JP3663035B2 - Temperature measuring wafer for semiconductor wafer heat treatment furnace - Google Patents

Temperature measuring wafer for semiconductor wafer heat treatment furnace Download PDF

Info

Publication number
JP3663035B2
JP3663035B2 JP22005797A JP22005797A JP3663035B2 JP 3663035 B2 JP3663035 B2 JP 3663035B2 JP 22005797 A JP22005797 A JP 22005797A JP 22005797 A JP22005797 A JP 22005797A JP 3663035 B2 JP3663035 B2 JP 3663035B2
Authority
JP
Japan
Prior art keywords
wafer
thermocouple
recess
heat
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22005797A
Other languages
Japanese (ja)
Other versions
JPH1151776A (en
Inventor
寿文 桜井
晋一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Original Assignee
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA filed Critical KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Priority to JP22005797A priority Critical patent/JP3663035B2/en
Publication of JPH1151776A publication Critical patent/JPH1151776A/en
Application granted granted Critical
Publication of JP3663035B2 publication Critical patent/JP3663035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ熱処理炉用の測温ウエハに関する。
【0002】
【従来の技術】
半導体ウエハは、単結晶インゴットからスライス切断された後、面取、洗浄、乾燥、熱処理、研磨等の種々の処理工程を経て、最終製品となる。例えば、前記熱処理には、酸化膜等の均一な薄膜を形成するために行われるものであり、CVD装置や、エピタキシャル装置等の熱拡散処理装置が用いられる。
【0003】
そこで、半導体ウエハは、熱処理炉により熱処理を施されるが、このような熱処理炉としては、複数枚のウエハを水平姿勢にて上下に積層状に配列する水平型熱処理炉と、複数枚のウエハを起立姿勢にて列設する縦型熱処理炉とが知られている。何れの熱処理炉においても、複数枚のウエハに対して均一な熱処理を施す必要があるため、炉内の加熱ヒーターに対する制御が重要となる。例えば、半導体ウエハを収納する反応管内壁に熱電対を配設せしめ、反応管の内部温度を常時制御する技術や(特開平3−273619号)、ウエハを支持する支持部内に熱電対を配置し、ウエハの周辺温度が所定の適正値に保持されるようにヒーター温度を制御する技術(特開平4−206816号、特開平5−136071号)が公知である。
【0004】
ところで、前述のような炉内の温度制御は、炉内に配置されたウエハの実際の温度に反映させることが必要なため、実ウエハ(半導体ウエハの製品となる真正ウエハ)を熱処理する前に、治具ウエハ(実ウエハと同種の疑似ウエハ)を炉内に配置し、治具ウエハの温度をシュミレーションすることにより、予め炉内のヒーターを制御することが好ましい。
【0005】
このため、例えば、ウエハ内部に熱電対材料を埋設することにより特別に製作した治具ウエハ(特開昭62−165325号)や、一対のウエハ間に熱電対材料をサンドイッチすることにより特別に製作した治具ウエハ(特開昭62−165336号)や、石英ガラスにより形成すると共に内部に熱電対を埋設した治具ウエハ(実開平5−6340号)等が提案されている。
【0006】
【発明が解決しようとする課題】
前述のような治具ウエハは、実ウエハの温度分布をシュミレーションできるものでなければならないため、実ウエハと形状が同一且つ熱容量が等しくなるように設計される。然しながら、このような治具ウエハを特別に製作することは、必ずしも容易でない。
【0007】
この点について、本発明者らが知見したところによると、単結晶インゴットからスライス切断することにより半導体ウエハ(実ウエハ)を製造し、各種熱処理が行われ、実ウエハとして製品化への加工が施されるわけであるが、前記熱処理炉の性能や形状等から、特に炉の入口部分近傍のウエハには十分な熱処理等が施されず、実ウエハとして使用できないウエハが発生する。そこで、本発明者らは、このような実ウエハとして使用できないウエハを利用すれば、実ウエハと同材質で且つ同一形状(同一肉厚、同一輪郭形状)のウエハを測温用ウエハ(以下ダミーウエハという)として簡単に得ることができ、しかも、前述のようなシュミレーションを行うために最も有利であることを知得した。
【0008】
ところで、このようなダミーウエハを測温ウエハとして実用化するためには、該ダミーウエハに熱電対を設ける必要があるが、その際、解決すべき種々の課題がある。
【0009】
例えば、ダミーウエハの表面に熱電対の温接点部を接着剤により接着固定する技術が考えられるが、この場合、ダミーウエハの表面は接着剤が肉盛り状となり、表面が平坦でなくなり接着剤による凸部を形成してしまうため、他の部分とは熱容量が異なるため、温度分布のシュミレーションのためには好ましくない。
【0010】
また、2枚のダミーウエハの間に熱電対をサンドイッチ状に埋入固定する技術が考えられるが、この場合、加工が煩雑であるばかりでなく、熱電対の温接点部のみならず素線までもがウエハ間に挟まれるので、複数個所に温接点を設けることは極めて困難である。
【0011】
【課題を解決するための手段】
本発明は、前記ダミーウエハを使用すると共に、前述したような熱電対の取付けに伴う課題を解決した測温ウエハを提供するものであり、その手段として構成したところは、単結晶インゴットからスライス切断された半導体ウエハを熱処理するための熱処理炉用の測温ウエハであって、前記半導体ウエハの実ウエハから選ばれたウエハにより測温ウエハとしてのダミーウエハを構成し、表面に点在する円形の凹部を形成した前記ダミーウエハと、前記凹部に対応する熱電対とから成り、前記凹部の底部に直径方向に位置すると共に該凹部の周縁近傍に位置して貫通する一対の挿通孔を開設し、一対の熱電対素線のそれぞれを前記一対の挿通孔に挿通せしめることにより熱電対の温接点部を凹部の中心に配置せしめた状態で、該凹部に充填した無機質の耐熱セメントから成る耐熱固着剤により熱電対を固定した点にある。
【0012】
前述の通り、ダミーウエハは、実ウエハと同形同材であることが好ましく、本発明によれば、実ウエハから選ばれたウエハにより測温ウエハとしてのダミーウエハが構成されている
【0013】
本発明によれば、一対の挿通孔は、凹部の直径方向に位置すると共に該凹部の周縁近傍に設けられている
【0014】
ダミーウエハの表面に点在する凹部は、ダミーウエハのほぼ中心に位置する凹部と、該ウエハに同心状に描かれる仮想の小径円上に所定間隔をあけて配置された複数の凹部と、該小径円と同心状に描かれる仮想の大径円上に所定間隔をあけて配置された複数の凹部を含むことが好ましい。
【0015】
そこで、本発明によれば、一対の熱電対素線のそれぞれをダミーウエハの凹部に対して、前記一対の挿通孔に挿通せしめることにより熱電対の温接点部を凹部の中心に配置せしめた状態で、該凹部に無機質の耐熱セメントから成る耐熱固着剤を充填することにより、熱電対が固定される
【0016】
【発明の実施の形態】
以下図面に基づいて本発明の好ましい実施形態を詳述する。
【0017】
図1において、ダミーウエハ1の表面1aには、多数の凹部2が点在するように形成されている。例えば、ダミーウエハ1aのほぼ中心に位置する凹部2aと、該ウエハ1aに同心状に描かれる仮想の小径円3S上に所定間隔をあけて配置された複数の凹部2bと、小径円3Sと同心状に描かれる仮想の大径円3L上に所定間隔をあけて配置された複数の凹部2cが形成されている。図例の場合、4個の凹部2bと4個の凹部2cがそれぞれ小径円3S及び大径円3L上に等間隔をあけて配置され、小径円3S上の凹部2bと大径円3L上の凹部2cを相互に円周に対して約45度だけ位相をずらせて配置することにより、ダミーウエハ1の全体に対し凹部2a、2b、2cが均等に分散され、後述する熱電対によりダミーウエハ1の全体にわたる温度分布を測定可能となるように構成している。
【0018】
前記凹部2のそれぞれには熱電対4の温接点部が挿入され、該温接点部を凹部の底部に接触せしめた状態で、該凹部に耐熱固着剤を充填し、該耐熱固着剤中に温接点部を埋設している。それぞれの熱電対4の一対の素線4b、4bは、コネクタ5に導かれ、そこで熱電対又は補償導線6に接続される。尚、温接点部から延びる熱電対の素線4bは、適宜、耐熱性の被覆材により被覆することが好ましい。
【0019】
通常、半導体ウエハの熱処理炉は、炉内温度が800〜1000度Cであるため、樹脂系接着剤では炉内温度に耐え得ない。このため、前記耐熱固着剤は、無機質の耐熱セメントが好ましく、特に、シリカ及びアルミナを主成分とする耐熱セメントを用いれば、熱膨張率が低く耐剥離性に優れ、粘度が高いため乾燥が早く、しかも、約1600度Cの耐熱温度を満足する。
【0020】
ダミーウエハ1は、例えば、単結晶シリコンインゴットからスライス切断された直径200mmφ、厚さ0.76mmの円板状であり、前記凹部2は、ダミーウエハ1の表面を座ぐり加工することにより、直径3mmφ程度の円形凹部を構成する。そして、熱電対の温接点部を凹部2に埋没せしめ且つ凹部2の底部に接触せしめた状態で、該凹部2に耐熱固着剤が充填され固化せしめられる。この際、耐熱固着剤は、凹部2に充填されるのでダミーウエハ1の表面から大きく突出することはない。尚、充填された耐熱固着剤の表面とダミーウエハの表面を平坦とすることが好ましい。
【0021】
(実施例)
図2は、凹部2と熱電対4の接続態様の実施例を示しており、凹部2の底部7には、相互に間隔をあけて貫通する一対の挿通孔8、8が開削により開設されている。凹部2を円形凹部に形成した図示実施例において、一対の挿通孔8、8は、凹部2の直径方向に位置し且つ凹部2の周縁近傍に設けられている。
【0022】
そこで、熱電対4は、温接点部4aを凹部2の底部7に接触せしめると共に、一対の素線4b、4bのそれぞれをダミーウエハ1の表面1aの側から一対の挿通孔8、8に挿入し、ダミーウエハ1の裏面1bの側に挿出せしめられ、この状態で凹部2に耐熱固着剤9が充填される。従って、該耐熱固着剤9が固化することにより、凹部2に対して熱電対4が固定され、固化した耐熱固着剤中に温接点部4aが埋設される。
【0023】
この実施例によれば、熱電対4を凹部2に埋没するに際し、先ず、一対の素線4b、4bのそれぞれをダミーウエハ1の表面1aの側から挿通孔8、8に挿入し、ダミーウエハ1の裏面1bの側に挿出せしめた後、該素線4b、4bを挿出方向に引込めば、温接点部4aが凹部2の底部7に確実に接支される。
【0024】
しかも、熱電対4は、素線4b、4bが引込まれる方向に対して、温接点部4aの近傍部を凹部2に巻掛状に係止されているので、外力によりダミーウエハ1から脱落する虞れはない。
【0025】
【発明の効果】
本発明によれば、単結晶インゴットからスライス切断された半導体ウエハを熱処理するための熱処理炉用の測温ウエハを提供するに際して、前記半導体ウエハの実ウエハから選ばれたウエハにより構成されたダミーウエハ1に多数の熱電対4を配設する構成であり、該ダミーウエハ1の表面1aに点在する円形の凹部2の底部に直径方向に位置すると共に該凹部の周縁近傍に位置して貫通する一対の挿通孔8、8を開設し、一対の熱電対素線4b、4bのそれぞれを前記一対の挿通孔8、8に挿通せしめることにより熱電対4の温接点部4aを凹部2の中心に配置せしめた状態で、該凹部2に無機質の耐熱セメントから成る耐熱固着剤9を充填することにより、熱電対4を固定する構成であるから、次のような格別な効果を奏する
【0026】
(1)測温ウエハとしてのダミーウエハ1は、前記半導体ウエハの実ウエハから選ばれたウエハにより構成されているので、実ウエハと同材質で且つ同一形状(同一肉厚、同一輪郭形状)のものとされ、従って、上述のようなシュミレーションを行うために最も有利となる
【0027】
(2)そして、ダミーウエハ1に熱電対4を配設するに際して、ダミーウエハ1に形成した凹部2に一対の挿通孔8、8を形成し、該挿通孔8、8に一対の熱電対素線4b、4bを挿通せしめる構成であるから、熱電対素線4b、4bの引張り及び押込みの双方の外力に対して熱電対4を強固に固定し、温接点部4aを凹部2の底部に係止できる利点があることは勿論であり、更に、この点に関して、特に本発明によれば、ダミーウエハ1が単結晶インゴットからスライス切断されたものでありながら、凹部2を円形に形成し、一対の挿通孔8、8を凹部2の底部の直径方向に位置し且つ該凹部2の周縁近傍に位置して貫通形成する構成としているので、前述のような熱電対4の配設構造と温接点部4aの係止構造を良好に実現することができ、しかも、このような構成の凹部2に配設された熱電対4により良好な測温を可能にする
【0028】
(3)そして、熱電対4を固定するために凹部2に充填される耐熱固着剤9は、無機質の耐熱セメントにより構成されているので、熱膨張率が低く耐剥離性に優れ、粘度が高いため乾燥が早く、高温の耐熱温度を満足し、しかも、ダミーウエハ1の表面1aに凸部を形成することがないので、ダミーウエハ1の温度分布を好適にシュミレーションすることができる
【図面の簡単な説明】
【図1】本発明の1実施態様を示し、(A)は平面図、(B)は側面図である。
【図2】本発明の実施例を示し、(A)は凹部を示す平面図、(B)は凹部と熱電対を示す断面図、(C)は凹部に熱電対を植設した状態を示す断面図である。
【符号の説明】
1 ダミーウエハ
1a 表面
1b 裏面
2 凹部
2a、2b、2c 凹部
4 熱電対
4a 温接点部
4b 素線
7 凹部の底部
8 挿通孔
9 耐熱固着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature measuring wafer for a semiconductor wafer heat treatment furnace.
[0002]
[Prior art]
After a semiconductor wafer is sliced and cut from a single crystal ingot, it is subjected to various processing steps such as chamfering, cleaning, drying, heat treatment, and polishing to become a final product. For example, the heat treatment is performed to form a uniform thin film such as an oxide film, and a thermal diffusion processing apparatus such as a CVD apparatus or an epitaxial apparatus is used.
[0003]
Therefore, semiconductor wafers are subjected to heat treatment in a heat treatment furnace, and as such a heat treatment furnace, a horizontal heat treatment furnace in which a plurality of wafers are arranged in a vertical stack in a horizontal posture, and a plurality of wafers. There is known a vertical heat treatment furnace in which the components are arranged in a standing posture. In any of the heat treatment furnaces, since it is necessary to perform a uniform heat treatment on a plurality of wafers, it is important to control the heater in the furnace. For example, a thermocouple is disposed on the inner wall of a reaction tube that accommodates a semiconductor wafer, and a technique for constantly controlling the internal temperature of the reaction tube (Japanese Patent Laid-Open No. 3-273619) or a thermocouple is disposed in a support portion that supports the wafer. Techniques for controlling the heater temperature so that the wafer ambient temperature is maintained at a predetermined appropriate value (Japanese Patent Laid-Open Nos. 4-206816 and 5-136071) are known.
[0004]
By the way, since the temperature control in the furnace as described above needs to be reflected in the actual temperature of the wafer disposed in the furnace, before the heat treatment of the actual wafer (the genuine wafer which is the product of the semiconductor wafer). It is preferable to control the heater in the furnace in advance by placing a jig wafer (a pseudo wafer of the same type as the actual wafer) in the furnace and simulating the temperature of the jig wafer.
[0005]
For this reason, for example, a jig wafer specially manufactured by embedding a thermocouple material inside the wafer (Japanese Patent Laid-Open No. Sho 62-165325), or a specially manufactured by sandwiching a thermocouple material between a pair of wafers. Proposed jig wafers (Japanese Patent Laid-Open No. Sho 62-165336), jig wafers made of quartz glass and having thermocouples embedded therein (Japanese Utility Model Laid-Open No. 5-6340), and the like have been proposed.
[0006]
[Problems to be solved by the invention]
Since the jig wafer as described above must be capable of simulating the temperature distribution of the actual wafer, the jig wafer is designed to have the same shape and the same heat capacity as the actual wafer. However, it is not always easy to make such a jig wafer specially.
[0007]
According to the knowledge of the present inventors, a semiconductor wafer (actual wafer) is manufactured by slicing and cutting from a single crystal ingot, various heat treatments are performed, and processing into a product as an actual wafer is performed. However, due to the performance and shape of the heat treatment furnace, the wafer near the entrance portion of the furnace is not sufficiently heat-treated, and a wafer that cannot be used as an actual wafer is generated. Therefore, if the present inventors use a wafer that cannot be used as an actual wafer, a wafer having the same material and the same shape (same thickness, same contour shape) as the actual wafer is used as a temperature measuring wafer (hereinafter referred to as a dummy wafer). It has been found that it is most advantageous for carrying out the simulation as described above.
[0008]
By the way, in order to put such a dummy wafer into practical use as a temperature measuring wafer, it is necessary to provide a thermocouple on the dummy wafer, but there are various problems to be solved at that time.
[0009]
For example, a technique for adhering and fixing a hot junction part of a thermocouple to the surface of a dummy wafer with an adhesive is conceivable, but in this case, the surface of the dummy wafer becomes a build-up of the adhesive, and the surface becomes uneven and the convex portion due to the adhesive Therefore, the heat capacity is different from that of other portions, which is not preferable for temperature distribution simulation.
[0010]
In addition, a technique for embedding and fixing a thermocouple between two dummy wafers is conceivable, but in this case, not only the processing is complicated, but also not only the hot junction part of the thermocouple but also the strands. Is sandwiched between wafers, it is extremely difficult to provide hot contacts at a plurality of locations.
[0011]
[Means for Solving the Problems]
The present invention provides a temperature measuring wafer that uses the dummy wafer and solves the problems associated with attaching a thermocouple as described above, and is configured as a means for cutting a slice from a single crystal ingot. A temperature measuring wafer for a heat treatment furnace for heat treating a semiconductor wafer, wherein a dummy wafer as a temperature measuring wafer is constituted by a wafer selected from the actual wafers of the semiconductor wafer, and circular concave portions scattered on the surface are formed. and forming the the dummy wafer, composed of a thermocouple corresponding to the recess, opened a pair of insertion holes penetrating located near the periphery of the recess as well as positioned in the diametrical direction on the bottom of the recess, a pair of thermoelectric the hot junction of the thermocouple by allowed to inserting each Taimotosen the pair of insertion holes in a state in which allowed placed in the center of the recess and filled the recess Lies in fixing the thermocouple by heat fixing agent made of heat cement machine quality.
[0012]
As described above, the dummy wafer is preferably the same shape and the same material as the actual wafer. According to the present invention, the dummy wafer as the temperature measuring wafer is configured by the wafer selected from the actual wafer .
[0013]
According to the present invention , the pair of insertion holes is located in the diameter direction of the recess and is provided near the periphery of the recess.
[0014]
The concave portions scattered on the surface of the dummy wafer include a concave portion located substantially at the center of the dummy wafer, a plurality of concave portions arranged at predetermined intervals on a virtual small-diameter circle concentrically drawn on the wafer, and the small-diameter circle It is preferable to include a plurality of recesses arranged at predetermined intervals on a virtual large-diameter circle drawn concentrically.
[0015]
Therefore, according to the present invention, each of the pair of thermocouple strands is inserted into the pair of insertion holes with respect to the recess of the dummy wafer so that the hot junction portion of the thermocouple is arranged at the center of the recess. The thermocouple is fixed by filling the recess with a heat-resistant adhesive made of inorganic heat-resistant cement .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
In FIG. 1, the surface 1 a of the dummy wafer 1 is formed so that a large number of recesses 2 are scattered. For example, a concave portion 2a positioned substantially at the center of the dummy wafer 1a, a plurality of concave portions 2b arranged at predetermined intervals on a virtual small-diameter circle 3S drawn concentrically on the wafer 1a, and a concentric shape with the small-diameter circle 3S A plurality of recesses 2c are formed on the virtual large-diameter circle 3L depicted in FIG. In the case of the illustrated example, four concave portions 2b and four concave portions 2c are arranged on the small diameter circle 3S and the large diameter circle 3L at equal intervals, respectively, and the concave portions 2b on the small diameter circle 3S and the large diameter circle 3L are arranged. By disposing the recesses 2c out of phase with each other by about 45 degrees with respect to the circumference, the recesses 2a, 2b, and 2c are evenly distributed over the entire dummy wafer 1, and the entire dummy wafer 1 is dispersed by a thermocouple described later. The temperature distribution over the range can be measured.
[0018]
A hot contact portion of a thermocouple 4 is inserted into each of the recesses 2, and with the hot contact portion being in contact with the bottom of the recess, the recess is filled with a heat-resistant adhesive, and the heat-resistant adhesive is heated in the heat-resistant adhesive. The contact is embedded. A pair of strands 4 b, 4 b of each thermocouple 4 is led to a connector 5 where it is connected to a thermocouple or compensating lead 6. In addition, it is preferable to coat | cover the strand 4b of the thermocouple extended from a warm junction part with a heat resistant coating material suitably.
[0019]
Usually, a semiconductor wafer heat treatment furnace has an in-furnace temperature of 800 to 1000 degrees C. Therefore, the resin adhesive cannot withstand the in-furnace temperature. For this reason, the heat-resistant fixing agent is preferably an inorganic heat-resistant cement. In particular, if a heat-resistant cement mainly composed of silica and alumina is used, the thermal expansion coefficient is low, the peel resistance is excellent, and the viscosity is high, so that drying is quick. Moreover, it satisfies a heat resistant temperature of about 1600 degrees C.
[0020]
The dummy wafer 1 is, for example, a disc shape having a diameter of 200 mmφ and a thickness of 0.76 mm sliced from a single crystal silicon ingot, and the concave portion 2 is formed by countersinking the surface of the dummy wafer 1 to have a diameter of about 3 mmφ. Of the circular recess. Then, with the hot junction of the thermocouple buried in the recess 2 and in contact with the bottom of the recess 2, the recess 2 is filled with a heat-resistant adhesive and solidified. At this time, since the heat-resistant adhesive is filled in the recess 2, it does not protrude greatly from the surface of the dummy wafer 1. In addition, it is preferable to make the surface of the heat-resistant sticking agent filled and the surface of the dummy wafer flat.
[0021]
(Example)
FIG. 2 shows an embodiment of the connection mode between the recess 2 and the thermocouple 4, and a pair of insertion holes 8, 8 penetrating at a distance from each other are opened in the bottom 7 of the recess 2 by cutting. Yes. In the illustrated embodiment in which the recess 2 is formed as a circular recess, the pair of insertion holes 8, 8 are located in the diameter direction of the recess 2 and provided in the vicinity of the periphery of the recess 2.
[0022]
Therefore, the thermocouple 4 brings the hot contact portion 4a into contact with the bottom portion 7 of the recess 2 and inserts the pair of strands 4b and 4b into the pair of insertion holes 8 and 8 from the surface 1a side of the dummy wafer 1, respectively. In this state, the recess 2 is filled with the heat-resistant fixing agent 9. Therefore, when the heat-resistant adhesive 9 is solidified, the thermocouple 4 is fixed to the recess 2, and the hot contact portion 4 a is embedded in the solidified heat-resistant adhesive.
[0023]
According to this embodiment, when the thermocouple 4 is buried in the recess 2, first, each of the pair of strands 4 b, 4 b is inserted into the insertion holes 8, 8 from the surface 1 a side of the dummy wafer 1, and the dummy wafer 1 After the wire 4b and 4b are drawn in the insertion direction after being inserted into the back surface 1b, the hot contact portion 4a is reliably supported on the bottom 7 of the recess 2.
[0024]
Moreover, the thermocouple 4 is detached from the dummy wafer 1 by an external force because the vicinity of the hot contact portion 4a is hooked to the recess 2 in the direction in which the wires 4b and 4b are drawn. There is no fear.
[0025]
【The invention's effect】
According to the present invention, when providing a temperature measuring wafer for a heat treatment furnace for heat-treating a semiconductor wafer sliced and cut from a single crystal ingot, a dummy wafer 1 constituted by a wafer selected from the actual wafers of the semiconductor wafer. A plurality of thermocouples 4 are arranged on the bottom surface of the circular recesses 2 scattered on the surface 1a of the dummy wafer 1 and are positioned in the diametrical direction and in the vicinity of the periphery of the recesses. The insertion holes 8 and 8 are opened, and the pair of thermocouple wires 4b and 4b are inserted into the pair of insertion holes 8 and 8 so that the hot junction 4a of the thermocouple 4 is arranged at the center of the recess 2. In this state, the thermocouple 4 is fixed by filling the recess 2 with the heat-resistant fixing agent 9 made of an inorganic heat-resistant cement, and the following special effects are obtained .
[0026]
(1) Since the dummy wafer 1 as the temperature measuring wafer is composed of a wafer selected from the actual wafers of the semiconductor wafer, it has the same material as the actual wafer and has the same shape (the same thickness and the same contour shape). Therefore, it is most advantageous to perform the simulation as described above .
[0027]
(2) When the thermocouple 4 is disposed on the dummy wafer 1, a pair of insertion holes 8, 8 are formed in the recess 2 formed in the dummy wafer 1, and a pair of thermocouple wires 4 b are formed in the insertion holes 8, 8. 4b can be inserted, so that the thermocouple 4 can be firmly fixed against the external force of both the pulling and pushing of the thermocouple wires 4b and 4b, and the hot junction 4a can be locked to the bottom of the recess 2. Needless to say, there is an advantage, and in this respect, in particular, according to the present invention, the dummy wafer 1 is sliced and cut from the single crystal ingot, but the recess 2 is formed in a circular shape, and a pair of insertion holes is provided. 8 and 8 are formed in the diameter direction of the bottom of the concave portion 2 and in the vicinity of the peripheral edge of the concave portion 2 so as to penetrate therethrough. Therefore, the arrangement structure of the thermocouple 4 as described above and the hot junction portion 4a A good locking structure can be realized. , Moreover, it allows for better temperature measurement by thermocouple 4 disposed in the recess 2 of such a configuration.
[0028]
(3) Since the heat-resistant adhesive 9 filled in the recess 2 for fixing the thermocouple 4 is composed of an inorganic heat-resistant cement, it has a low coefficient of thermal expansion, excellent peel resistance, and high viscosity. Therefore, drying is fast, a high heat-resistant temperature is satisfied, and a convex portion is not formed on the surface 1a of the dummy wafer 1, so that the temperature distribution of the dummy wafer 1 can be suitably simulated .
[Brief description of the drawings]
FIG. 1 shows one embodiment of the present invention, in which (A) is a plan view and (B) is a side view.
2A is a plan view showing a recess, FIG. 2B is a sectional view showing the recess and a thermocouple, and FIG. 2C shows a state where a thermocouple is implanted in the recess. It is sectional drawing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dummy wafer 1a Front surface 1b Back surface 2 Concave part 2a, 2b, 2c Concave part 4 Thermocouple 4a Hot junction part 4b Wire 7 Bottom part of recessed part 8 Insertion hole 9 Heat resistant sticking agent

Claims (1)

単結晶インゴットからスライス切断された半導体ウエハを熱処理するための熱処理炉用の測温ウエハであって
前記半導体ウエハの実ウエハから選ばれたウエハにより測温ウエハとしてのダミーウエハ (1) を構成し
表面(1a)に点在する円形の凹部(2)を形成した前記ダミーウエハ(1)と、前記凹部(2)に対応する熱電対(4)とから成り、
前記凹部(2)の底部に直径方向に位置すると共に該凹部の周縁近傍に位置して貫通する一対の挿通孔(8)(8)を開設し、一対の熱電対素線 (4b)(4b) のそれぞれを前記一対の挿通孔 (8)(8) に挿通せしめることにより熱電対 (4) の温接点部 (4a) を凹部 (2) の中心に配置せしめた状態で、該凹部(2)に充填した無機質の耐熱セメントから成る耐熱固着剤(9)により熱電対 (4) を固定したことを特徴とする半導体ウエハ熱処理炉用の測温ウエハ。
A temperature measuring wafer for a heat treatment furnace for heat treating a semiconductor wafer sliced and cut from a single crystal ingot ,
A dummy wafer (1) as a temperature measuring wafer is constituted by a wafer selected from the actual wafers of the semiconductor wafer ,
The dummy wafer (1) formed with circular recesses (2) interspersed on the surface (1a), and a thermocouple (4) corresponding to the recesses (2),
A pair of insertion holes (8) and (8) are provided in the bottom of the recess (2) in the diametrical direction and in the vicinity of the periphery of the recess to penetrate, and a pair of thermocouple wires (4b) (4b ) Are inserted into the pair of insertion holes (8) and (8) to place the hot junction (4a) of the thermocouple (4) at the center of the recess (2). A temperature measuring wafer for a semiconductor wafer heat treatment furnace, wherein a thermocouple (4) is fixed by a heat-resistant fixing agent (9) made of an inorganic heat-resistant cement filled in).
JP22005797A 1997-07-30 1997-07-30 Temperature measuring wafer for semiconductor wafer heat treatment furnace Expired - Lifetime JP3663035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22005797A JP3663035B2 (en) 1997-07-30 1997-07-30 Temperature measuring wafer for semiconductor wafer heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22005797A JP3663035B2 (en) 1997-07-30 1997-07-30 Temperature measuring wafer for semiconductor wafer heat treatment furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003156646A Division JP2004004096A (en) 2003-06-02 2003-06-02 Temperature measuring wafer for heat treatment furnace for semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH1151776A JPH1151776A (en) 1999-02-26
JP3663035B2 true JP3663035B2 (en) 2005-06-22

Family

ID=16745269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22005797A Expired - Lifetime JP3663035B2 (en) 1997-07-30 1997-07-30 Temperature measuring wafer for semiconductor wafer heat treatment furnace

Country Status (1)

Country Link
JP (1) JP3663035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502639B2 (en) 2011-08-26 2019-12-10 Sumitomo Osaka Cement Co., Ltd. Plate-shaped body for temperature measurement and temperature measuring apparatus provided with the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190040B1 (en) * 1999-05-10 2001-02-20 Sensarray Corporation Apparatus for sensing temperature on a substrate in an integrated circuit fabrication tool
AU2000246385A1 (en) * 2000-05-25 2001-12-03 Kamel Fauzi Razali Thermocouple passing through encapsulant of integrated circuit
JP4536214B2 (en) * 2000-06-01 2010-09-01 東京エレクトロン株式会社 Heat treatment apparatus and control method of heat treatment apparatus
JP4718697B2 (en) * 2001-03-06 2011-07-06 安立計器株式会社 Wafer with temperature sensor
JP4651362B2 (en) * 2004-11-10 2011-03-16 川惣電機工業株式会社 Temperature measuring substrate for substrate heat treatment furnace
JP6381314B2 (en) * 2014-06-23 2018-08-29 三菱電機株式会社 Heat treatment furnace temperature measuring jig and manufacturing method thereof
SE538428C2 (en) 2015-03-23 2016-06-21 Nok9 Ab A testing device for wireless power transfer, and an associated method
CN109000813A (en) * 2018-08-17 2018-12-14 上海甫研电子科技有限公司 A kind of diffusion furnace chip temperature thermocouple
CN111256857A (en) * 2020-02-25 2020-06-09 上海华力集成电路制造有限公司 Method for monitoring temperature of chuck of probe station by testing voltage of BJT emission junction
CN112212994A (en) * 2020-09-25 2021-01-12 电子科技大学 Temperature distribution detection device for plasma etching wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502639B2 (en) 2011-08-26 2019-12-10 Sumitomo Osaka Cement Co., Ltd. Plate-shaped body for temperature measurement and temperature measuring apparatus provided with the same

Also Published As

Publication number Publication date
JPH1151776A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3663035B2 (en) Temperature measuring wafer for semiconductor wafer heat treatment furnace
CN100578734C (en) Process and system for heating semiconductor substrates in a processing chamber containing susceptor
US4854986A (en) Bonding technique to join two or more silicon wafers
JPH11508870A (en) System and method for heat treatment of a semiconductor substrate
EP1075015A3 (en) A method and apparatus for thermal control of a semiconductor substrate
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
DE69801987T2 (en) SUSZEPTOR VERSIONS FOR SILICON CARBIDE THIN LAYERS
JP2012503312A (en) Wafer holder to support semiconductor wafer during heat treatment process
JPH0521876Y2 (en)
WO2000024044A1 (en) Wafer support of semiconductor manufacturing system
CA2250454A1 (en) Heat shield with moldable insulation
TW429497B (en) Method of monitoring in-line temperature
TW200841386A (en) Vertical heat treatment boat and semiconductor wafer heat treatment method using the same
JPH045000B2 (en)
JP2004004096A (en) Temperature measuring wafer for heat treatment furnace for semiconductor wafer
JP2000058406A (en) Temperature measuring equipment of plate-like member and recessed part forming method of the plate-like member
JP6381314B2 (en) Heat treatment furnace temperature measuring jig and manufacturing method thereof
KR101949977B1 (en) Embedded thermocouple wafer
JP4651362B2 (en) Temperature measuring substrate for substrate heat treatment furnace
JP2000111418A (en) Wafer with thermocouple
JP4473404B2 (en) Temperature measuring plate
JP2004063895A (en) Wafer-supporting ring and semiconductor manufacturing apparatus
JP3514254B2 (en) Heat treatment apparatus and method for manufacturing silicon epitaxial wafer
JPH03228892A (en) Semiconductor production device
JP2005030792A (en) Temperature measuring wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term