郭線を持つ従来のシーブ面に対し、最大で約
0.1mm減少させることができる。
Therefore, in the above-described embodiment, the pulley 1 used for the V-belt whose side surface angle γ is equal to the reference sheave angle α0 is used.
In particular, the value of k is set in the range of 0 <k ≦ 0.0018. According to the pulley 1, the gear ratio is 1
In the range of not less than 2.5 and not more than 2.5, the difference between the side angle γ = α0 of the V-belt and the sheave angle α of the sheave surface can be not more than 0.2 °, and the torque capacity can be increased. In addition, as shown in FIG. 8, the amount of misalignment at that time can be reduced by a maximum of about 0.1 mm with respect to a conventional sheave surface having a linear cross-sectional profile.

【0020】係数kが、0.0018<k≦0.021
の範囲の場合には、Vベルトの側面角が一定であるとト
ルク容量が減少する可能性がある。図9および図15
は、かかるトルク容量減少を防止するための、この発明
のプーリ用Vベルトの二つの実施例を示す断面図であ
り、これら二つの実施例のVベルト2ではそれぞれ、両
側面2aの側面角が、外周側(図では上側)の最大側面
角γmaxから内周側の最小側面角γminまで連続的
に変化している。これ以外の点は従来のVベルト2と同
様である。
When the coefficient k is 0.0018 <k ≦ 0.021
If the side angle of the V-belt is constant, the torque capacity may decrease. 9 and 15
FIG. 3 is a cross-sectional view showing two embodiments of a pulley V-belt of the present invention for preventing such a decrease in torque capacity. In the V-belt 2 of these two embodiments, the side angles of both side surfaces 2a are respectively reduced. , Continuously changes from the maximum side angle γmax on the outer side (upper side in the figure) to the minimum side angle γmin on the inner side. The other points are the same as those of the conventional V belt 2.

【0021】そして上記γmaxおよびγminは、図
10に示すように、特にkが0.0018<k≦0.0
21の範囲に設定された上記実施例のプーリ1の、シー
ブ面1aの最大半径Rmaxの部分の最大シーブ角αm
axおよび最小半径Rminの部分の最小シーブ角αm
inにそれぞれ一致している。
The above γmax and γmin are, as shown in FIG. 10, particularly k is 0.0018 <k ≦ 0.0.
21, the maximum sheave angle αm of the portion of the pulley 1 of the above embodiment set to the maximum radius Rmax of the sheave surface 1a.
ax and the minimum sheave angle αm of the minimum radius Rmin
in respectively.

【0022】かかる実施例のVベルト2によれば、その
側面2aの、シーブ面1aのシーブ角に対応する角度の
部分でシーブ面1aに接触し得て、トルク容量の減少を
有効に防止することができる。
According to the V-belt 2 of this embodiment, the side surface 2a can come into contact with the sheave surface 1a at an angle corresponding to the sheave angle of the sheave surface 1a, thereby effectively preventing a decrease in torque capacity. be able to.

【0023】上記実施例では、シーブ面が二次方程式で
表される断面輪郭曲線を持つようにしたが、この発明に
おいては、基準シーブ角α0に対する最小シーブ角αm
inの角度差Δαで形状を表して、芯ずれ量を低減させ
ることもできる。すなわち、上記二次方程式においてk
=0のときΔα=0°、k=0.021のときΔα=
2.4°となるかとから、0°<Δα≦2.4°であれ
ば、芯ずれ量を低減させることができる。
In the above embodiment, the sheave surface has a sectional profile curve expressed by a quadratic equation. In the present invention, however, the minimum sheave angle αm with respect to the reference sheave angle α0
It is also possible to reduce the amount of misalignment by expressing the shape by the angle difference Δα of in. That is, in the above quadratic equation, k
= 0 when Δα = 0 ° and when k = 0.02 Δα =
From 0 °, if 0 ° <Δα ≦ 2.4 °, the amount of misalignment can be reduced.

【0024】図14(a)は、Vベルトの側面角とシー
ブ角との差と、Vベルトの振動加速度との、実験で求め
た関係を示す特性図であり、ここでは図14(b)に示
すように、Vベルト2の側面2aの側面角をγ、プーリ
1のシーブ面1aのシーブ角をαとしている。図14
(a)の特性図から明らかなように、Vベルトの側面角
とシーブ角との差(γ−α)が0.15°以上かつ0.
35°以下であれば、振動加速度が、好ましい所定の閾
値以下となる。
FIG. 14A is a characteristic diagram showing the relationship between the difference between the side angle of the V-belt and the sheave angle, and the vibration acceleration of the V-belt, obtained by experiments. As shown in FIG. 3, the side angle of the side surface 2a of the V-belt 2 is γ, and the sheave angle of the sheave surface 1a of the pulley 1 is α. FIG.
As is clear from the characteristic diagram of (a), the difference (γ-α) between the side angle of the V-belt and the sheave angle is 0.15 ° or more and 0.1 °.
When the angle is 35 ° or less, the vibration acceleration is equal to or less than a preferable predetermined threshold.

【0025】また、自動車の変速機として使用する場
合、変速比が最小の状態で使用する頻度が高いため、変
速比が最小のときにベルト振動加速度を低減させること
が必要である。そこで、変速比が最小のとき、すなわち
従動プーリの最小半径の部分にVベルトが位置する状態
において、Vベルトの側面角γ=α0と最小シーブ角α
minとの差Δαを0.15°≦Δα≦0.35°とす
れば、芯ずれ量を低減させると同時に振動加速度を低減
させることができる。
Further, when used as a transmission for an automobile, it is frequently used in a state in which the gear ratio is at a minimum. Therefore, it is necessary to reduce the belt vibration acceleration when the gear ratio is at a minimum. Therefore, when the speed ratio is minimum, that is, in a state where the V belt is located at the minimum radius portion of the driven pulley, the side angle γ of the V belt = γ0 and the minimum sheave angle α
If the difference Δα from min is 0.15 ° ≦ Δα ≦ 0.35 °, the amount of misalignment can be reduced and the vibration acceleration can be reduced.

【0026】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、特許請求の範囲
の記載範囲内で適宜に変更することができるものであ
り、例えば、上記実施例ではシーブ面が、二次方程式で
表されるかまたは基準シーブ角と最小シーブ角との差で
表される断面輪郭曲線を持つようにしたが、芯ずれを減
少させ、もしくは0とするような実験式で表される断面
輪郭曲線を持つようにすることもできる。
Although the present invention has been described with reference to the illustrated examples, the present invention is not limited to the above examples, but can be appropriately modified within the scope of the claims. In the embodiment, the sheave surface has a sectional profile curve represented by a quadratic equation or a difference between the reference sheave angle and the minimum sheave angle, but the misalignment is reduced or set to zero. It is also possible to have a sectional profile curve represented by such an empirical formula.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明のベルト式CVT用プーリの一実施
例を示す、そのプーリの中心軸線を含む断面図である。
FIG. 1 is a sectional view showing an embodiment of a belt type CVT pulley of the present invention, including a central axis of the pulley.

【図2】 k=0.008のときの上記実施例のプーリ
の変速比とシーブ角αとの関係を示す関係線図である。
FIG. 2 is a relationship diagram showing the relationship between the gear ratio of the pulley and the sheave angle α in the embodiment when k = 0.008.

【図3】 k=0.008のときの上記実施例のプーリ
と従来のプーリとの変速比と芯ずれ量との関係を示す関
係線図である。
FIG. 3 is a relationship diagram showing the relationship between the gear ratio and the amount of misalignment between the pulley of the embodiment and the conventional pulley when k = 0.008.

【図4】 k=0.021のときの上記実施例のプーリ
の変速比とシーブ角αとの関係を示す関係線図である。
FIG. 4 is a relationship diagram showing the relationship between the gear ratio of the pulley and the sheave angle α in the embodiment when k = 0.021.

【図5】 k=0.021のときの上記実施例のプーリ
と従来のプーリとの変速比と芯ずれ量との関係を示す関
係線図である。
FIG. 5 is a relationship diagram showing the relationship between the gear ratio of the pulley of the above embodiment and the conventional pulley and the amount of misalignment when k = 0.021.

【図6】 (a)は、Vベルトの側面角とシーブ角との
差と、滑り限界トルク比との関係を示す関係線図、
(b)は、Vベルトの側面角γとシーブ角αとを図示す
る説明図である。
FIG. 6A is a relationship diagram showing a relationship between a difference between a side angle and a sheave angle of a V-belt and a slip limit torque ratio;
(B) is an explanatory view illustrating the side angle γ and the sheave angle α of the V-belt.

【図7】 k=0.0018のときの上記実施例のプー
リの変速比とシーブ角αとの関係を示す関係線図であ
る。
FIG. 7 is a relationship diagram showing the relationship between the gear ratio of the pulley and the sheave angle α in the embodiment when k = 0.0018.

【図8】 k=0.0018のときの上記実施例のプー
リと従来のプーリとの変速比と芯ずれ量との関係を示す
関係線図である。
FIG. 8 is a relationship diagram showing the relationship between the gear ratio of the pulley of the above embodiment and the conventional pulley and the amount of misalignment when k = 0.0018.

【図9】 この発明のプーリ用Vベルトの一実施例を示
す断面図である。
FIG. 9 is a cross-sectional view showing one embodiment of the pulley V-belt of the present invention.

【図10】 図9に示す実施例のVベルトが使用される
プーリを示す、そのプーリの中心軸線を含む断面図であ
る。
FIG. 10 is a sectional view showing a pulley in which the V-belt of the embodiment shown in FIG. 9 is used, including a central axis of the pulley.

【図11】 従来のベルト式CVT用プーリおよびVベ
ルトの一例を示す、そのプーリの中心軸線を含む断面図
である。
FIG. 11 is a sectional view showing an example of a conventional belt-type CVT pulley and a V-belt, including a central axis of the pulley.

【図12】 シーブ角を一定として従来のプーリとシー
ブ角を二段階にした従来のプーリとの変速比と芯ずれ量
との関係を示す関係線図である。
FIG. 12 is a relationship diagram showing a relationship between a gear ratio and a misalignment amount between a conventional pulley having a constant sheave angle and a conventional pulley having a two-stage sheave angle.

【図13】 上記シーブ角を二段階にした従来のプーリ
の一例を示す、そのプーリの中心軸線を含む断面図であ
る。
FIG. 13 is a sectional view showing an example of a conventional pulley in which the sheave angle is set in two stages, including a central axis of the pulley.

【図14】 (a)は、Vベルトの側面角とシーブ角と
の差と、振動加速度との関係を示す特性図、(b)は、
Vベルトの側面角γとシーブ角αとを図示する説明図で
ある。
14A is a characteristic diagram showing a relationship between a difference between a side angle of a V-belt and a sheave angle and a vibration acceleration, and FIG.
FIG. 4 is an explanatory diagram illustrating a side angle γ and a sheave angle α of a V-belt.

【図15】 この発明のプーリ用Vベルトのさらなる一
実施例を示す断面図である。
FIG. 15 is a sectional view showing a further embodiment of the pulley V-belt of the present invention.

【符号の説明】[Explanation of symbols]

1 プーリ 1a シーブ面 2 Vベルト 2a 側面 α シーブ角 α0 基準シーブ角 αmax 最大シーブ角 αmin 最小シーブ角 γ 側面角 γmax 最大側面角 γmin 最小側面角 x 距離 1 Pulley 1a Sheave surface 2 V belt 2a Side surface α Sheave angle α0 Reference sheave angle αmax Maximum sheave angle αmin Minimum sheave angle γ Side angle γmax Maximum side angle γmin Minimum side angle x distance

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ベルト式CVT用プーリのシーブ面の、
そのプーリの中心軸線を含む断面での輪郭曲線が、シー
ブ角が連続的に変化する滑らかな凸曲線であることを特
徴とする、ベルト式CVT用プーリ。
1. A sheave surface of a pulley for a belt type CVT,
A belt-type CVT pulley, wherein a contour curve in a cross section including a center axis of the pulley is a smooth convex curve in which a sheave angle changes continuously.
【請求項2】 前記シーブ面の、前記プーリの中心軸線
を含む断面での輪郭曲線の、変速比1の半径R0の点か
ら半径Rの点までの軸線方向距離xが、基準シーブ角α
0,最小半径Rminに対し、 x=R×tanα0+{k/(R0−Rmin)}×
(R−R0)2 であり、 前記kが0<k≦0.021であることを特徴とする、
請求項1記載のベルト式CVT用プーリ。
2. An axial distance x from a radius R0 point of a gear ratio 1 to a radius R point of a contour curve of a section of the sheave surface including a center axis of the pulley is a reference sheave angle α.
0, for the minimum radius Rmin, x = R × tanα0 + {k / (R0−Rmin)} ×
(R-R0) 2 , wherein k is 0 <k ≦ 0.021,
The pulley for a belt type CVT according to claim 1.
【請求項3】 側面角が前記基準シーブ角に等しいα0
であるVベルトに用いられる前記プーリにおいて、 前記kが0<k≦0.0018であることを特徴とす
る、請求項1または2記載のベルト式CVT用プーリ。
3. The angle α0 whose side angle is equal to said reference sheave angle.
3. The pulley according to claim 1, wherein the k is 0 <k ≦ 0.0018. 4.
【請求項4】 前記kが0.0018<k≦0.021
である請求項2記載のベルト式CVT用プーリに用いら
れるVベルトにおいて、 側面角が内周側から外周側へ向けて前記プーリの最大シ
ーブ角αmaxに等しい角度γmaxから前記プーリの
最小シーブ角αminに等しい角度γminまで連続的
に変化していることを特徴とする、プーリ用Vベルト。
4. The value of k is 0.0018 <k ≦ 0.021.
3. The V-belt used for a belt type CVT pulley according to claim 2, wherein a side surface angle from an inner peripheral side to an outer peripheral side is equal to a maximum sheave angle αmax of the pulley from an angle γmax equal to a minimum sheave angle αmin of the pulley. A V-belt for pulleys, wherein the V-belt continuously changes up to an angle γmin equal to:
【請求項5】 側面角が前記基準シーブ角に等しいα0
であるVベルトに用いられる前記プーリにおいて、 基準シーブ角α0に対する最小シーブ角αminの角度
差Δαが、 0°<Δα≦2.4°であることを特徴とする、請求項
1記載のベルト式CVT用プーリ。
5. A surface angle α0 equal to said reference sheave angle.
The belt type according to claim 1, wherein in the pulley used for the V-belt, an angle difference Δα between a minimum sheave angle αmin and a reference sheave angle α0 is 0 ° <Δα ≦ 2.4 °. Pulley for CVT.
【請求項6】 前記角度差Δαが、0.15°≦Δα≦
0.35°であることを特徴とする、請求項5記載のベ
ルト式CVT用プーリ。
6. The angle difference Δα is 0.15 ° ≦ Δα ≦
The belt type CVT pulley according to claim 5, wherein the angle is 0.35 °.
JP2000210012A 2000-07-11 2000-07-11 Belt-type cvt pulley and v-belt for pulley Pending JP2002031215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210012A JP2002031215A (en) 2000-07-11 2000-07-11 Belt-type cvt pulley and v-belt for pulley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210012A JP2002031215A (en) 2000-07-11 2000-07-11 Belt-type cvt pulley and v-belt for pulley

Publications (2)

Publication Number Publication Date
JP2002031215A true JP2002031215A (en) 2002-01-31
JP2002031215A5 JP2002031215A5 (en) 2006-11-09

Family

ID=18706343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210012A Pending JP2002031215A (en) 2000-07-11 2000-07-11 Belt-type cvt pulley and v-belt for pulley

Country Status (1)

Country Link
JP (1) JP2002031215A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1022157C2 (en) 2002-12-12 2004-06-15 Doornes Transmissie Bv Continuously variable transmission.
NL1024918C2 (en) * 2003-12-01 2005-06-02 Bosch Gmbh Robert Continuously variable transmission for a motor vehicle is provided with a primary pulley and a secondary pulley, around which a belt is fitted, which is clamped between two conical disks of the primary pulley
NL1027685C2 (en) * 2004-12-08 2006-06-09 Bosch Gmbh Robert Drive belt for a transmission with bombed pulley discs.
NL1027887C2 (en) * 2004-12-24 2006-06-27 Bosch Gmbh Robert Transmission with bombed pulley discs and a driving belt.
JP2006527829A (en) * 2003-06-16 2006-12-07 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Continuously variable transmission
US7163476B2 (en) 2003-01-23 2007-01-16 Honda Motor Co., Ltd. Belt type continuously variable transmission
JP2008519209A (en) * 2004-11-03 2008-06-05 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Transmission with convex pulley sheave and drive belt
WO2009031277A1 (en) * 2007-09-05 2009-03-12 Bando Chemical Industries, Ltd. Belt type continuously variable transmission
JP2009515108A (en) * 2005-11-08 2009-04-09 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Transmission with pulley and drive belt
NL1035388C2 (en) * 2008-05-02 2009-11-03 Bosch Gmbh Robert Transmission with bombed pulley discs and a driving belt.
WO2010060406A1 (en) * 2008-11-03 2010-06-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Disk set arrangement for a chain cvt having a function-optimized disk set contour
EP2314896A1 (en) * 2009-10-21 2011-04-27 Yamaha Hatsudoki Kabushiki Kaisha Continuously variable transmission and saddle ride-type vehicle
JP2011190823A (en) * 2010-03-11 2011-09-29 Daihatsu Motor Co Ltd Chain-type continuously variable transmission
WO2014006984A1 (en) * 2012-07-06 2014-01-09 本田技研工業株式会社 Element for metallic belt
US9279475B2 (en) 2012-07-06 2016-03-08 Honda Motor Co., Ltd. Element for metallic belt
DE112009004505B4 (en) * 2009-03-13 2017-07-06 Toyota Jidosha Kabushiki Kaisha V-BELT

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431674B2 (en) 2002-12-12 2008-10-07 Van Doorne's Transmissie B.V. Continuously variable transmission
WO2004053361A1 (en) 2002-12-12 2004-06-24 Van Doorne's Transmissie B.V. Continuously variable transmission
NL1022157C2 (en) 2002-12-12 2004-06-15 Doornes Transmissie Bv Continuously variable transmission.
KR101248659B1 (en) 2002-12-12 2013-03-28 보쉬 트랜스미션 테크놀러지 비.브이. Continuously variable transmission
CN100394079C (en) * 2002-12-12 2008-06-11 范多尔内斯变速器公司 Continuously variable transmission
US7163476B2 (en) 2003-01-23 2007-01-16 Honda Motor Co., Ltd. Belt type continuously variable transmission
JP4707661B2 (en) * 2003-06-16 2011-06-22 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Continuously variable transmission
JP2006527829A (en) * 2003-06-16 2006-12-07 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Continuously variable transmission
NL1024918C2 (en) * 2003-12-01 2005-06-02 Bosch Gmbh Robert Continuously variable transmission for a motor vehicle is provided with a primary pulley and a secondary pulley, around which a belt is fitted, which is clamped between two conical disks of the primary pulley
WO2005083304A1 (en) * 2003-12-01 2005-09-09 Robert Bosch Gmbh Continuously variable transmission
KR101206641B1 (en) * 2003-12-01 2012-11-29 로베르트 보쉬 게엠베하 Continuously variable transmission
JP2008519209A (en) * 2004-11-03 2008-06-05 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Transmission with convex pulley sheave and drive belt
NL1027685C2 (en) * 2004-12-08 2006-06-09 Bosch Gmbh Robert Drive belt for a transmission with bombed pulley discs.
JP2008523335A (en) * 2004-12-08 2008-07-03 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Gearbox drive belt with convex pulley sheave
WO2006062400A1 (en) * 2004-12-08 2006-06-15 Robert Bosch Gmbh Drive belt for a transmission with convex pulley sheaves
WO2006068468A1 (en) * 2004-12-24 2006-06-29 Robert Bosch Gmbh Transmission with convex pulley sheaves and a drive belt
NL1027887C2 (en) * 2004-12-24 2006-06-27 Bosch Gmbh Robert Transmission with bombed pulley discs and a driving belt.
JP2009515108A (en) * 2005-11-08 2009-04-09 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Transmission with pulley and drive belt
JP2009063048A (en) * 2007-09-05 2009-03-26 Bando Chem Ind Ltd Belt type continuously variable transmission
WO2009031277A1 (en) * 2007-09-05 2009-03-12 Bando Chemical Industries, Ltd. Belt type continuously variable transmission
CN102099601A (en) * 2008-05-02 2011-06-15 罗伯特·博世有限公司 Transmission with convex pulley sheaves and a drive belt
WO2009134122A2 (en) * 2008-05-02 2009-11-05 Robert Bosch Gmbh Transmission with convex pulley sheaves and a drive belt
NL1035388C2 (en) * 2008-05-02 2009-11-03 Bosch Gmbh Robert Transmission with bombed pulley discs and a driving belt.
WO2009134122A3 (en) * 2008-05-02 2009-12-23 Robert Bosch Gmbh Transmission with convex pulley sheaves and a drive belt
US8491426B2 (en) 2008-05-02 2013-07-23 Robert Bosch Gmbh Transmission with convex pulley sheaves and a drive belt
US8795110B2 (en) 2008-11-03 2014-08-05 Schaeffler Technologies Gmbh & Co. Kg Disk set arrangement for a chain-CVT having a function-optimized disk set contour
WO2010060406A1 (en) * 2008-11-03 2010-06-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Disk set arrangement for a chain cvt having a function-optimized disk set contour
DE112009004505B4 (en) * 2009-03-13 2017-07-06 Toyota Jidosha Kabushiki Kaisha V-BELT
EP2314896A1 (en) * 2009-10-21 2011-04-27 Yamaha Hatsudoki Kabushiki Kaisha Continuously variable transmission and saddle ride-type vehicle
JP2011190823A (en) * 2010-03-11 2011-09-29 Daihatsu Motor Co Ltd Chain-type continuously variable transmission
CN104334918A (en) * 2012-07-06 2015-02-04 本田技研工业株式会社 Element for metallic belt
US9279475B2 (en) 2012-07-06 2016-03-08 Honda Motor Co., Ltd. Element for metallic belt
JP5877900B2 (en) * 2012-07-06 2016-03-08 本田技研工業株式会社 Metal belt element
US9556931B2 (en) 2012-07-06 2017-01-31 Honda Motor Co., Ltd. Element for metallic belt
WO2014006984A1 (en) * 2012-07-06 2014-01-09 本田技研工業株式会社 Element for metallic belt

Similar Documents

Publication Publication Date Title
JP2002031215A (en) Belt-type cvt pulley and v-belt for pulley
US4526559A (en) Tension-type belt/pulley system for a continuously variable transmission
US6440023B2 (en) Metal V-belt
JP3186894B2 (en) V-belt type continuously variable transmission
US6659248B2 (en) Spring clutch
JP2008039044A (en) Power transmission chain, manufacturing method of power transmission member for power transmission chain and power transmission device
JPH1030698A (en) V-belt type continuously variable transmission
EP0269631B1 (en) V-belt pulley and drive
EP0984198B1 (en) Continuously variable transmission
WO2007055560A1 (en) Transmission with pulleys and a drive belt
US20050266944A1 (en) Belt type continuously variable transmission
JP4454021B2 (en) Continuously variable transmission
WO2004048804A1 (en) Metallic belt for stepless speed changer
JP2008101747A (en) Power transmission chain and power-transmission equipment with it
US6708383B2 (en) Method for setting free-state diameter of metal ring
US6763602B2 (en) Method for measuring free-state diameter of metal ring
JP3912150B2 (en) Belt for continuously variable transmission
KR20010015437A (en) Drive belt and transmission wherein such is used
JP5410743B2 (en) Continuously variable transmission
JPS6340979B2 (en)
JP2002054688A (en) Belt for continuously variable transmission
US3396591A (en) Infinitely variable mechanical speed transmission
JP3909657B2 (en) Belt type continuously variable transmission
JP3743902B2 (en) Belt drive system
JP7396179B2 (en) Rotating parts for continuously variable transmissions

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512