JP3662370B2 - 光学式測定装置および方法 - Google Patents
光学式測定装置および方法 Download PDFInfo
- Publication number
- JP3662370B2 JP3662370B2 JP28717096A JP28717096A JP3662370B2 JP 3662370 B2 JP3662370 B2 JP 3662370B2 JP 28717096 A JP28717096 A JP 28717096A JP 28717096 A JP28717096 A JP 28717096A JP 3662370 B2 JP3662370 B2 JP 3662370B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- light
- signal
- multiplier
- electrical signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の属する技術分野】
本発明は、測定光を干渉させることによって得られる光干渉信号と参照光を干渉させることによって得られる光干渉信号とを利用して、被測定物質に含まれる特定の生体成分量を測定する光学式測定装置および方法に関する。
【0002】
【従来の技術】
光干渉を利用して、物理量を測定する方法が知られている。そのような物理量としては、例えば、物体の変位や表面形状、複屈折性を有する物質の複屈折率、旋光特性を有する物質の水溶液濃度などが挙げられる。
【0003】
その方法は、ヘテロダイン干渉光の位相と測定対象である特定成分の物理量との間に関係があることを利用する。その方法は、干渉光を電気信号に変換することと、その電気信号の位相を測定することにより特定成分の物理量を求めることとを含んでいる。通常、既知の参照光の位相と測定光の位相との間のずれ(すなわち、参照光と測定光との間の位相差)を測定することにより、物理量が測定される。
【0004】
【発明が解決しようとする課題】
通常、参照光と測定光との間の位相差は、測定対象である物理量の変化に対して決定される。物理量の変化が大きいほど位相差も大きくなるが、位相差はきわめて小さいことが通常である。従って、物理量の変化を高分解能あるいは高精度で測定しようとすると、非常に高い精度を有する位相差計が要求される。
【0005】
一般に、位相差計の分解能は電気的に0.1度ないし0.01度が限度である。位相差計は、その限度未満の位相差を測定することができない。従って、従来の方法では、物理量の微量の変化を測定することができないという問題点があった。
【0006】
本発明は、上記問題点に鑑みてなされてものであり、特定の生体成分量の微量の変化を測定することが可能な、向上された測定精度を有する光学式測定装置および方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の光学式測定装置は、被測定物質を通過する測定光と所定の参照光とを利用して、該被測定物質に含まれる特定の生体成分量を測定する光学式測定装置であって、第1の光源から出射された第1の光と、第2の光源から前記第1の光と異なる周波数で出射された第2の光との干渉光が前記被測定物質を通過することによって得られる測定光から第1の光干渉信号を得る第1の干渉手段と、前記第1の光と、前記第2の光とを干渉させることによって得られる参照光から第2の光干渉信号を得る第2の干渉手段と、該第1の光干渉信号を第1の電気信号に変換する第1の光電変換部と、該第2の光干渉信号を第2の電気信号に変換する第2の光電変換部と、該第1の電気信号の位相を拡大する第1の位相拡大部と、該第2の電気信号の位相を拡大する第2の位相拡大部と、該第1の位相拡大部によって拡大された位相と該第2の位相拡大部によって拡大された位相との間の位相差を測定する位相差測定部と、該位相差測定部によって測定された該位相差に応じて、該被測定物質に含まれる該特定の生体成分量を決定する生体成分量決定部とを備えており、これにより上記目的が達成される。
【0008】
前記参照光は、参照物質を通過してもよい。
【0009】
前記第1の位相拡大部は、前記第1の電気信号を乗算する少なくとも1つの第1の乗算回路を備えており、前記第2の位相拡大部は、前記第2の電気信号を乗算する少なくとも1つの第2の乗算回路を備えていてもよい。
【0010】
前記第1の乗算回路は、前記第1の電気信号の周波数と位相とを拡大する第1の乗算器と、該第1の乗算器の出力を増幅する第1の増幅器と、該第1の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去する第1の波形処理器とを含み、前記第2の乗算回路は、前記第2の電気信号の周波数と位相とを拡大する第2の乗算器と、該第2の乗算器の出力を増幅する第2の増幅器と、該第2の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去する第2の波形処理器とを含んでいてもよい。
【0011】
本発明の光学式測定方法は、被測定物質を通過する測定光と所定の参照光とを利用して、該被測定物質に含まれる特定の生体成分量を測定する光学式測定方法であって、a)第1の光源から出射された第1の光と、第2の光源から前記第1の光と異なる周波数で出射された第2の光との干渉光が前記被測定物質を通過することによって得られる測定光から第1の光干渉信号を得るステップと、b)前記第1の光と、前記第2の光とを干渉させることによって得られる参照光から第2の光干渉信号を得るステップと、c)該第1の光干渉信号を第1の電気信号に変換するステップと、d)該第2の光干渉信号を第2の電気信号に変換するステップと、e)該第1の電気信号の位相を拡大するステップと、f)該第2の電気信号の位相を拡大するステップと、g)ステップe)において拡大された位相とステップf)において拡大された位相との間の位相差を測定するステップと、h)ステップg)において測定された該位相差に応じて、該被測定物質に含まれる該特定の生体成分量を決定するステップとを包含し、これにより上記目的が達成される。
【0012】
前記参照光は、参照物質を通過してもよい。
【0013】
前記ステップe)は、i)前記第1の電気信号を少なくとも1回乗算するステップを包含しており、前記ステップf)は、j)前記第2の電気信号を少なくとも1回乗算するステップを包含していてもよい。
【0014】
前記ステップi)は、前記第1の電気信号の周波数と位相とを第1の乗算器を用いて拡大するステップと、該第1の乗算器の出力を第1の増幅器を用いて増幅するステップと、該第1の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去するステップとを包含し、前記ステップj)は、前記第2の電気信号の周波数と位相とを第2の乗算器を用いて拡大するステップと、該第2の乗算器の出力を第2の増幅器を用いて増幅するステップと、該第2の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去するステップとを包含していてもよい。
【0015】
以下、作用を説明する。
【0016】
本発明による光学式測定装置および方法によれば、測定光に対応する第1の電気信号の位相と、参照光に対応する第2の電気信号の位相とが拡大される。これにより、第1の電気信号と第2の電気信号との間の位相差が拡大される。位相差を拡大することによって位相差の測定精度が向上する。その結果、生体成分量の測定精度も向上する。位相差と生体成分量とは、一定の関係にあるからである。
【0017】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。
【0018】
図1は、本発明による光学式測定装置100の構成を示す。光学式測定装置100は、光源1、2と、ビームスプリッタ3と、ミラー4と、サンプルセル6m、6rと、偏光板7m、7rと、フォトダイオード8m、8rと、アンプ9m、9rと、ミキサ10m、10rと、電気信号発振器11と、位相拡大部12m、12rと、位相差計13と、生体成分量決定部14とを含んでいる。
【0019】
光源1、2は光を出射する。光源1から出射された光と光源2から出射された光とは、互いに異なる周波数を有しており、かつ、互いに90度偏光している。例えば、光源1は、水平方向に偏光した周波数f0の光を出射し、光源2は、垂直方向に偏光した周波数f0+Δfの光を出射する。光源1、2から出射された光は、ビームスプリッタ3に入射される。
【0020】
ビームスプリッタ3は、光源1、2からの光を測定光と参照光とに分解する。ビームスプリッタ3によって分解された測定光と参照光は、いずれも、周波数f0の水平方向の直線偏光と周波数f0+Δfの垂直方向の直線偏光とを有する。これらの直線偏光のそれぞれは、可干渉性の成分である。
【0021】
ビームスプリッタ3から出射された測定光の光路上には、サンプルセル6mと、偏光板7mと、フォトダイオード8mとが配置されている。
【0022】
測定光は、サンプルセル6mを通過する。サンプルセル6mには被測定物質が収納されている。
【0023】
その後、測定光は、偏光板7mを通過する。これにより、測定光に含まれる水平方向の直線偏光と垂直方向の直線偏光とが互いに重なり合って干渉する。その結果、偏光板7mの出力として、周波数Δf、位相Φmを有する光干渉信号Imが得られる。ここで、位相Φmは、水平方向の直線偏光と垂直方向の直線偏光との間の位相差と被測定物質の性質によって生じた位相差とに依存する。
【0024】
光干渉信号Imは、(数1)によって表される。
【0025】
【数1】
Im = Am・Sin[ωt+Φm]
ここで、Amは光干渉信号Imの振幅を示し、ωは干渉ビートの周波数を示し、Φmは光干渉信号Imの位相を示す。
【0026】
被測定物質が旋光性を有している場合には、図1に示されるように、測定光の光路上に四分の一波長板5Aと四分の一波長板5Bとがさらに配置される。
【0027】
一般に、直線偏光が四分の一波長板のような複屈折板を通過すると、偏光状態が変化する。直線偏光の振動面に対して軸の方向が45°となるように四分の一波長板を配置した場合には、直線偏光は四分の一波長板を通過することによって円偏光に変換される。その円偏光は四分の一波長板を通過することによって直線偏光に変換される。
【0028】
ビームスプリッタ3から出射された測定光に含まれる水平方向の直線偏光と垂直方向の直線偏光とは、四分の一波長板5Aを通過することによって、それぞれ、右回りの円偏光と左回りの円偏光とに変換される。測定光は、サンプルセル6mを通過する。その被測定物質が旋光性を有する場合には、右回りの円偏光と左回りの円偏光との間には位相のズレが生じる。右回りの円偏光と左回りの円偏光とは、四分の一波長板5Bを通過することによって、それぞれ、水平方向の直線偏光と垂直方向の直線偏光とに変換される。その後、測定光は、偏光板7mを通過する。
【0029】
ビームスプリッタ3から出射された参照光は、ミラー4によって反射される。その結果、参照光の進行方向が90°変えられる。ミラー4によって反射された参照光の光路上には、サンプルセル6rと、偏光板7rと、フォトダイオード8rとが配置されている。
【0030】
ビームスプリッタ3から出射された参照光は、サンプルセル6rを通過する。サンプルセル6rには、被測定物質は収納されていない。その後、参照光は、偏光板7rを通過する。これにより、水平方向の直線偏光と垂直方向の直線偏光とが互いに重なり合って干渉する。その結果、偏光板7rの出力として、周波数Δf、位相Φrを有する光干渉信号Irが得られる。ここで、位相Φrは、水平方向の直線偏光と垂直方向の直線偏光との間の位相差に依存する。
【0031】
光干渉信号Irは、(数2)によって表される。
【0032】
【数2】
Ir = Ar・Sin[ωt+Φr]
ここで、Arは光干渉信号Irの振幅を示し、ωは干渉ビートの周波数を示し、Φrは光干渉信号Irの位相を示す。
【0033】
フォトダイオード8mは、光干渉信号Imを電気信号Vmに光電変換する。フォトダイオード8rは、光干渉信号Irを電気信号Vrに光電変換する。
【0034】
電気信号Vm、Vrは、(数3)、(数4)によって表される。
【0035】
【数3】
Vm = Bm・Sin[ωt+Φm]
【0036】
【数4】
Vr = Br・Sin[ωt+Φr]
従って、電気信号Vmと電気信号Vrとの間の位相差ΔΦは、(数5)によって表される。
【0037】
【数5】
ΔΦ = Φm − Φr
電気信号Vmは、アンプ9mによって増幅され、位相差計13によって測定可能な周波数領域となるようにミキサ10mによって電気信号発振器11から出力される発振した電気信号と掛け合わせられる。ミキサ10mの出力は、位相拡大部12mに供給される。
【0038】
同様にして、電気信号Vrは、アンプ9rおよびミキサ10rを介して位相拡大部12rに供給される。
【0039】
図2は、位相拡大部12mおよび位相拡大部12rの構成を示す。位相拡大部12mは、N個の乗算回路120m−1〜120m−Nを含んでおり、それらは互いに直列に接続されている。位相拡大部12rは、N個の乗算回路120r−1〜120r−Nを含んでおり、それらは互いに直列に接続されている。
【0040】
図3は、乗算回路120m−1および乗算回路120r−1の構成を示す。乗算回路120m−1は、乗算器121m−1と、増幅器122m−1と、波形処理器123m−1とを含んでいる。乗算回路120r−1は、乗算器121r−1と、増幅器122r−1と、波形処理器123r−1とを含んでいる。
【0041】
乗算器121m−1は、ミキサ10mから出力された電気信号Vmを2乗する乗算処理を行う。これにより、電気信号Vmの周波数と位相とが拡大される。その結果、電気信号Vm1’が得られる。
【0042】
電気信号Vm1’は、(数6)によって表される。
【0043】
【数6】
ここで、Dmは電気信号Vm1’の振幅を示し、Ψmは電気信号Vm1’の位相を示す。
【0044】
同様にして、乗算器121r−1は、ミキサ10rから出力された電気信号Vrを2乗する乗算処理を行う。これにより、電気信号Vrの周波数と位相とが拡大される。その結果、電気信号Vr1’が得られる。
【0045】
電気信号Vr1’は、(数7)によって表される。
【0046】
【数7】
ここで、Drは電気信号Vr1’の振幅を示し、Ψrは電気信号Vr1’の位相を示す。
【0047】
従って、電気信号Vm1’と電気信号Vr1’との間の位相差ΔΨは、(数8)によって表される。
【0048】
【数8】
ΔΨ = Ψm− Ψr = 2ΔΦ
増幅器122m−1は、乗算器121m−1によって減衰された信号の振幅を元の振幅に戻すよう乗算器121m−1から出力される電気信号を増幅する。周波数拡大処理によって減衰された振幅を補償するためである。
【0049】
波形処理器123m−1は、電気信号から必要な周波数を抽出し、ノイズを除去する。
【0050】
このようにして、波形処理器123m−1から出力される電気信号Vm1”は、(数9)によって表される。
【0051】
【数9】
Vm1”= Dm1・Cos(2ωt+2Φm)
(数3)および(数9)から電気信号Vm1”の位相は電気信号Vmの位相の2倍に拡大されることがわかる。
【0052】
電気信号Vm1”は、乗算回路120m−1から出力される。乗算回路120m−2〜120m−Nの構成は、乗算回路120−1の構成と同一である。従って、乗算回路120m−Nから出力される電気信号VmN”は、(数10)によって表される。
【0053】
【数10】
VmN”= DmN・Cos(2Nωt+2NΦm)
(数3)および(数10)から電気信号VmN”の位相は電気信号Vmの位相の2N倍に拡大されることがわかる。
【0054】
同様にして、乗算回路120r−Nから出力される電気信号VrN”は、(数11)によって表される。
【0055】
【数11】
VrN”= DrN・Cos(2Nωt+2NΦr)
(数4)および(数11)から電気信号VrN”の位相は電気信号Vrの位相の2N倍に拡大されることがわかる。
【0056】
従って、位相拡大部12mから出力される電気信号VmN”と位相拡大部12rから出力される電気信号VrN”との間の位相差ΔΨNは、(数12)によって表される。
【0057】
【数12】
ΔΨN = 2NΦm−2NΦr = 2NΔΦ
位相差ΔΨNは、位相差計13によって測定される。位相差ΔΨNと被測定物質に含まれる特定の生体成分量とは一定の関係を有する。例えば、特定の生体成分量は、位相差ΔΨNの関数Fとして定義される。関数Fは与えられる。
【0058】
生体成分量決定部14は、位相差ΔΨNに基づいて生体成分量を決定する。
【0059】
このように、位相拡大部12m、12rにおいてそれぞれN回乗算処理を行うことにより、生体成分量と直接的に関連する位相差ΔΦに比べて2N倍に拡大された位相差(ΔΨN=2NΔΦ)を有する電気信号が得られる。このため、従来と同一の精度の位相差計を用いて、被測定物質の特定の生体成分量をより高精度で測定することが可能となる。
【0060】
2チャンネルの光ヘテロダイン干渉から得られる交流電気信号の周波数を1MHzに落として、図3に示される乗算回路120m−1による位相の拡大効果を確認した。
【0061】
図4は、乗算回路120m−1および乗算回路120r−1によって位相が拡大される前の、測定光に対応する電気信号Vmの波形と参照光に対応する電気信号Vrの波形とを示す。これらの波形は、オシロスコープを用いて観察され得る。
【0062】
図5は、乗算回路120m−1および乗算回路120r−1によって位相が拡大された後の、測定光に対応する電気信号Vm1”の波形と参照光に対応する電気信号Vr1”の波形とを示す。これらの波形は、オシロスコープを用いて観察され得る。
【0063】
図4および図5から、乗算回路120m−1および乗算回路120r−1による処理によって電気信号の周波数が倍増したことがわかる。
【0064】
また、図4では、測定光に対応する電気信号Vmと参照光に対応する電気信号Vrとの間の位相差は90°であるのに対し、図5では、測定光に対応する電気信号Vm1”と参照光に対応する電気信号Vr1”との間の位相差は180°に拡大されている。これは、位相拡大部12m、12rによる位相の拡大効果を表している。
【0065】
図6は、位相拡大部12m、12rに入力される信号の位相差と位相拡大部12m、12rから出力される信号の位相差との関係を示す。図6から、位相拡大部12m、12rによって位相差が拡大されていることがわかる。
【0066】
なお、サンプルセル6rに参照物質を収納し、参照光がその参照物質を通過するようにしてもよい。参照物質は、例えば、空気であり得る。あるいは、サンプルセル6rの中を真空状態にしてもよい。
【0067】
乗算器としては、例えば、ミキサを使用することができる。
【0068】
波形処理器としては、例えば、バンドパスフィルタやハイパスフィルタのような濾過器を使用することができる。
【0069】
乗算回路において、乗算器で電気信号の周波数を上げた後に周波数を下げるためのミキサを使用してもよい。これにより、位相差の測定を容易にすることができる。
【0070】
【発明の効果】
本発明による光学式測定装置および方法によれば、測定光に対応する第1の電気信号の位相と、参照光に対応する第2の電気信号の位相とが拡大される。これにより、第1の電気信号と第2の電気信号との間の位相差が拡大される。位相差を拡大することによって位相差の測定精度が向上する。その結果、生体成分量の測定精度も向上する。位相差と生体成分量とは、一定の関係にあるからである。
【図面の簡単な説明】
【図1】本発明による光学式測定装置100の構成を示す図である。
【図2】位相拡大部12mおよび位相拡大部12rの構成を示す図である。
【図3】乗算回路120m−1および乗算回路120r−1の構成を示す図である。
【図4】乗算回路120m−1および乗算回路120r−1への入力信号の波形を示す図である。
【図5】乗算回路120m−1および乗算回路120r−1からの出力信号の波形を示す図である。
【図6】位相拡大部12m、12rに入力される信号の位相差と位相拡大部12m、12rから出力される信号の位相差との関係を示す図である。
【符号の説明】
1 光源
2 光源
3 ビームスプリッタ
4 ミラー
5A、5B 四分の一波長板
6m、6r サンプルセル
7m、7r 偏光板
8m、8r フォトダイオード
9m、9r アンプ
10m、10r ミキサ
11 電気信号発振器
12m、12r 位相拡大部
13 位相差計
14 生体成分量決定部
Claims (8)
- 被測定物質を通過する測定光と所定の参照光とを利用して、該被測定物質に含まれる特定の生体成分量を測定する光学式測定装置であって、
第1の光源から出射された第1の光と、第2の光源から前記第1の光と異なる周波数で出射された第2の光との干渉光が前記被測定物質を通過することによって得られる測定光から第1の光干渉信号を得る第1の干渉手段と、
前記第1の光と、前記第2の光とを干渉させることによって得られる参照光から第2の光干渉信号を得る第2の干渉手段と、
該第1の光干渉信号を第1の電気信号に変換する第1の光電変換部と、
該第2の光干渉信号を第2の電気信号に変換する第2の光電変換部と、
該第1の電気信号の位相を拡大する第1の位相拡大部と、
該第2の電気信号の位相を拡大する第2の位相拡大部と、
該第1の位相拡大部によって拡大された位相と該第2の位相拡大部によって拡大された位相との間の位相差を測定する位相差測定部と、
該位相差測定部によって測定された該位相差に応じて、該被測定物質に含まれる該特定の生体成分量を決定する生体成分量決定部と
を備えた光学式測定装置。 - 前記参照光は、参照物質を通過する、請求項1に記載の光学式測定装置。
- 前記第1の位相拡大部は、前記第1の電気信号を乗算する少なくとも1つの第1の乗算回路を備えており、
前記第2の位相拡大部は、前記第2の電気信号を乗算する少なくとも1つの第2の乗算回路を備えている、請求項1に記載の光学式測定装置。 - 前記第1の乗算回路は、前記第1の電気信号の周波数と位相とを拡大する第1の乗算器と、該第1の乗算器の出力を増幅する第1の増幅器と、該第1の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去する第1の波形処理器とを含み、
前記第2の乗算回路は、前記第2の電気信号の周波数と位相とを拡大する第2の乗算器と、該第2の乗算器の出力を増幅する第2の増幅器と、該第2の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去する第2の波形処理器とを含む、請求項3に記載の光学式測定装置。 - 被測定物質を通過する測定光と所定の参照光とを利用して、該被測定物質に含まれる特定の生体成分量を測定する光学式測定方法であって、
a)第1の光源から出射された第1の光と、第2の光源から前記第1の光と異なる周波数で出射された第2の光との干渉光が前記被測定物質を通過することによって得られる測定光から第1の光干渉信号を得るステップと、
b)前記第1の光と、前記第2の光とを干渉させることによって得られる参照光から第2の光干渉信号を得るステップと、
c)該第1の光干渉信号を第1の電気信号に変換するステップと、
d)該第2の光干渉信号を第2の電気信号に変換するステップと、
e)該第1の電気信号の位相を拡大するステップと、
f)該第2の電気信号の位相を拡大するステップと、
g)ステップe)において拡大された位相とステップf)において拡大された位相との間の位相差を測定するステップと、
h)ステップg)において測定された該位相差に応じて、該被測定物質に含まれる該特定の生体成分量を決定するステップと
を包含する光学式測定方法。 - 前記参照光は、参照物質を通過する、請求項5に記載の光学式測定方法。
- 前記ステップe)は、
i)前記第1の電気信号を少なくとも1回乗算するステップを包含しており、
前記ステップf)は、
j)前記第2の電気信号を少なくとも1回乗算するステップを包含している、
請求項5に記載の光学式測定方法。 - 前記ステップi)は、前記第1の電気信号の周波数と位相とを第1の乗算器を用いて拡大するステップと、該第1の乗算器の出力を第1の増幅器を用いて増幅するステップと、該第1の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去するステップとを包含し、
前記ステップj)は、前記第2の電気信号の周波数と位相とを第2の乗算器を用いて拡大するステップと、該第2の乗算器の出力を第2の増幅器を用いて増幅するステップと、該第2の増幅器の出力から特定の周波数を有する信号を抽出し、ノイズを除去するステップとを包含する、請求項7に記載の光学式測定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28717096A JP3662370B2 (ja) | 1995-10-31 | 1996-10-29 | 光学式測定装置および方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-319442 | 1995-10-31 | ||
JP31944295 | 1995-10-31 | ||
JP28717096A JP3662370B2 (ja) | 1995-10-31 | 1996-10-29 | 光学式測定装置および方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09184805A JPH09184805A (ja) | 1997-07-15 |
JP3662370B2 true JP3662370B2 (ja) | 2005-06-22 |
Family
ID=26556604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28717096A Expired - Fee Related JP3662370B2 (ja) | 1995-10-31 | 1996-10-29 | 光学式測定装置および方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3662370B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353463A (zh) * | 2011-09-01 | 2012-02-15 | 哈尔滨工业大学 | 一种基于四通道探测技术的激光鉴频鉴相方法及实现该方法的装置 |
-
1996
- 1996-10-29 JP JP28717096A patent/JP3662370B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353463A (zh) * | 2011-09-01 | 2012-02-15 | 哈尔滨工业大学 | 一种基于四通道探测技术的激光鉴频鉴相方法及实现该方法的装置 |
Also Published As
Publication number | Publication date |
---|---|
JPH09184805A (ja) | 1997-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3273501B2 (ja) | 測定経路内のガスの屈折率の変動を測定する装置及び方法 | |
US5663793A (en) | Homodyne interferometric receiver and calibration method having improved accuracy and functionality | |
JP3273500B2 (ja) | 測定経路内のガスの屈折率の変動を測定する装置及び方法 | |
US6018391A (en) | Method and apparatus for inspecting foreign matter by examining frequency differences between probing light beam and reference light beam | |
JPH07311182A (ja) | 光熱変位計測による試料評価方法 | |
JP3662370B2 (ja) | 光学式測定装置および方法 | |
US5796482A (en) | Apparatus/method for optical measuring a physical amount of a specific component contained in a substance | |
JP6337543B2 (ja) | 形状測定装置及び形状測定方法 | |
JP3108866B2 (ja) | レーザ振動変位測定装置 | |
JPH06186337A (ja) | レーザ測距装置 | |
JP3626907B2 (ja) | 干渉測定方法および装置 | |
Chambon et al. | High frequency optical probe for BAW/SAW devices | |
JP2923779B1 (ja) | 超音波検出用光干渉装置 | |
EP0920599A1 (en) | Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry | |
JPH08278202A (ja) | 偏光解析用光学系装置及びこれを用いた偏光解析装置 | |
CN115266039B (zh) | 相位延迟量和快轴方位角的测量装置及方法 | |
GB1605217A (en) | Laser probe for detecting movement of a target | |
CN115200692A (zh) | 基于锁相放大的脉冲激光干涉测振方法 | |
JP3361896B2 (ja) | レーザドプラ方式振動計 | |
JP3795657B2 (ja) | ヘテロダイン偏光による異物検査方法及びこの方法を実施する装置 | |
JP2846764B2 (ja) | 熱物性定数測定方法 | |
RU2028626C1 (ru) | Устройство для измерения частоты гармонических электрических колебаний | |
JP2019152615A (ja) | 変位計測装置 | |
JPH11201727A (ja) | 多波長光ヘテロダイン装置 | |
JP2004156946A (ja) | 薄膜評価装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050323 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110401 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120401 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130401 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130401 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140401 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |