JP3663206B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP3663206B2
JP3663206B2 JP2004203963A JP2004203963A JP3663206B2 JP 3663206 B2 JP3663206 B2 JP 3663206B2 JP 2004203963 A JP2004203963 A JP 2004203963A JP 2004203963 A JP2004203963 A JP 2004203963A JP 3663206 B2 JP3663206 B2 JP 3663206B2
Authority
JP
Japan
Prior art keywords
doppler
data
time
range gate
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004203963A
Other languages
English (en)
Other versions
JP2004321824A (ja
Inventor
達朗 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004203963A priority Critical patent/JP3663206B2/ja
Publication of JP2004321824A publication Critical patent/JP2004321824A/ja
Application granted granted Critical
Publication of JP3663206B2 publication Critical patent/JP3663206B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、受信信号を周波数解析することによりドプラスペクトラムを得る超音波診断装置に関する。
超音波は医学的な見地から様々に応用されているが、その主流は超音波パルス反射法を用いて生体の軟部組織の断層像を得る超音波診断装置である。この超音波診断装置は無侵襲検査法で、組織の断層像を表示するものであり、X線診断装置、X線CT装置、MRIおよび核医学診断装置などの他の診断装置に比べて、リアルタイム表示が可能、装置が小型で安価、X線などの被曝がなく安全性が高い、ドプラ効果を利用してドプラスペクトラムや血流イメージングが可能である等の独占的な特徴を有している。ここでは、ドプラスペクトラムに着目する。ドプラスペクトラムの表示としては、縦軸にドプラ周波数(速度)、横軸に時間、輝度を各ドプラ周波数成分の強さ(パワー)でMモードのようにスクロール表示が使用される。
このような超音波診断装置のドプラスペクトラム機能において、感度向上を目的として、バースト波が実用化されている。バースト波とは複数の超音波パルスの系列をいう。バースト波の時間幅をバースト長という。バースト波の場合、パルス波と違って、レンジゲートマーカ内のドプラ信号の積分処理に工夫が必要である。図7(a)に示す従前のケースでは、レンジゲートマーカの深さ及び長さに相当する期間t1 〜t2 に受信されるドプラ信号だけを積分処理に取り込む。なお、t1 は、バースト波の送信時刻t0 から、レンジゲートマーカの深さに相当する時間(往復を考慮してレンジゲートマーカの深さの2倍の距離を超音波が伝搬するのに要する時間)を経過した時刻であり、t2 はt1 から、レンジゲートマーカの長さに相当する時間(レンジゲートマーカの長さの2倍の距離を超音波が伝搬するのに要する時間)を経過した時刻である。この従前のケースでは、バースト波のバースト長τを考慮していない、つまり同一反射源からの反射波がバースト長τの期間、継続的に受信されることを考慮していないので、積分信号の感度分布を見て理解されるように、レンジゲートマーカよりτに相当する浅い領域からのドプラ信号が積分処理に取り込まれてしまう。
この問題点を解決するように工夫したケースを図7(b)に示す。このケースでは、バースト波のバースト長τは、レンジゲートマーカの長さに相当する時間の半分に意図的に調整される。そして、レンジゲートマーカの深さ及び長さに相当する期間t1 〜t2 の後半の期間t3 〜t2 に受信されるドプラ信号だけを積分処理に取り込む。結果的に、積分期間とバースト長τとは一致する。このケースでは、積分信号の感度分布を見て理解されるように、レンジゲートマーカ外のドプラ信号は積分処理に取り込まれない。
しかし、図7(b)のケースには次のような問題点がある。距離分解能の著しい低下を回避するために、バースト波のバースト長τは制限される。したがって、レンジゲートマーカが非常に長く設定されたとき、図7(c)に示すように、積分期間が最長のバースト長τmax より長くなってしまうケースが起こり得る。この場合、レンジゲートマーカ内にも関わらず、そこからのドプラ信号が積分処理に全く取り込まれない、いわゆる不感領域が存在してしまう。
また、ドプラスペクトラム機能には、次のような問題もある。パルス波ドプラ(PWドプラ)では、レンジゲートマーカの長さを変化させると、積分期間が変化するが、この積分期間の変化は、実質的にゲインが変化することを意味する。また、連続波ドプラ(CWドプラ)では、ドプラ信号を高域通過型フィルタ(HPF )にかけるが、レート周波数PRF を変化させると、この高域通過型フィルタの入力帯域に対する出力帯域の比が変化するが、この入出力帯域比の変化は、実質的にゲインが変化することを意味する。さらに、PWドプラ、CWドプラの両者に言えることとして、周波数解析としての高速フーリエ変換(FFT )のデータ数の変化は、実質的にゲインが変化することを意味する。したがって、ゲインの変化に伴って、ノイズレベルも変化してしまうという問題があった。
また、PWドプラでは、実質的にレート周波数を低くして、低速検出能を向上させるために、交互スキャンと呼ばれる機能が実用化されている。通常、ある1本のラスタに対して超音波送受信動作をレート周波数で所定回数繰り返しながら、順次次のラスタに移っていくというスキャンが行われる。これに対し、交互スキャンでは、ある1本のラスタに対して超音波送受信動作を1回行い、同じラスタに対する次回の超音波送受信動作までに間に、他の何本かのラスタに対して1回ずつ超音波送受信動作を行うものであり、1本のラスタに関して見ると、超音波送受信動作の間隔が長くなり、実質的にレート周波数が低くなるというものである。なお、同じラスタに対する前後2回の超音波送受信動作の間隙に行う超音波送受信動作の回数を交互段数として定義する。交互段数の増加は、周波数解析のデータ数が一定であれば、データ取り込み時間の延長を意味する。データ取り込み時間の延長は、ドプラスペクトラムの表示上で周波数分解能と時間分解能との比が変化することにつながる。これは好ましくないので、現在の多くの装置には、交互段数が増加すると、それに応じて周波数解析のデータ数を減少させて、周波数分解能と時間分解能との比を一定に保つ機能が装備されている。しかし、周波数解析のデータ数の減少は、S/Nを劣化(低下)させてしまう。
本発明の目的は、交互段数の変化等により周波数解析のデータ数が変化しても、S/Nが劣化(低下)しない超音波診断装置を提供することである。
本発明による超音波診断装置は、超音波プローブと、超音波を被検体内に送信するために前記超音波プローブに送信電圧を印加すると共に、前記超音波プローブを介して反射波を受信することにより受信信号を得る送受信手段と、ドプラスペクトラムを得るために前記受信信号を周波数解析する周波数解析手段と、ノイズレベルを一定に保つために前記周波数解析のデータ数の変化に追従して前記周波数解析手段のゲインを変化させるように前記周波数解析手段を制御し、且つ前記ゲインの変化に伴う信号レベルの変化を補償するために前記送信電圧を変化させるように前記送受信手段を制御する手段とを具備する。
本発明によれば、交互段数の変化等により周波数解析のデータ数が変化しても、周波数解析手段のゲインを変化させることによりノイズレベルを一定に保つことができ、しかも周波数解析手段のゲインの変化に伴う信号レベルの変化を、送信電圧の変化により補償することができる。
以下に、本発明の実施の形態を図面を参照して説明する。
(第1の実施の形態)
図1は第1の実施の形態による超音波診断装置のブロック図である。本実施の形態による超音波診断装置は、超音波プローブ1、送受信系(T/R)2、スペクトラムドプラユニット3、ディジタルスキャンコンバータ(DSC)4、モニタ5、コンソール6とから構成される。
超音波プローブ1は、圧電セラミック等の機械運動/電気信号の可逆的変換素子としての複数の圧電素子が一次元に配列された圧電素子アレイをその先端に装備してなる。
送受信系2は、送信系と受信系とを有する。送信系は、パルス発生器、送信遅延回路、パルサとからなる。パルス発生器は例えば5KHzのレート周波数fr(周期;1/fr 秒)でレートパルスを繰り返し発生する。このレートパルスはチャンネル数に分配され、送信遅延回路に送られる。送信遅延回路は、超音波をビーム状に集束し且つ送信指向性を決定するのに必要な遅延時間を各レートパルスに与える。パルサは、送信遅延回路からレートパルスを受けた時刻で超音波プローブ1の圧電素子にチャンネル毎に送信電圧を印加する。これにより超音波ビームが被検体に送信される。
被検体内の音響インピーダンスの不連続面(反射源)で反射した反射波は超音波プローブ1で受信され、電気信号に変換される。超音波プローブ1から素子毎に出力される電気信号は、チャンネル毎に纏められて受信系に取り込まれる。受信系は、プリアンプ、受信遅延回路、加算器、位相検波回路から構成される。電気信号は、プリアンプで増幅され、受信遅延回路により受信指向性を決定するのに必要な遅延時間を与えられ、そして加算器で加算される。この加算により受信指向性に応じた方向からの反射成分が強調された受信信号が得られる。この受信信号は位相検波回路で位相検波される。これによりドプラ効果による偏移周波数のドプラ信号が得られる。ドプラ信号はスペクトラムドプラユニット3に供給される。
スペクトラムドプラユニット3は、特定の期間に供給されるドプラ信号のみをレンジゲートマーカユニット8で取り出し、そして比較的動きの速い高周波の血流成分と比較的動きの遅い血管壁や弁等の低周波のクラッタ成分とを高域通過型フィルタ9で分離し、続いて高域通過型フィルタ9を通過したドプラ信号を高速フーリエ変換処理回路(FFT )10でリアルタイムで周波数解析することにより、各周波数成分の強さ(パワー)を表すドプラスペクトラムデータを生成する。レンジゲートマーカユニット8でドプラ信号を取り出す特定の期間は、コンソール6を介してBモード画像上に設定されるレンジゲートマーカマーカの深さ及び長さに基づいてコントローラ7で制御される。
高速フーリエ変換処理回路10で得られたドプラスペクトラムデータは、ディジタルスキャンコンバータ4、図示しないディジタルアナログコンバータを介してモニタ5にドプラスペクトラムとして表示される。ドプラスペクトラムの表示としては、縦軸にドプラ周波数(速度)、横軸に時間、輝度を各ドプラ周波数成分の強さ(パワー)として、Mモードのようにスクロール表示が使用される。
レンジゲートマーカユニット8は、ドプラ信号を乗算器(増幅器)11で振幅変調し、振幅変調されたドプラ信号を特定の期間だけ積分器12で積分する。乗算器11による振幅変調データは、関数発生ROM13から供給される。積分器12が積分を実行する特定の期間は、RG幅カウンタ14及びRGスタート位置カウンタ15により調整される。
RGスタート位置カウンタ15は、コントローラ7からレンジゲートマーカの深さに対応するRG位置データの供給を受ける。RGスタート位置カウンタ15は、スキャンの開始からクロックパルスの計数(アップカウント)を開始し、計数値がRG位置データが表す値に達した時、スタートパルスを出力する。
RG幅カウンタ14は、コントローラ7からレンジゲートマーカの長さに対応するRG幅データの供給を受ける。RG幅カウンタ14は、RGスタート位置カウンタ15からスタートパルスを受けた時刻でクロックパルスの計数(アップカウント)を開始し、計数値がRG幅データが表す値に達する時まで計数動作を継続する。したがって、RG幅カウンタ14からは、レンジゲートマーカの深さ及び長さに対応する特定の期間だけ、計数信号が出力される。
積分器12は、RG幅カウンタ14から計数信号が出力されている期間に限り積分を実行する。これにより、特定の期間内の振幅変調されたドプラ信号だけが積分信号として取り出される。
このようにコントローラ7からのRG位置データ及びRG幅データに、レンジゲートユニット8で取り出されるドプラ信号の期間(積分期間)が依存される。換言するとコントローラ7はRG位置データ及びRG幅データを調整することにより積分期間の開始時刻及びその時間幅を自由に変えることができることが理解されよう。
関数発生ROM13は、RG幅カウンタ14から計数信号が出力されている特定の期間だけ係数を乗算器11に出力する。ドプラ信号は乗算器11で関数発生ROM13からの係数に応じて振幅変調される。
関数発生ROM13には、予め複数種類の重み係数が記憶されている。関数発生ROM13には、RG幅カウンタ14からの計数値信号と、コントローラ7からの関数選択信号とがアドレス信号として供給される。アドレス信号に応じたアドレス部の係数が関数発生ROM13から読み出される。コントローラ7は複数種類の関数選択信号の中から、コンソール6を介して選択された感度特性に対応する1つの関数選択信号を選択的に関数発生ROM13に供給する。ここでいう関数とは関数発生ROM13から読み出される係数の時間変化を意味する。第1の関数選択信号のもとでは、関数発生ROM13からは一定の係数(=1.0 )が読み出され、つまり振幅変調処理の無いが如く振る舞われる。第2の関数選択信号のもとでは、関数発生ROM13からは、例えばハミング窓関数を満足するように経時的に変化する係数が読み出される。
次に本実施の形態の動作を説明する。ここで、以下で使用される用語を定義する。レンジゲートマーカの深さに相当する時間とは、超音波送受信の往復を考慮して、レンジゲートマーカの深さの2倍の距離を超音波が伝搬するのに要する時間として定義する。また、レンジゲートマーカの長さに相当する時間とは、レンジゲートマーカの長さの2倍の距離を超音波が伝搬するのに要する時間として定義する。
コントローラ7は、第1のモードと第2のモードとを有する。第1のモードはレンジゲートマーカの長さに相当する時間の半分と、バースト波のバースト長τとが一致する場合に適用され、第2のモードはレンジゲートマーカの長さに相当する時間の半分より、バースト波のバースト長τ(最長のバースト長τmax )が短い場合に適用される。なお、図7(b)を参照して説明した通り、バースト波のバースト長τは、レンジゲートマーカの長さに相当する時間の半分に積極的に調整されるのではあるが、距離分解能の著しい低下を抑える目的であえてバースト長τに制限を与えている由により、設定されるレンジゲートマーカによっては、レンジゲートマーカの長さに相当する時間の半分より、バースト波のバースト長τ(最長のバースト長τmax )が短い場合が発生する。
第1のモードでは、図7(b)を参照して説明した通り、バースト波のバースト長τはレンジゲートマーカの長さに相当する時間の半分に意図的に調整される。時刻t3 〜t2 の期間に供給されるドプラ信号だけがレンジゲートユニット8で積分処理に取り込まれる。時刻t3 は、時刻t1 からバースト長τだけ経過した時刻であり、時刻t1 はバースト波の送信時刻t0 からレンジゲートマーカの深さに相当する時間△Td を経過した時刻である。時刻t2 は時刻t1 からレンジゲートマーカの長さに相当する時間△TRGを経過した時刻、つまりレンジゲートマーカの最深部に相当する時刻である。積分期間は、レンジゲートマーカの長さに相当する時間△TRGの半分(△TRG/2)に設定される。第1のモードでは、積分信号の感度分布を見て理解されるように、レンジゲートマーカ外のドプラ信号は好ましく全く積分処理に取り込まれない。
図2(a),(b)は第2のモードでの積分開始時刻及び積分期間の時間幅を示すタイムチャートであり、同図(a)は第1の関数選択信号に対応し、また同図(b)は第2の関数選択信号に対応する。
第2のモードでは、図2(a),(b)に示すように、時刻t1 ´〜t2 ´の積分期間に供給されるドプラ信号だけがレンジゲートユニット8で積分処理に取り込まれる。時刻t1 ´は、時刻t1 からバースト長τの半分(τ/2)だけ経過した時刻であり、時刻t1 はバースト波の送信時刻t0 からレンジゲートマーカの深さに相当する時間△Td を経過した時刻である。時刻t2 ´は時刻t1 ´からレンジゲートマーカの長さに相当する時間△TRGを経過した時刻である。積分期間は、レンジゲートマーカの長さに相当する時間△TRGに設定される。第2のモードでは、積分信号の感度分布を見て理解されるように、レンジゲートマーカ内に不感領域は存在しない。
このように第2のモードでは、レンジゲートマーカの深さに相当する時刻t1からτ/2だけ遅延した時刻t1 ´で積分を開始し、レンジゲートマーカの長さに相当する時間△TRG、当該積分を継続することにより、レンジゲートマーカより浅い側及び深い側それぞれにτ/2に相当する範囲からのドプラ信号が積分処理に取り込まれてしまうが、図7(a)のケースと比較すると、そのレンジゲートマーカ外のドプラ信号の取り込み量(面積)は絶対的に減少する。また、図7(c)と比較して理解されるように、積分期間がバースト長τより長くなるケースに直面しても、レンジゲートマーカ内の不感領域を完全に排除できる。
さらに図2(b)の積分信号の感度分布から理解されるように、関数発生ROM13から例えばハミング窓関数を満足するように経時的に変化する係数が読み出され、ドプラ信号に乗算される場合、感度分布が中央付近で高くなり、レンジゲートマーカより浅い側及び深い側それぞれにτ/2に相当する範囲の感度分布が抑制される。
(第2の実施の形態)
図3は第2の実施の形態による超音波診断装置のブロック図である。本実施の形態による超音波診断装置は、超音波プローブ21、送受信系(T/R)22、スペクトラムドプラユニット23、ディジタルスキャンコンバータ(DSC)24、モニタ25、コンソール26とから構成される。
超音波プローブ21は、第1の実施の形態の超音波プローブ1に同じである。送受信系22は、第1の実施の形態の送受信系2が、超音波をパルス波(PW)又は連続波(CW)として選択的に発生させることが可能に改良され、アナログのドプラ信号をドプラデータにディジタル化して出力するように最後段にADCを追加される。広域通過型フィルタ30は、第1の実施の形態の広域通過型フィルタ9に同じである。高速フーリエ変換処理回路31は、第1の実施の形態の高速フーリエ変換処理回路10に同じである。ディジタルスキャンコンバータ24は、第1の実施の形態のディジタルスキャンコンバータ4に同じである。モニタ25は、第1の実施の形態のモニタ5に同じである。
PW時には、送受信系22からのドプラ信号はRG積分回路28に供給される。CW時には、送受信系22からのドプラ信号はCW帯域フィルタ29に供給される。図4(a)に示すように、RG積分回路28は、データ数Nのドプラデータを、加算器331 と、加算器331 への帰還経路に挿入された遅延回路332 とで積分する。勿論、遅延回路332 の遅延時間は、ADCのサンプリング周期△TS に設定される。データ数Nは、レンジゲートマーカの長さに応じた積分期間△TRGに依存し、△TRG/△TS によりコントローラ27で決定される。加算器331 の前段には、ドプラデータに、積分期間△TRGに応じた係数を乗算するための乗算器32が設けられる。係数は、データ数Nに基づいて、1/N1/2 でコントローラ27により与えられる。
ドプラデータをデータ数Nで加算することにより、信号レベルはN倍になり、一方、ノイズレベルはN1/2 倍になる。したがって、レンジゲートマーカの長さ、つまり積分期間、すなわち加算データ数の変動に依存して、ノイズレベルが変動してしまう。本実施の形態では、ドプラデータに係数1/N1/2 を乗算することにより、レンジゲートマーカの長さの変動、つまり積分期間の変動、すなわち加算データ数の変動によらず、ノイズレベルを一定に保つことができる。
図4(b)に示すように、CW帯域フィルタ29は、ドプラデータの周波数帯域を入力帯域finから出力帯域fout に制限するために、 FIR型の低域通過フィルタ(FIR LPF )34と、 IIR型の低域通過フィルタ(IIR LPF )35とが縦列に接続される。 IIR型の低域通過フィルタ35の出力側には、濾過されたドプラデータに係数を乗算するための乗算器36が設けられる。この係数は、入力帯域finと出力帯域fout との比に基づいて、(fin/fout )1/2 でコントローラ27により与えられる。
入力帯域finが出力帯域fout に制限されることは、1/(fin/fout )1/2 <1のゲインがかかることに等価的であり、これは入力帯域finと出力帯域fout との比に応じてノイズレベルが変動してしまうことを意味する。本実施の形態では、 FIR型の低域通過フィルタ34及び IIR型の低域通過フィルタ35の出力データに係数(fin/fout )1/2 を乗算することにより、入力帯域finと出力帯域fout との比の変動に関わらず、ノイズレベルを一定に保つことができる。
図4(c)に示すように、高速フーリエ変換処理回路31は、高速フーリエ変換処理部38でレンジゲートマーカの長さ、つまり積分期間に応じて、ドプラデータをデータ数Nで高速フーリエ変換処理に供する。高速フーリエ変換処理部38の前段には、ドプラデータに、係数を乗算するための乗算器37が設けられる。係数は、データ数Nに基づいて、1/N1/2 でコントローラ27により与えられる。
ドプラデータをデータ数Nで高速フーリエ変換処理に供することにより、ノイズレベルに実質的にN1/2 のゲインがかかる。したがって、データ数の変動に依存して、ノイズレベルが変動してしまう。本実施の形態では、ドプラデータに係数1/N1/2 を乗算することにより、データ数の変動によらず、ノイズレベルを一定に保つことができる。
(第3の実施の形態)
図5は第3の実施の形態による超音波診断装置のブロック図である。なお、超音波プローブ41は、第1の実施の形態の超音波プローブ1に同じである。高速フーリエ変換処理回路50は、第1の実施の形態の高速フーリエ変換処理回路10に同じである。ディジタルスキャンコンバータ44は、第1の実施の形態のディジタルスキャンコンバータ4に同じである。モニタ45は、第1の実施の形態のモニタ5に同じである。
本実施の形態による超音波診断装置は、超音波プローブ41、送受信系42、スペクトラムドプラユニット43、ディジタルスキャンコンバータ(DSC)44、モニタ45、システムコントローラ46、ドプラ用コントローラ47、コンソール48とから構成される。送受信系42は、超音波プローブ41を駆動して交互スキャンを実行することが可能に構成されている。交互スキャンとは、通常スキャンが、ある1本のラスタに対して超音波送受信動作をレート周波数で所定回数繰り返しながら、順次次のラスタに移っていくのに対して、ある1本のラスタに対して超音波送受信動作を1回行い、同じラスタに対する次回の超音波送受信動作までに間に、他の何本かのラスタに対して1回ずつ超音波送受信動作を行うものであり、1本のラスタに関して見ると、超音波送受信動作の間隔が長くなり、実質的にレート周波数が低くなって低速検出能が向上するというものである。なお、同じラスタに対する前後2回の超音波送受信動作の間に行う他のラスタの超音波送受信動作の回数を交互段数として定義する。また、送受信系42は、システムコントローラ46の制御にしたがって交互段数を変化させることが可能に構成されている。さらに、送受信系42は、ドプラ用コントローラ47の制御にしたがって送信電圧を変化させることが可能に構成されている。
スペクトラムドプラユニット43は、ドプラゲイン補正用の乗算器49と、高速フーリエ変換処理回路50とから構成される。なお、送受信系42の出力がディジタルでなくアナログであれば、乗算器49は増幅器に置換される。
システムコントローラ46には、コンソール48が接続される。コンソール48を介して、交互段数を変化させることが可能である。図6に示すように、ドプラ用コントローラ47は、データ数調整用コントローラ51と、ドプラ感度補正用コントローラ52とから構成されている。データ数調整用コントローラ51は、交互段数が変化してレート周波数fPRF が実質的に変化しても、ドプラスペクトラムの表示上で周波数分解能と時間分解能との比を一定にするように、高速フーリエ変換処理回路50の周波数解析のデータ数を調整するためのものである。この調整方法は周知であるので、簡単に説明する。交互段数をK、レート周波数をfPRF 、スクロールスピードをS、1ピクセルに相当する周波数幅に対する時間幅の比を表すピクセル比をPn 、係数をαとする。まず、パラメータAA を(1)式にしたがって求める。
AA =α・((fPRF ・S)/(Pn ・K))…(1)
ここで、データ数をN´とする。N´=Ww ・Nで与えられる。Nは、基準データ数(通常、最小データ数とされる)であり、Ww は基準データ数に対するデータ数の比(N´/N)である。選択可能なデータ数が、16、32、64、128、256であるとすると、例えば、N=16であり、この場合、Ww =1、2、4、8又は16である。
そして、(2)式にしたがってWw が求められる。
Ww =AA /N2 …(2)
求められたWw が、1、2、4、8、16のいずれにも一致しない場合、求められたWw に最も近いものが選択される。求められた、又は選択されたWw から、データ数N´(=Ww ・N)が決定される。
なお、原理的には、交互段数がn倍になると、周波数解析のデータ数は、1/n1/2 倍に変更される。高速フーリエ変換処理回路50ではデータ数調整用コントローラ51から、決定されたデータ数Ww ・Nの情報を受け取り、ドプラ信号をデータ数Ww ・Nで周波数解析に供する。データ数調整用コントローラ51で決定されたデータ数Ww ・Nの情報は、ドプラ感度補正用コントローラ52にも供給される。ドプラ感度補正用コントローラ52には、システムコントローラ46から交互段数Kの情報も供給される。
ドプラ感度補正用コントローラ52は、周波数解析のデータ数の変動に伴うS/Nの変動を抑制するためのものである。例えば、低速検出能を半値まで下げるように交互段数を変更すると、周波数解析のデータ数は、1/21/2 倍に減少する。このデータ数の減少は、S/Nを0.8dB程度低下させる。このS/Nの低下を抑制するために、ドプラゲイン補正用の乗算器49のドプラゲインを、変更前の交互段数のときより、0.8dB程度下げて、ノイズレベルを0.8dB程度下げる。これにより、データ数によらずノイズレベルを一定に保つことができるという効果が得られる。ただし、当然のこととして、ノイズレベルの低下と共に、信号レベルも0.8dB程度低下してしまう。この信号レベルの低下を補償するために、送信電圧を交互段数の変更前より1.09倍に増大する。このようなドプラゲイン調整及び送信電圧調整により、交互段数が増加して、データ数が減少しても、S/Nが劣化しないという効果が得られる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
第1の実施の形態に係る超音波診断装置のブロック図。 第1の実施の形態による積分期間を示すタイムチャート。 第2の実施の形態に係る超音波診断装置のブロック図。 図3のRG積分回路、CW帯域フィルタ、FFTのブロック図。 第3の実施の形態に係る超音波診断装置のブロック図。 図5のドプラ用コントローラのブロック図。 第1の実施の形態に対応する従来の問題点の説明図。
符号の説明
1…超音波プローブ、2…送受信系、3…スペクトラムドプラユニット、4…ディジタルスキャンコンバータ、5…モニタ、6…コンソール、7…コントローラ、8…レンジゲートユニット、9…高域通過型フィルタ、10…高速フーリエ変換処理回路、11…乗算器、12…積分器、13…関数発生ROM、14…RG幅カウンタ、15…RGスタート位置カウンタ。

Claims (1)

  1. 超音波プローブと、
    超音波を被検体内に送信するために前記超音波プローブに送信電圧を印加すると共に、前記超音波プローブを介して反射波を受信することにより受信信号を得る送受信手段と、
    ドプラスペクトラムを得るために前記受信信号を周波数解析する周波数解析手段と、
    ノイズレベルを一定に保つために前記周波数解析のデータ数の変化に追従して前記周波数解析手段のゲインを変化させるように前記周波数解析手段を制御し、且つ前記ゲインの変化に伴う信号レベルの変化を補償するために前記送信電圧を変化させるように前記送受信手段を制御する手段とを具備したことを特徴とする超音波診断装置。
JP2004203963A 2004-07-09 2004-07-09 超音波診断装置 Expired - Lifetime JP3663206B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203963A JP3663206B2 (ja) 2004-07-09 2004-07-09 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203963A JP3663206B2 (ja) 2004-07-09 2004-07-09 超音波診断装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20219595A Division JP3691874B2 (ja) 1995-08-08 1995-08-08 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2004321824A JP2004321824A (ja) 2004-11-18
JP3663206B2 true JP3663206B2 (ja) 2005-06-22

Family

ID=33509385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203963A Expired - Lifetime JP3663206B2 (ja) 2004-07-09 2004-07-09 超音波診断装置

Country Status (1)

Country Link
JP (1) JP3663206B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423434C (zh) * 2005-12-01 2008-10-01 居小平 超声多普勒开关电源输入控制器

Also Published As

Publication number Publication date
JP2004321824A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
JP5944913B2 (ja) 超音波画像内の不均一回転歪みを低減するためのコンピュータ可読媒体及び同コンピュータ可読媒体を含むシステム
JP6218400B2 (ja) 超音波診断装置及び超音波診断装置の制御プログラム
JP2005536309A (ja) 改善されたハーモニックイメージングのためのシステム及び方法
JP2011087710A (ja) 超音波診断装置
CN110301936B (zh) 用于声辐射力脉冲的频率扫描
JP2017093913A (ja) 超音波診断装置、信号処理装置及び解析プログラム
WO2014013839A1 (ja) 超音波診断装置及び画像処理装置
US11039777B2 (en) Ultrasonic diagnostic apparatus and control method
JP2009078124A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP4334032B2 (ja) 超音波診断装置
JP2009254462A (ja) 超音波による画像形成方法及び収差補正方法
KR20140121859A (ko) 초음파 이미지들에서 비-고정 반향의 억제를 위한 필터링 시스템들 및 방법들
JP5588924B2 (ja) 超音波診断装置
JP4607528B2 (ja) 超音波診断装置及び画像データ生成方法
JP5498551B2 (ja) 超音波診断装置及び超音波送受信条件最適化プログラム
JP5247958B2 (ja) 超音波診断装置及び超音波エコー信号処理方法
JP3691874B2 (ja) 超音波診断装置
JP3943653B2 (ja) 超音波診断装置
JP3663206B2 (ja) 超音波診断装置
JP2011101715A (ja) 超音波診断装置
JP4427139B2 (ja) 超音波診断装置及び超音波送信方法
JP2011136224A (ja) 超音波診断装置及び超音波エコー信号処理方法
JP5248050B2 (ja) 超音波撮像装置
KR102220822B1 (ko) Arfi 이미징을 위한 교정
US20150080732A1 (en) Ultrasound diagnostic apparatus and data processing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

EXPY Cancellation because of completion of term