JP2004004096A - Temperature measuring wafer for heat treatment furnace for semiconductor wafer - Google Patents

Temperature measuring wafer for heat treatment furnace for semiconductor wafer Download PDF

Info

Publication number
JP2004004096A
JP2004004096A JP2003156646A JP2003156646A JP2004004096A JP 2004004096 A JP2004004096 A JP 2004004096A JP 2003156646 A JP2003156646 A JP 2003156646A JP 2003156646 A JP2003156646 A JP 2003156646A JP 2004004096 A JP2004004096 A JP 2004004096A
Authority
JP
Japan
Prior art keywords
wafer
recess
thermocouple
heat
hot junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156646A
Other languages
Japanese (ja)
Inventor
Hisafumi Sakurai
桜井 寿文
Shinichi Yamaguchi
山口 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaso Electric Industrial Co Ltd
Original Assignee
Kawaso Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaso Electric Industrial Co Ltd filed Critical Kawaso Electric Industrial Co Ltd
Priority to JP2003156646A priority Critical patent/JP2004004096A/en
Publication of JP2004004096A publication Critical patent/JP2004004096A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measuring wafer for use in testing temperature control of a heat treatment furnace of a semiconductor wafer, capable of simulating a temperature distribution of the wafer wherein thermocouples are suitably provided. <P>SOLUTION: The wafer includes a dummy wafer having same shape and material as an actual wafer, a large number of recesses distributed on the surface of the dummy wafer, and a large number of thermocouples each corresponding to the recesses. A hot contact part of the thermocouple is inserted into the corresponding recess while being brought into contact with the bottom part of the recess, and then is embedded in a heat resistant bonding agent filling the recess. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ熱処理炉用の測温ウエハに関する。
【0002】
【従来の技術】
半導体ウエハは、単結晶インゴットからスライス切断された後、面取、洗浄、乾燥、熱処理、研磨等の種々の処理工程を経て、最終製品となる。例えば、前記熱処理には、酸化膜等の均一な薄膜を形成するために行われるものであり、CVD装置や、エピタキシャル装置等の熱拡散処理装置が用いられる。
【0003】
そこで、半導体ウエハは、熱処理炉により熱処理を施されるが、このような熱処理炉としては、複数枚のウエハを水平姿勢にて上下に積層状に配列する水平型熱処理炉と、複数枚のウエハを起立姿勢にて列設する縦型熱処理炉とが知られている。何れの熱処理炉においても、複数枚のウエハに対して均一な熱処理を施す必要があるため、炉内の加熱ヒーターに対する制御が重要となる。例えば、半導体ウエハを収納する反応管内壁に熱電対を配設せしめ、反応管の内部温度を常時制御する技術や(特開平3−273619号)、ウエハを支持する支持部内に熱電対を配置し、ウエハの周辺温度が所定の適正値に保持されるようにヒーター温度を制御する技術(特開平4−206816号、特開平5−136071号)が公知である。
【0004】
ところで、前述のような炉内の温度制御は、炉内に配置されたウエハの実際の温度に反映させることが必要なため、実ウエハ(半導体ウエハの製品となる真正ウエハ)を熱処理する前に、治具ウエハ(実ウエハと同種の疑似ウエハ)を炉内に配置し、治具ウエハの温度をシュミレーションすることにより、予め炉内のヒーターを制御することが好ましい。
【0005】
このため、例えば、ウエハ内部に熱電対材料を埋設することにより特別に製作した治具ウエハ(特開昭62−165325号)や、一対のウエハ間に熱電対材料をサンドイッチすることにより特別に製作した治具ウエハ(特開昭62−165336号)や、石英ガラスにより形成すると共に内部に熱電対を埋設した治具ウエハ(実開平5−6340号)等が提案されている。
【0006】
【発明が解決しようとする課題】
前述のような治具ウエハは、実ウエハの温度分布をシュミレーションできるものでなければならないため、実ウエハと形状が同一且つ熱容量が等しくなるように設計される。然しながら、このような治具ウエハを特別に製作することは、必ずしも容易でない。
【0007】
この点について、本発明者らが知見したところによると、単結晶インゴットからスライス切断することにより半導体ウエハ(実ウエハ)を製造し、各種熱処理が行われ、実ウエハとして製品化への加工が施されるわけであるが、前記熱処理炉の性能や形状等から、特に炉の入口部分近傍のウエハには十分な熱処理等が施されず、実ウエハとして使用できないウエハが発生する。そこで、本発明者らは、このような実ウエハとして使用できないウエハを利用すれば、実ウエハと同材質で且つ同一形状(同一肉厚、同一輪郭形状)のウエハを測温用ウエハ(以下ダミーウエハという)として簡単に得ることができ、しかも、前述のようなシュミレーションを行うために最も有利であることを知得した。
【0008】
ところで、このようなダミーウエハを測温ウエハとして実用化するためには、該ダミーウエハに熱電対を設ける必要があるが、その際、解決すべき種々の課題がある。
【0009】
例えば、ダミーウエハの表面に熱電対の温接点部を接着剤により接着固定する技術が考えられるが、この場合、ダミーウエハの表面は接着剤が肉盛り状となり、表面が平坦でなくなり接着剤による凸部を形成してしまうため、他の部分とは熱容量が異なるため、温度分布のシュミレーションのためには好ましくない。
【0010】
また、2枚のダミーウエハの間に熱電対をサンドイッチ状に埋入固定する技術が考えられるが、この場合、加工が煩雑であるばかりでなく、熱電対の温接点部のみならず素線までもがウエハ間に挟まれるので、複数個所に温接点を設けることは極めて困難である。
【0011】
【課題を解決するための手段】
本発明は、前記ダミーウエハを使用すると共に、前述したような熱電対の取付けに伴う課題を解決した測温ウエハを提供するものであり、その第一の手段として構成したところは、実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、前記熱電対の温接点部を前記凹部の底部に接触せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設した点にある。
【0012】
また、本発明が第二の手段として構成したところは、実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、前記凹部の底部に相互に間隔をあけて貫通する一対の挿通孔を開設し、前記熱電対の温接点部を前記凹部の底部に接触せしめると共に、一対の熱電対素線のそれぞれを前記一対の挿通孔に挿通せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設して成り、更に、前記凹部の各挿通孔にオーバラップする補助凹部をダミーウエハの裏面に形成すると共に、該補助凹部の底部に貫通する補助挿通孔を開設し、前記挿通孔を挿通した熱電対素線を補助凹部内で折返し補助挿通孔に挿通せしめた状態で、前記補助凹部に充填した耐熱固着剤中に前記熱電対素線の折返部を埋設した点にある。
【0013】
更に、本発明が第三の手段として構成したところは、実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、前記凹部を断面楔形に形成することにより凹部の底部幅Wbと開口部幅WaをWb>Waに構成し、前記熱電対の温接点部を前記凹部の底部に接触せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設した点にある。
【0014】
【発明の実施の形態】
以下図面に基づいて本発明の好ましい実施形態を詳述する。
【0015】
図1において、ダミーウエハ1の表面1aには、多数の凹部2が点在するように形成されている。例えば、ダミーウエハ1aのほぼ中心に位置する凹部2aと、該ウエハ1aに同心状に描かれる仮想の小径円3S上に所定間隔をあけて配置された複数の凹部2bと、小径円3Sと同心状に描かれる仮想の大径円3L上に所定間隔をあけて配置された複数の凹部2cが形成されている。図例の場合、4個の凹部2bと4個の凹部2cがそれぞれ小径円3S及び大径円3L上に等間隔をあけて配置され、小径円3S上の凹部2bと大径円3L上の凹部2cを相互に円周に対して約45度だけ位相をずらせて配置することにより、ダミーウエハ1の全体に対し凹部2a、2b、2cが均等に分散され、後述する熱電対によりダミーウエハ1の全体にわたる温度分布を測定可能となるように構成している。
【0016】
前記凹部2のそれぞれには熱電対4の温接点部が挿入され、該温接点部を凹部の底部に接触せしめた状態で、該凹部に耐熱固着剤を充填し、該耐熱固着剤中に温接点部を埋設している。それぞれの熱電対4の一対の素線4b、4bは、コネクタ5に導かれ、そこで熱電対又は補償導線6に接続される。尚、温接点部から延びる熱電対の素線4bは、適宜、耐熱性の被覆材により被覆することが好ましい。
【0017】
通常、半導体ウエハの熱処理炉は、炉内温度が800〜1000度Cであるため、樹脂系接着剤では炉内温度に耐え得ない。このため、前記耐熱固着剤は、無機質の耐熱セメントが好ましく、特に、シリカ及びアルミナを主成分とする耐熱セメントを用いれば、熱膨張率が低く耐剥離性に優れ、粘度が高いため乾燥が早く、しかも、約1600度Cの耐熱温度を満足する。
【0018】
ダミーウエハ1は、例えば、単結晶シリコンインゴットからスライス切断された直径200mmφ、厚さ0.76mmの円板状であり、前記凹部2は、ダミーウエハ1の表面を座ぐり加工することにより、直径3mmφ程度の円形凹部を構成する。そして、熱電対の温接点部を凹部2に埋没せしめ且つ凹部2の底部に接触せしめた状態で、該凹部2に耐熱固着剤が充填され固化せしめられる。この際、耐熱固着剤は、凹部2に充填されるのでダミーウエハ1の表面から突出することはなく、充填された耐熱固着剤の表面とダミーウエハの表面を平坦とすることが好ましい。
【0019】
(第1実施例)
図2は、凹部2と熱電対4の接続態様の第1実施例を示しており、凹部2の底部7には、相互に間隔をあけて貫通する一対の挿通孔8、8が開削により開設されている。凹部2を円形凹部に形成した図示実施例において、一対の挿通孔8、8は、凹部2の直径方向に位置し且つ凹部2の周縁近傍に設けられている。
【0020】
そこで、熱電対4は、温接点部4aを凹部2の底部7に接触せしめると共に、一対の素線4b、4bのそれぞれをダミーウエハ1の表面1aの側から一対の挿通孔8、8に挿入し、ダミーウエハ1の裏面1bの側に挿出せしめられ、この状態で凹部2に耐熱固着剤9を充填し、固化した耐熱固着剤中に温接点部4aを埋設している。
【0021】
この第1実施例によれば、熱電対4を凹部2に埋没するに際し、先ず、一対の素線4b、4bのそれぞれをダミーウエハ1の表面1aの側から挿通孔8、8に挿入し、ダミーウエハ1の裏面1bの側に挿出せしめた後、該素線4b、4bを挿出方向に引込めば、温接点部4aが凹部2の底部7に確実に接支される。
【0022】
しかも、熱電対4は、素線4b、4bが引込まれる方向に対して、温接点部4aの近傍部を凹部2に巻掛状に係止されているので、外力によりダミーウエハ1から脱落する虞れはない。
【0023】
(第2実施例)
図3は、凹部2と熱電対4の接続態様の第2実施例を示しており、ダミーウエハ1の表面1aに設けられた凹部2の底部7には、該凹部2の直径方向に位置し且つ凹部2の周縁近傍に位置して貫通する一対の挿通孔8、8が開設されており、この点は前記第1実施例とほぼ同様であるが、更に、ダミーウエハ1の裏面1bに座ぐり加工等により、前記凹部2の各挿通孔8にオーバラップする補助凹部10を形成すると共に、該補助凹部10の底部11に貫通する補助挿通孔12を形成している。
【0024】
そこで、熱電対4は、一対の素線4b、4bのそれぞれをダミーウエハ1の表面1aの側から一対の挿通孔8、8に挿入し、ダミーウエハ1の裏面1bの側に挿出せしめる。この際、素線4b、4bを挿出方向に引張れば、温接点部4aが凹部2の底部7に接支される。次いで、素線4b、4bを補助凹部10内で折返し補助挿通孔12に挿入し、ダミーウエハ1の表面1aの側に挿出せしめ、素線4b、4bを挿出方向に引張れば、素線4b、4bの折返部が補助凹部10の底部11に係止する。この状態で凹部2及び補助凹部10、10に耐熱固着剤9を充填し、凹部2内においては固化した耐熱固着剤中に温接点部4aを埋設し、補助凹部10内においては固化した耐熱固着剤中に素線4bの折返部を埋設している。
【0025】
(第3実施例)
図4は、凹部2と熱電対4の接続態様の第3実施例を示しており、ダミーウエハ1の表面1aに設けられた凹部2は、断面楔形に形成され、該凹部2の底部7の幅Wbと開口部の幅Waを、Wb>Waに形成している。
【0026】
そこで、熱電対4は、温接点部4aを凹部2底部7に接触せしめられ、この状態で凹部2に耐熱固着剤9を充填することにより、固化された耐熱固着剤中に温接点部4aを埋設せしめられる。熱電対4の一対の素線4b、4bは、耐熱固着剤9から導出されている。従って、この第3実施例の場合、加熱処理炉内に設置されたダミーウエハ1は、裏面1bにヒーターの熱を受け、表面1aに熱電対4の素線4b、4bを配設する。
【0027】
【発明の効果】
請求項1に記載の本発明によれば、ダミーウエハ1は、実ウエハと同形同材であるから、実ウエハの実際の温度分布を最適にシュミレーションすることができる。そして、このようなダミーウエハ1は、製品化不能とされたウエハを有効利用することにより簡単に得ることができる。
【0028】
そして、半導体ウエハ熱処理炉用の測温ウエハを提供するにあたり、上述したような熱電対の取付けに伴う課題を解決することができる。即ち、ダミーウエハ1に多数の熱電対4を配設するに際し、ダミーウエハ1に凹部2を加工し、熱電対4の温接点部4aを凹部2の底部7に接触せしめた状態で、該凹部2に充填した耐熱固着剤9により温接点部4aを埋設した構成であるから、耐熱固着剤9が凹部2に拘束された状態で固化し、凹部2に係止することにより剥離し難く、熱電対4がダミーウエハ1から脱落することを防止する。しかも、ウエハの表面に対し直接に熱電対の温接点部を接着剤で接着固定する場合は、ウエハの表面に凸部が形成されるのに対して、本発明によれば、一対の熱電対素線4b、4bを一対の挿通孔8、8から挿出せしめた状態で、温接点部4aを埋没せしめた凹部2に耐熱固着剤9を充填する構成であるから、ダミーウエハ1の表面1aにこのような凸部が形成されることはなく、ダミーウエハ1の温度分布を好適にシュミレーションすることができる。
【0029】
そして、請求項2に記載の本発明によれば、凹部2の底部7に相互に間隔をあけて貫通する一対の挿通孔8、8を開設し、熱電対4の温接点部4aを前記凹部2の底部7に接触せしめると共に、一対の熱電対素線4b、4bのそれぞれを前記一対の挿通孔8、8に挿通せしめた状態で、該凹部2に充填した耐熱固着剤9により前記温接点部4aを埋設した構成であるから、温接点部4aを凹部2の底部7に確実に接支せしめることができ、しかも、熱電対4は、素線4b、4bが引込まれる方向に対して、温接点部4aの近傍部を凹部2に巻掛状に係止されるので、熱電対4が外力によりダミーウエハ1から脱落する虞れはなく、熱電対の引張り及び押込みの双方の外力に対して強固であり、熱電対4の強固な植設が可能になる。しかも、請求項2に記載の本発明は、このような構成に加えて、更に、前記凹部2の各挿通孔8、8にオーバラップする補助凹部10をダミーウエハ1の裏面1bに形成すると共に、該補助凹部10の底部11に貫通する補助挿通孔12を開設し、前記挿通孔8を挿通した熱電対素線4bを補助凹部10内で折返し補助挿通孔12に挿通せしめ、この状態で、前記補助凹部10に充填した耐熱固着剤9により熱電対素線4bの折返部を埋設した構成であるから、熱電対4の植設強度が一層強固になる。
【0030】
請求項3に記載の本発明によれば、凹部2を断面楔形に形成することにより凹部の底部7の幅Wbと開口部の幅WaをWb>Waに構成し、前記熱電対4の温接点部4aを凹部2の底部7に接触せしめた状態で、該凹部7に充填した耐熱固着剤9により前記温接点部4aを埋設した構成であるから、構造が簡単である反面、断面楔形の凹部2に対して耐熱固着剤9を抜止状に係止することができ、以て熱電対4の強固な植設を可能とする。
【図面の簡単な説明】
【図1】本発明の1実施態様を示し、(A)は平面図、(B)は側面図である。
【図2】本発明の第1実施例を示し、(A)は凹部を示す平面図、(B)は凹部と熱電対を示す断面図、(C)は凹部に熱電対を植設した状態を示す断面図である。
【図3】本発明の第2実施例を示し、(A)は凹部を示す平面図、(B)は凹部と熱電対を示す断面図、(C)は凹部に熱電対を植設した状態を示す断面図である。
【図4】本発明の第3実施例を示し、(A)は凹部を示す平面図、(B)は凹部に熱電対を植設した状態を示す断面図である。
【符号の説明】
1  ダミーウエハ
2  凹部
4  熱電対
7  凹部の底部
8  挿通孔
9  耐熱固着剤
10  補助凹部
11  補助凹部の底部
12  補助挿通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature measurement wafer for a semiconductor wafer heat treatment furnace.
[0002]
[Prior art]
A semiconductor wafer is sliced and cut from a single crystal ingot, and then goes through various processing steps such as chamfering, cleaning, drying, heat treatment, and polishing to become a final product. For example, the heat treatment is performed to form a uniform thin film such as an oxide film, and a thermal diffusion processing device such as a CVD device or an epitaxial device is used.
[0003]
Therefore, the semiconductor wafer is subjected to heat treatment by a heat treatment furnace. Such a heat treatment furnace includes a horizontal heat treatment furnace in which a plurality of wafers are vertically arranged in a horizontal posture and a plurality of wafers. Vertical heat treatment furnaces are arranged in a standing posture. In any of the heat treatment furnaces, it is necessary to perform a uniform heat treatment on a plurality of wafers, so that control of a heater in the furnace is important. For example, a thermocouple is disposed on an inner wall of a reaction tube for accommodating a semiconductor wafer, and a technology for constantly controlling the internal temperature of the reaction tube (Japanese Patent Laid-Open No. 3-273719), or a thermocouple is disposed in a support portion for supporting a wafer. Techniques for controlling the heater temperature so that the peripheral temperature of the wafer is maintained at a predetermined appropriate value are known (JP-A-4-206816 and JP-A-5-136071).
[0004]
By the way, since the temperature control in the furnace as described above needs to be reflected in the actual temperature of the wafer placed in the furnace, before the heat treatment of the actual wafer (a genuine wafer which is a semiconductor wafer product), It is preferable to place a jig wafer (a pseudo wafer of the same type as the actual wafer) in a furnace and simulate the temperature of the jig wafer to control the heater in the furnace in advance.
[0005]
For this reason, for example, a jig wafer specially manufactured by embedding a thermocouple material inside a wafer (Japanese Patent Laid-Open No. Sho 62-165325), or a specially manufactured jig by sandwiching a thermocouple material between a pair of wafers. Jig wafers (Japanese Patent Laid-Open No. 62-165336) and jig wafers formed of quartz glass and having a thermocouple embedded therein (Japanese Utility Model Laid-Open No. 5-6340) have been proposed.
[0006]
[Problems to be solved by the invention]
Since the jig wafer described above must be able to simulate the temperature distribution of the actual wafer, it is designed to have the same shape and the same heat capacity as the actual wafer. However, it is not always easy to specially manufacture such a jig wafer.
[0007]
According to the findings of the present inventors, a semiconductor wafer (real wafer) is manufactured by slicing and cutting from a single crystal ingot, and various heat treatments are performed. However, due to the performance, shape, and the like of the heat treatment furnace, sufficient heat treatment and the like are not particularly performed on the wafers near the inlet of the furnace, and some wafers cannot be used as actual wafers. Therefore, if the present inventors utilize such a wafer that cannot be used as an actual wafer, the wafer having the same material and the same shape (the same thickness and the same contour shape) as the actual wafer is used as a wafer for temperature measurement (hereinafter, dummy wafer). ), And is most advantageous for performing the above-described simulation.
[0008]
By the way, in order to put such a dummy wafer into practical use as a temperature measurement wafer, it is necessary to provide a thermocouple on the dummy wafer, but there are various problems to be solved.
[0009]
For example, a technique is considered in which the hot junction of a thermocouple is bonded and fixed to the surface of the dummy wafer with an adhesive. In this case, the surface of the dummy wafer is overlaid with the adhesive, and the surface becomes uneven and the convex portion formed by the adhesive is used. Is formed, which has a different heat capacity from other portions, which is not preferable for simulation of temperature distribution.
[0010]
In addition, a technique of embedding and fixing a thermocouple in a sandwich shape between two dummy wafers is conceivable. In this case, not only is the processing complicated, but also not only at the hot junction part of the thermocouple but also at the element wire. Is sandwiched between wafers, it is extremely difficult to provide hot junctions at a plurality of locations.
[0011]
[Means for Solving the Problems]
The present invention provides a temperature-measuring wafer using the dummy wafer and solving the problems associated with the attachment of the thermocouple as described above. A dummy wafer of the same shape, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions, wherein a hot junction portion of the thermocouple is brought into contact with a bottom portion of the concave portion. The point is that the hot junction is buried in the heat-resistant adhesive filled in the recess.
[0012]
Further, the present invention is configured as a second means, because a real wafer and a dummy wafer of the same shape and the same material, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions. A pair of insertion holes penetrating the bottom of the recess at a distance from each other, and allowing the hot junction of the thermocouple to contact the bottom of the recess, and connecting each of the pair of thermocouple wires to the bottom of the recess. The hot junction is buried in a heat-resistant adhesive filled in the recess while being inserted through the pair of insertion holes, and an auxiliary recess overlapping the insertion hole of the recess is formed on the back surface of the dummy wafer. The auxiliary recess is formed and an auxiliary insertion hole is formed to penetrate the bottom of the auxiliary recess, and the thermocouple wire inserted through the insertion hole is folded back in the auxiliary recess, and the auxiliary recess is inserted into the auxiliary recess. In heat-resistant fixing agent Lies in the embedded folded portions of the thermocouple element.
[0013]
Further, the present invention is configured as a third means because a dummy wafer of the same shape and the same material as the actual wafer, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions. By forming the recess in a wedge-shaped cross section, the bottom width Wb and the opening width Wa of the recess are configured to satisfy Wb> Wa, and the hot junction of the thermocouple is brought into contact with the bottom of the recess. The point lies in that the hot junction is buried in the heat-resistant fixing agent filled in the concave portion.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
[0015]
In FIG. 1, a large number of recesses 2 are formed on a surface 1a of a dummy wafer 1 so as to be dotted. For example, a concave portion 2a located substantially at the center of the dummy wafer 1a, a plurality of concave portions 2b arranged at predetermined intervals on a virtual small diameter circle 3S concentrically drawn on the wafer 1a, and a concentric shape with the small diameter circle 3S. Are formed with a plurality of recesses 2c arranged at predetermined intervals on a virtual large diameter circle 3L drawn in FIG. In the case of the illustrated example, four concave portions 2b and four concave portions 2c are arranged at equal intervals on the small-diameter circle 3S and the large-diameter circle 3L, respectively, and the concave portion 2b on the small-diameter circle 3S and the large-diameter circle 3L are formed. By arranging the concave portions 2c so as to be out of phase with each other by about 45 degrees with respect to the circumference, the concave portions 2a, 2b, and 2c are evenly dispersed with respect to the entire dummy wafer 1, and the entire dummy wafer 1 is dispersed by a thermocouple described later. It is configured to be able to measure a temperature distribution over a range.
[0016]
A hot junction of a thermocouple 4 is inserted into each of the recesses 2, and the recess is filled with a heat-resistant adhesive in a state where the hot junction is brought into contact with the bottom of the recess. The contact part is buried. A pair of strands 4b, 4b of each thermocouple 4 is led to a connector 5, where it is connected to a thermocouple or compensating lead 6. Preferably, the strand 4b of the thermocouple extending from the hot junction is appropriately coated with a heat-resistant coating material.
[0017]
Normally, in a heat treatment furnace for semiconductor wafers, the furnace temperature is 800 to 1000 ° C., so that the resin-based adhesive cannot withstand the furnace temperature. For this reason, the heat-resistant fixing agent is preferably an inorganic heat-resistant cement. In particular, when a heat-resistant cement containing silica and alumina as a main component is used, the coefficient of thermal expansion is low, the peel resistance is excellent, and the viscosity is high, so that drying is quick. In addition, it satisfies the heat resistance temperature of about 1600 ° C.
[0018]
The dummy wafer 1 is, for example, a disk having a diameter of 200 mmφ and a thickness of 0.76 mm sliced from a single crystal silicon ingot, and the concave portion 2 is formed to have a diameter of about 3 mmφ by counterbore processing the surface of the dummy wafer 1. Are formed. Then, with the hot junction portion of the thermocouple buried in the recess 2 and in contact with the bottom of the recess 2, the recess 2 is filled with a heat-resistant fixing agent and solidified. At this time, since the heat-resistant adhesive is filled in the concave portion 2, it is preferable that the surface of the filled heat-resistant adhesive and the surface of the dummy wafer be flat without protruding from the surface of the dummy wafer 1.
[0019]
(First embodiment)
FIG. 2 shows a first embodiment of a connection mode between the concave portion 2 and the thermocouple 4, and a pair of insertion holes 8, 8 penetrating at intervals from each other are formed in the bottom portion 7 of the concave portion 2 by cutting. Have been. In the illustrated embodiment in which the recess 2 is formed as a circular recess, the pair of insertion holes 8, 8 are provided in the diametrical direction of the recess 2 and near the periphery of the recess 2.
[0020]
Therefore, the thermocouple 4 causes the hot junction 4a to contact the bottom 7 of the recess 2 and inserts each of the pair of strands 4b, 4b into the pair of insertion holes 8, 8 from the surface 1a side of the dummy wafer 1. The concave portion 2 is filled with a heat-resistant adhesive 9 in this state, and the hot junction 4a is embedded in the solidified heat-resistant adhesive.
[0021]
According to the first embodiment, when the thermocouple 4 is buried in the concave portion 2, first, each of the pair of strands 4 b, 4 b is inserted into the insertion holes 8, 8 from the front surface 1 a side of the dummy wafer 1. After the wires 4b, 4b are pulled out in the insertion direction after being inserted into the back surface 1b side of 1, the hot junction portion 4a is securely supported by the bottom 7 of the concave portion 2.
[0022]
In addition, since the thermocouple 4 has the vicinity of the hot junction 4a wound around the concave portion 2 in the direction in which the wires 4b and 4b are drawn in, the thermocouple 4 is dropped from the dummy wafer 1 by an external force. There is no fear.
[0023]
(Second embodiment)
FIG. 3 shows a second embodiment of the connection mode between the recess 2 and the thermocouple 4. The bottom 7 of the recess 2 provided on the front surface 1 a of the dummy wafer 1 is located in the diameter direction of the recess 2 and A pair of through holes 8, 8 are formed near the periphery of the concave portion 2 and penetrate therethrough. This point is almost the same as that of the first embodiment, but furthermore, a counterbore is formed on the back surface 1b of the dummy wafer 1. Thus, an auxiliary recess 10 overlapping each insertion hole 8 of the recess 2 is formed, and an auxiliary insertion hole 12 penetrating through the bottom 11 of the auxiliary recess 10 is formed.
[0024]
Then, the thermocouple 4 inserts each of the pair of strands 4b, 4b from the front surface 1a side of the dummy wafer 1 into the pair of insertion holes 8, 8, and inserts them into the back surface 1b side of the dummy wafer 1. At this time, if the wires 4b, 4b are pulled in the insertion direction, the hot junction 4a is supported on the bottom 7 of the concave portion 2. Next, the wires 4b, 4b are inserted into the folded auxiliary insertion holes 12 in the auxiliary recesses 10 and inserted into the surface 1a of the dummy wafer 1, and the wires 4b, 4b are pulled in the insertion direction. The folded portions 4b and 4b are engaged with the bottom 11 of the auxiliary recess 10. In this state, the concave portion 2 and the auxiliary concave portions 10 and 10 are filled with the heat-resistant fixing agent 9, the solidified heat-resistant adhesive is buried in the concave portion 2, and the solidified heat-resistant fixing portion 4 a is buried in the auxiliary concave portion 10. The folded portion of the wire 4b is embedded in the agent.
[0025]
(Third embodiment)
FIG. 4 shows a third embodiment of the connection mode between the concave portion 2 and the thermocouple 4. The concave portion 2 provided on the surface 1a of the dummy wafer 1 is formed in a wedge-shaped cross section, and the width of the bottom 7 of the concave portion 2 is shown. Wb and the width Wa of the opening are set so that Wb> Wa.
[0026]
Then, the thermocouple 4 is brought into contact with the hot junction portion 4a with the bottom portion 7 of the concave portion 2, and in this state, the concave portion 2 is filled with the heat resistant fixing agent 9, whereby the hot junction portion 4a is put into the solidified heat resistant fixing agent. It is buried. The pair of strands 4 b, 4 b of the thermocouple 4 are led out of the heat-resistant fixing agent 9. Therefore, in the case of the third embodiment, the dummy wafer 1 placed in the heat treatment furnace receives the heat of the heater on the back surface 1b and arranges the wires 4b, 4b of the thermocouple 4 on the front surface 1a.
[0027]
【The invention's effect】
According to the first aspect of the present invention, since the dummy wafer 1 is made of the same material as the actual wafer, it is possible to optimally simulate the actual temperature distribution of the actual wafer. Then, such a dummy wafer 1 can be easily obtained by effectively utilizing a wafer which has been made unproductable.
[0028]
Then, in providing a temperature measurement wafer for a semiconductor wafer heat treatment furnace, it is possible to solve the above-mentioned problems associated with mounting a thermocouple. That is, when a large number of thermocouples 4 are provided on the dummy wafer 1, the concave portion 2 is formed in the dummy wafer 1, and the hot junction 4 a of the thermocouple 4 is brought into contact with the bottom 7 of the concave portion 2, and Since the hot junction 4a is buried with the filled heat-resistant adhesive 9, the heat-resistant adhesive 9 is hardened in a state of being restrained by the concave portion 2, and is hardly peeled off by being locked in the concave portion 2; Is prevented from dropping from the dummy wafer 1. Further, when the hot junction of the thermocouple is directly fixed to the surface of the wafer with an adhesive, a convex portion is formed on the surface of the wafer, whereas according to the present invention, a pair of thermocouples is provided. With the configuration in which the heat resistant fixing agent 9 is filled in the concave portion 2 in which the hot junction portion 4a is buried while the wires 4b, 4b are inserted through the pair of insertion holes 8, 8, the surface 1a of the dummy wafer 1 is Such a convex portion is not formed, and the temperature distribution of the dummy wafer 1 can be suitably simulated.
[0029]
According to the second aspect of the present invention, a pair of insertion holes 8, 8 penetrating through the bottom portion 7 of the concave portion 2 at a distance from each other are opened, and the hot junction portion 4 a of the thermocouple 4 is connected to the concave portion. 2 with the pair of thermocouple wires 4b, 4b inserted through the pair of insertion holes 8, 8, respectively, and with the heat-resistant adhesive 9 filled in the recess 2, the hot junction is inserted. Since the configuration is such that the portion 4a is buried, the hot junction portion 4a can be securely contacted with the bottom 7 of the concave portion 2, and the thermocouple 4 is moved in the direction in which the wires 4b, 4b are drawn. Since the vicinity of the hot junction portion 4a is engaged with the concave portion 2 in a winding manner, there is no possibility that the thermocouple 4 will fall off the dummy wafer 1 due to an external force. And the thermocouple 4 can be firmly implanted. Further, in addition to such a configuration, the present invention described in claim 2 further forms an auxiliary recess 10 overlapping each of the insertion holes 8, 8 of the recess 2 on the back surface 1 b of the dummy wafer 1. An auxiliary insertion hole 12 that penetrates the bottom 11 of the auxiliary recess 10 is opened, and the thermocouple wire 4b inserted through the insertion hole 8 is folded back in the auxiliary recess 10 to be inserted into the auxiliary insertion hole 12, and in this state, Since the folded portion of the thermocouple wire 4b is buried by the heat-resistant fixing agent 9 filled in the auxiliary recess 10, the planting strength of the thermocouple 4 is further enhanced.
[0030]
According to the third aspect of the present invention, the width Wb of the bottom 7 of the recess and the width Wa of the opening are configured such that Wb> Wa by forming the recess 2 in a wedge-shaped cross section, and the hot junction of the thermocouple 4 is formed. Since the hot junction 4a is buried with the heat-resistant adhesive 9 filled in the recess 7 in a state where the portion 4a is in contact with the bottom 7 of the recess 2, the structure is simple, but the recess has a wedge-shaped cross section. The heat-resistant fixing agent 9 can be locked in a locking manner with respect to 2, so that the thermocouple 4 can be firmly implanted.
[Brief description of the drawings]
FIG. 1 shows one embodiment of the present invention, wherein (A) is a plan view and (B) is a side view.
2A and 2B show a first embodiment of the present invention, wherein FIG. 2A is a plan view showing a concave portion, FIG. 2B is a sectional view showing a concave portion and a thermocouple, and FIG. 2C is a state where a thermocouple is implanted in the concave portion. FIG.
3A and 3B show a second embodiment of the present invention, wherein FIG. 3A is a plan view showing a concave portion, FIG. 3B is a sectional view showing a concave portion and a thermocouple, and FIG. 3C is a state where a thermocouple is implanted in the concave portion. FIG.
4A and 4B show a third embodiment of the present invention, wherein FIG. 4A is a plan view showing a concave portion, and FIG. 4B is a sectional view showing a state where a thermocouple is implanted in the concave portion.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 dummy wafer 2 recess 4 thermocouple 7 bottom of recess 8 insertion hole 9 heat-resistant adhesive 10 auxiliary recess 11 bottom 12 of auxiliary recess 12 auxiliary insertion hole

Claims (3)

実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、
前記熱電対の温接点部を前記凹部の底部に接触せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設したことを特徴とする半導体ウエハ熱処理炉用の測温ウエハ。
A dummy wafer of the same shape and the same material as the real wafer, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions,
A temperature measuring wafer for a semiconductor wafer heat treatment furnace, wherein the hot junction is buried in a heat-resistant adhesive filled in the recess while the hot junction of the thermocouple is in contact with the bottom of the recess. .
実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、
前記凹部の底部に相互に間隔をあけて貫通する一対の挿通孔を開設し、前記熱電対の温接点部を前記凹部の底部に接触せしめると共に、一対の熱電対素線のそれぞれを前記一対の挿通孔に挿通せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設して成り、
更に、前記凹部の各挿通孔にオーバラップする補助凹部をダミーウエハの裏面に形成すると共に、該補助凹部の底部に貫通する補助挿通孔を開設し、前記挿通孔を挿通した熱電対素線を補助凹部内で折返し補助挿通孔に挿通せしめた状態で、前記補助凹部に充填した耐熱固着剤中に前記熱電対素線の折返部を埋設したことを特徴とする半導体ウエハ熱処理炉用の測温ウエハ。
A dummy wafer of the same shape and the same material as the real wafer, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions,
Opening a pair of insertion holes penetrating the bottom of the recess at an interval from each other, making the hot junction of the thermocouple contact the bottom of the recess, and connecting each of the pair of thermocouple wires to the pair of thermocouples. In the state of being inserted through the insertion hole, the hot junction portion is buried in a heat-resistant adhesive filled in the concave portion,
Further, an auxiliary concave portion overlapping with each of the insertion holes of the concave portion is formed on the back surface of the dummy wafer, and an auxiliary insertion hole that penetrates the bottom of the auxiliary concave portion is opened to assist the thermocouple wire inserted through the insertion hole. A temperature measuring wafer for a semiconductor wafer heat treatment furnace, wherein a folded portion of the thermocouple wire is buried in a heat-resistant adhesive filled in the auxiliary recess while being inserted into the folding auxiliary insertion hole in the recess. .
実ウエハと同形同材のダミーウエハと、該ダミーウエハの表面に点在する多数の凹部と、前記凹部に対応する多数の熱電対とから成り、
前記凹部を断面楔形に形成することにより凹部の底部幅Wbと開口部幅WaをWb>Waに構成し、
前記熱電対の温接点部を前記凹部の底部に接触せしめた状態で、該凹部に充填した耐熱固着剤中に前記温接点部を埋設したことを特徴とする半導体ウエハ熱処理炉用の測温ウエハ。
A dummy wafer of the same shape and the same material as the real wafer, a large number of concave portions scattered on the surface of the dummy wafer, and a large number of thermocouples corresponding to the concave portions,
By forming the recess in a wedge-shaped cross section, the bottom width Wb and the opening width Wa of the recess are configured such that Wb> Wa,
A temperature measuring wafer for a semiconductor wafer heat treatment furnace, wherein the hot junction is buried in a heat-resistant adhesive filled in the recess while the hot junction of the thermocouple is in contact with the bottom of the recess. .
JP2003156646A 2003-06-02 2003-06-02 Temperature measuring wafer for heat treatment furnace for semiconductor wafer Pending JP2004004096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156646A JP2004004096A (en) 2003-06-02 2003-06-02 Temperature measuring wafer for heat treatment furnace for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156646A JP2004004096A (en) 2003-06-02 2003-06-02 Temperature measuring wafer for heat treatment furnace for semiconductor wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22005797A Division JP3663035B2 (en) 1997-07-30 1997-07-30 Temperature measuring wafer for semiconductor wafer heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2004004096A true JP2004004096A (en) 2004-01-08

Family

ID=30438219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156646A Pending JP2004004096A (en) 2003-06-02 2003-06-02 Temperature measuring wafer for heat treatment furnace for semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2004004096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222259A (en) * 2011-04-13 2012-11-12 Koyo Thermo System Kk Wafer with thermocouple, wafer support pin, and wafer support structure
CN109100036A (en) * 2018-06-08 2018-12-28 南京钢铁股份有限公司 Measuring method based on technological parameter under flat-bulb steel induction heating and quenching condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222259A (en) * 2011-04-13 2012-11-12 Koyo Thermo System Kk Wafer with thermocouple, wafer support pin, and wafer support structure
CN109100036A (en) * 2018-06-08 2018-12-28 南京钢铁股份有限公司 Measuring method based on technological parameter under flat-bulb steel induction heating and quenching condition

Similar Documents

Publication Publication Date Title
JPH1151776A (en) Temperature measuring wafer for heat treatment furnace of semiconductor wafer
US3853650A (en) Stress sensor diaphragms over recessed substrates
JP2017527987A (en) Bonding assembly with integrated temperature sensing at the bond layer
TW201221935A (en) Method for measuring adhesion energy and associated substrates
EP2889909B1 (en) Etching of infrared sensor membrane and infrared sensor
JP2004004096A (en) Temperature measuring wafer for heat treatment furnace for semiconductor wafer
EP3789745B1 (en) Flexible passive electronic component and method for producing the same
JP3792165B2 (en) Thermocouple wafer sensor
CN110040678B (en) Micro sensor and preparation method thereof
JP2011107104A (en) Temperature detector
JP2005030792A (en) Temperature measuring wafer
JP4651362B2 (en) Temperature measuring substrate for substrate heat treatment furnace
JPH045000B2 (en)
TW201909354A (en) Double-sided adhesive
JP6381314B2 (en) Heat treatment furnace temperature measuring jig and manufacturing method thereof
JP4718697B2 (en) Wafer with temperature sensor
JP4473404B2 (en) Temperature measuring plate
KR101999159B1 (en) Coated thermocouple and thermocouple wafer using the same
AU2001281291A1 (en) Method for fast and accurate determination of the minority carrier diffusion length from simultaneously measured surface photovoltages
JP2529799B2 (en) Method for joining silicon semiconductor devices
JP2000031231A (en) Temperature measuring device of wafer or the like and manufacture thereof
JP5871265B2 (en) Wafer with temperature sensor, method for manufacturing the same, and method for fixing element wire of temperature sensor
JPH08166269A (en) Hot wire type flow sensor
JP2004150816A (en) Surface temperature sensor, temperature sensor sticking device, and surface temperature measuring apparatus
JPS6117018A (en) Flow-rate measuring device for gas to be measured

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A02 Decision of refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A02