JP3662175B2 - Explosion-proof structure for prismatic battery - Google Patents

Explosion-proof structure for prismatic battery Download PDF

Info

Publication number
JP3662175B2
JP3662175B2 JP2000206551A JP2000206551A JP3662175B2 JP 3662175 B2 JP3662175 B2 JP 3662175B2 JP 2000206551 A JP2000206551 A JP 2000206551A JP 2000206551 A JP2000206551 A JP 2000206551A JP 3662175 B2 JP3662175 B2 JP 3662175B2
Authority
JP
Japan
Prior art keywords
groove
battery
explosion
distance
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000206551A
Other languages
Japanese (ja)
Other versions
JP2002025525A (en
Inventor
博史 小原
昌彦 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000206551A priority Critical patent/JP3662175B2/en
Publication of JP2002025525A publication Critical patent/JP2002025525A/en
Application granted granted Critical
Publication of JP3662175B2 publication Critical patent/JP3662175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角型電池の防爆構造に関するもので、より具体的には、缶底に切溝を設けることによって薄肉部を形成し、この薄肉部が電池内部の異常な圧力上昇によって破断するようにした角型電池の防爆構造に関するものである。
【0002】
【従来の技術】
一般的に、角型電池はその形状的要因から円筒型電池に比べ強度が低く、内部圧力の上昇によって膨らみ易いため防爆弁の作動タイミングが円筒形電池に比べて遅れる傾向にある。そのため、弁の作動圧を円筒形電池よりも低くすることによって作動タイミングの遅れを少なくすることが考えられている。
【0003】
このため、従来の角型電池では特開平1−309253号公報、特開平11−185714号公報に示されているように、切溝を缶底部中央の沿って形成するととものその両端から外方に向けて90゜の角度でV字形或いはU字形に形成したものが提案されている。
【0004】
【発明が解決しようとする課題】
電池の内圧の異常な上昇は、電池の過充電や誤使用による場合以外にも、電池缶に外部から不測の外力が加わって電池缶が押し潰されるように圧縮変形(圧縮破壊)し、正極と負極がセパレーターを突き破って短絡した場合にも生する。そして、この時の電池の内圧は圧縮破壊後に急激に上昇するので、この内圧を迅速に外部に放出するための安全弁機構が必要とされている。
【0005】
ところが、従来の角型電池の防爆構造は主に電池の過充電や誤使用に対応することに主眼がおかれ、この圧縮破壊時の防爆対策にはあまり注意が払われていないのが現状である。
【0006】
本発明は、上記のような問題点に鑑みてなされたもので、その目的は、電池の過充電や誤使用などによる内圧の異常な上昇に応じて作動すると共に電池の圧縮破壊時に、電池の外形変形に素早く反応し、圧縮変形とほぼ同時に作動する角型電池の防爆構造を提供する。
【0007】
【課題を解決するための手段】
上記問題を解決するため、本発明によれば、角型電池の缶底部に所定の形状、位置に薄肉部の溝Aと溝Bを形成する。具体的には、角型電池の缶底外表面に長手方向中心線Sに沿って溝Aを形成し、該溝Aの両端より内側において該溝Aと交わり該中心線Sに対して対称となる溝Bを該缶底の短辺側に向けて開き角度θが120゜〜160゜( 120 °≦θ≦ 160 °)となるように形成する。
【0008】
このように溝Aと溝Bとが交差し、各交点からは放射状に4本の溝が形成されていることになるので、この交点において応力が集中し、電池内圧が過充電や誤使用により所定の圧力以上に上昇したときに、防爆口を形成しやすい。また、このため薄肉部の肉厚を薄くする必要性が緩和され、加工コストの低減も期待できる。
【0009】
そして、角型電池に外部からの圧縮力が作用して缶が圧縮変化を開始すると、缶底は溝Aのラインに沿って折り畳まれるように変形し、そのため溝Bの長手方向に対して対称となる引張り応力Iが溝Bのラインに集中して働く。これによって前記溝Bの薄肉部が容易に破断して防爆口が形成される。
【0011】
また、更に好ましくは、前記溝Aの距離Lを缶底の長手方向の距離Mより短くまた該距離Mから短手方向の距離Wを引いた距離以上(M―W≦L<M)とし、更には前記溝Aと前記溝Bの交点P、P'間の距離Kを該溝Aの距離Lより短くまた前記長手方向の距離Mから短手方向の距離Wに1.2倍したものを引いた距離以上(M―1.2W≦K<L)とすることで、これにより溝Aの長さが所定量確保され、圧縮破壊時に缶底部が中心線に沿って折り畳まれるのを容易にする。
【0012】
また、好ましくは、前記点P及び点P'を越えて外方に延長する前記溝Aのそれぞれの距離を前記点P及び点P'からそれぞれ外方に開いた前記溝Bの各辺の長さとほぼ同程度とすることである。
【0013】
これによって、電池缶に異常な圧縮力が加えられた場合、電池缶はその底部の中央に形成された溝Aに沿って折り畳まれやすく、この折畳みによって溝Bが開く方向に引っ張られて破断し、防爆口を容易に形成する。
【0014】
また、前記溝A及びBを形成した缶底の薄肉部分の肉厚を0.07〜0.12mmとすることで、溝A、Bの形成が比較的容易で、前記防爆口を所定の圧力で確実に形成することが可能となる。
【0015】
【発明の実施の形態】
以下に本発明の角型電池の防爆構造について、本発明の実施態様を示す図面を参照にして説明する。
【0016】
本発明の防爆構造は角型の電池缶の外底部に切溝を刻設することによって形成される。具体的には、図1に示すように、角型電池の缶底外表面Eの長手方向中心線S上に沿って溝Aを形成する。この溝Aの距離Lを缶底の長手方向の距離Mより若干短く形成することで、この溝Aの距離Lは、少なくとも、缶底の長手方向の距離Mから缶底の短手方向の距離Wを引いた距離以上(M―W≦L<M)とする。また、前記溝Aの両端より内側の点P及び点P'において溝Aと交わり中心線Sに対して対称に形成された溝Bを形成する。この溝Bは缶底の短辺側に向けて鈍角以上の角度で開き、好ましくはその開き角度θが120゜〜160゜(120°≦θ≦160°)となるように形成することである。
【0017】
また、好ましくは、点P及び点P'を越えて外方に延長する溝Aのそれぞれの距離は点P及び点P'からそれぞれ外方に開いた溝Bの各辺の長さとほぼ同程度とすることである。これによって電池缶に異常な外力がかかった場合に缶底部がその中心線である溝Aに沿って折れ畳まれやすくなる。
【0018】
溝Aと前記溝Bの二つ交点P、P′間の距離Kは溝Aの距離Lより短くまた長手方向の距離Mから短手方向の距離Wに1.2倍したものを引いた距離以上(M―1.2W≦K<L)とすることで、また溝A及びBを形成した缶底の薄肉部分の肉厚は0.07〜0.12mmとすることである。
【0019】
図2に示された幅Gの角型電池に図3に示すように外部からの圧縮力Fが作用すると、缶が圧縮変化を開始する。そのとき缶底は溝Aのラインに沿って折り畳まれる形で変形し(幅H)、そのため図中矢印の引張り応力Iが溝Bのラインに集中して作用し、図4に示すように前記溝Bの薄肉部が破断して防爆口Jが形成される。
【0020】
<実施例1>
電池のステンレス缶の底部に図1に示す形状の溝加工(溝Aは缶底の幅Mの両端近くまで達し、溝Bの開き角度θ=140°、薄肉部厚みD=0.07mm)を施した。こうして作製した角型電池を図3に示す方向にプレス機で圧縮すると、缶厚みHが初期缶厚みGの1/2になるまで圧縮された結果、角型電池が破裂することなく図4に示す開口部Jが形成された。
【0021】
次に、上記の実験で溝Bの開き角度θをどのように変化させると開口部が容易に形成されるかについて調べた。
【0022】
<実施例2>
ステンレス缶の底部に溝Bの開き角度θ=120°で図1に示す形状の溝加工を施したこと以外は実施例1と同様な電池を作製した。
【0023】
<実施例3>
ステンレス缶の底部に溝Bの開き角度θ=160°で図1に示す形状の溝加工を施したこと以外は実施例1と同様な電池を作製した。
【0024】
<比較例1>
ステンレス缶の底部に溝Bの開き角度θ=90°で図1に示す形状の溝加工を施したこと以外は実施例1と同様な電池を作製した。
【0025】
<比較例2>
ステンレス缶の底部に溝Bの開き角度θ=180°で図1に示す形状の溝加工を施したこと以外は実施例1と同様な電池を作製した。
【0026】
上記実施例2及び3、また比較例1及び2の角型電池に対して実施例1と同様なプレス機で同じ圧縮力をかけた。その結果を下の表1に示す。
【0027】
【表1】

Figure 0003662175
【0028】
表1の結果から、溝Bの開き角度は120゜〜160°の範囲内に設定すると開口部J(防爆口)が確実に形成されることが判明した。
【0029】
溝Aは折り目の形成を誘導し、溝Bは開口部Jの形成を誘導する。溝Bの開き角度θが120°未満だと、溝Aに折り目が形成されやすいが、引張り応力Iにより溝Bを開口させにくい。また溝Bの角度θが160°を越えると折り目が形成されにくくなった。それ故、効率よく溝Aに沿って折り曲げて、溝Bを開口させるための開き角度θとしては120゜以上で160°以下(120°≦θ≦160°)が好ましい。
【0030】
【発明の効果】
以上のように本発明の防爆構造によれば、角型電池の缶底外表面に長手方向中心線Sに沿って溝Aを形成し、該溝Aの両端より内側において該溝Aと交わり該中心線Sに対して対称となる溝Bを該缶底の短辺側に向けて開き角度θが120゜〜160゜( 120 °≦θ≦ 160 °)となるように形成してなるので、圧縮破壊時に生じる急激な内部圧力の上昇に確実に対応することができる。
【0031】
また、電池の過充電や誤使用によって内部圧力が異常に上昇した場合にも、溝Aと溝Bとが交差し、各交点からは放射状に4つの溝が形成されていることになるので、この交点において応力が集中し、防爆口を形成しやすく、薄肉部の肉厚を薄くする必要性が緩和され、加工コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る角型電池缶底部の防爆用溝形状を示す平面図である。
【図2】(a)は本発明の実施態様に係わる電池の缶底部を含めた全体を示す斜視図であり、(b)は底部の溝を拡大して模式的に示す平面図である。
【図3】(a)は電池に外部の異常な圧力Fが加えられた状態を示す斜視図であり、(b)はそのときに底部に加えられる応力Iの方向を模式的に示す平面図である。
【図4】(a)は電池に破壊圧力が加えられたときの状態を模式的に示す斜視図であり、(b)はそのときに底部に防爆開口が示された状態を模式的に示す平面図である。
【符号の説明】
A 溝
B 溝
E 缶底外表面
F 圧縮力
G 初期缶厚み
H 圧縮時缶厚み
I 引張り応力
J 開口部
K 点PとP'間の距離
L 溝Aの距離
M 缶底長手方向の距離
P,P' 溝Aと溝Bの交点
S 缶底長手方向の中心線
W 缶底短手方向の距離
θ 溝Bの開き角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an explosion-proof structure for a prismatic battery, and more specifically, a thin-walled portion is formed by providing a kerf on the bottom of a can, and the thin-walled portion is broken by an abnormal pressure increase inside the battery. The present invention relates to an explosion-proof structure for a rectangular battery.
[0002]
[Prior art]
In general, a prismatic battery is lower in strength than a cylindrical battery due to its shape factor and tends to swell due to an increase in internal pressure, so that the operation timing of an explosion-proof valve tends to be delayed compared to a cylindrical battery. Therefore, it is considered to reduce the delay of the operation timing by making the valve operating pressure lower than that of the cylindrical battery.
[0003]
For this reason, in the conventional prismatic battery, as shown in JP-A-1-309253 and JP-A-11-185714, a kerf is formed along the center of the bottom of the can and outward from both ends thereof. The one formed into a V shape or a U shape at an angle of 90 ° toward is proposed.
[0004]
[Problems to be solved by the invention]
An abnormal rise in the internal pressure of the battery may be caused by compressive deformation (compression destruction) so that unexpected external force is applied to the battery can from the outside, causing the battery can to be crushed. It also occurs when the negative electrode breaks through the separator and short-circuits. And since the internal pressure of the battery at this time rises rapidly after the compression failure, a safety valve mechanism for quickly releasing the internal pressure to the outside is required.
[0005]
However, the conventional explosion-proof structure of prismatic batteries is mainly focused on dealing with battery overcharge and misuse, and at present, not much attention is paid to the explosion-proof measures at the time of this compression failure. is there.
[0006]
The present invention has been made in view of the above problems, and its purpose is to operate in response to an abnormal increase in internal pressure due to overcharging or misuse of the battery, and at the time of battery compression failure, Provided is a prismatic battery explosion-proof structure that reacts quickly to external deformation and operates almost simultaneously with compression deformation.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, according to the present invention, the thin-walled groove A and groove B are formed at a predetermined shape and position at the bottom of the can of the rectangular battery. Specifically, the groove A is formed along the longitudinal center line S on the outer surface of the bottom of the can of the rectangular battery, and intersects with the groove A on the inner side from both ends of the groove A and is symmetrical with respect to the center line S. The groove B is formed so that the opening angle θ is 120 ° to 160 ° ( 120 ° ≦ θ ≦ 160 °) toward the short side of the can bottom.
[0008]
In this way, groove A and groove B intersect, and four grooves are formed radially from each intersection, so stress concentrates at this intersection and the internal pressure of the battery is overcharged or misused. When the pressure rises above a predetermined pressure, an explosion-proof opening is easily formed. In addition, this reduces the need to reduce the thickness of the thin portion, and can be expected to reduce the processing cost.
[0009]
When the compression force from the outside acts on the prismatic battery and the can starts to change in compression, the bottom of the can is deformed so as to be folded along the line of the groove A, and therefore symmetrical with respect to the longitudinal direction of the groove B. The tensile stress I is concentrated on the groove B line. As a result, the thin portion of the groove B is easily broken to form an explosion-proof opening.
[0011]
More preferably, the distance L of the groove A is shorter than the distance M in the longitudinal direction of the can bottom and more than a distance obtained by subtracting the distance W in the short direction from the distance M (MW ≦ L <M), Further, the distance K between the intersection points P and P ′ of the groove A and the groove B is shorter than the distance L of the groove A and is multiplied by 1.2 from the longitudinal distance M to the lateral distance W. By making the distance more than the drawn distance (M-1.2W ≦ K <L), this ensures a predetermined length of the groove A and facilitates folding of the bottom of the can along the center line at the time of compression failure. .
[0012]
Preferably, the distance of each of the grooves A extending outward beyond the points P and P ′ is the length of each side of the groove B opened outward from the points P and P ′. And approximately the same.
[0013]
As a result, when an abnormal compressive force is applied to the battery can, the battery can is easily folded along the groove A formed at the center of the bottom thereof, and this folding pulls the groove B in the opening direction and breaks. Easily form an explosion-proof opening.
[0014]
Further, by making the thickness of the thin portion of the bottom of the can where the grooves A and B are formed 0.07 to 0.12 mm, it is relatively easy to form the grooves A and B, and the explosion-proof opening is set at a predetermined pressure. Thus, it can be surely formed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an explosion-proof structure for a prismatic battery according to the present invention will be described with reference to the drawings showing embodiments of the present invention.
[0016]
The explosion-proof structure of the present invention is formed by cutting a kerf on the outer bottom of a rectangular battery can. Specifically, as shown in FIG. 1, the groove A is formed along the longitudinal center line S of the outer surface E of the bottom of the can of the rectangular battery. By forming the distance L of the groove A slightly shorter than the distance M in the longitudinal direction of the can bottom, the distance L of the groove A is at least the distance in the lateral direction of the can bottom from the distance M in the longitudinal direction of the can bottom. More than the distance minus W (M−W ≦ L <M). Further, a groove B is formed symmetrically with respect to the center line S intersecting with the groove A at the points P and P ′ inside the both ends of the groove A. The groove B opens at an obtuse angle or more toward the short side of the bottom of the can, and is preferably formed so that the opening angle θ is 120 ° to 160 ° (120 ° ≦ θ ≦ 160 °). .
[0017]
Preferably, the distances of the grooves A extending outward beyond the points P and P ′ are approximately the same as the lengths of the sides of the grooves B opened outward from the points P and P ′. It is to do. Accordingly, when an abnormal external force is applied to the battery can, the bottom of the can is easily folded along the groove A that is the center line.
[0018]
The distance K between the two intersections P and P ′ of the groove A and the groove B is shorter than the distance L of the groove A, and is a distance obtained by subtracting the distance M in the longitudinal direction to the distance W in the lateral direction multiplied by 1.2. By making the above (M-1.2W ≦ K <L), the thickness of the thin portion of the bottom of the can where the grooves A and B are formed is 0.07 to 0.12 mm.
[0019]
When a compressive force F from the outside acts on the square battery having the width G shown in FIG. 2 as shown in FIG. 3, the can starts to change in compression. At that time, the bottom of the can is deformed so as to be folded along the line of the groove A (width H), so that the tensile stress I indicated by the arrow in the figure is concentrated on the line of the groove B, and as shown in FIG. The thin-walled portion of the groove B is broken to form the explosion-proof port J.
[0020]
<Example 1>
Groove processing of the shape shown in FIG. 1 at the bottom of the stainless steel can of the battery (the groove A reaches near both ends of the width M of the can bottom, the opening angle θ of the groove B = 140 °, the thin part thickness D = 0.07 mm) gave. When the square battery thus produced is compressed by a press in the direction shown in FIG. 3, the square battery is compressed until the can thickness H becomes 1/2 of the initial can thickness G. As a result, the square battery does not rupture in FIG. The opening J shown was formed.
[0021]
Next, it was investigated how the opening angle θ was easily formed by changing the opening angle θ of the groove B in the above experiment.
[0022]
<Example 2>
A battery similar to that of Example 1 was produced except that the groove portion having the shape shown in FIG. 1 was applied to the bottom of the stainless steel can at the opening angle θ of the groove B = 120 °.
[0023]
<Example 3>
A battery similar to that of Example 1 was produced except that the groove portion having the shape shown in FIG. 1 was applied to the bottom of the stainless steel can at the opening angle θ of the groove B = 160 °.
[0024]
<Comparative Example 1>
A battery similar to that of Example 1 was produced except that the groove part having the shape shown in FIG.
[0025]
<Comparative example 2>
A battery similar to that of Example 1 was produced except that the groove B having the shape shown in FIG.
[0026]
The same compression force was applied to the prismatic batteries of Examples 2 and 3 and Comparative Examples 1 and 2 with a press similar to Example 1. The results are shown in Table 1 below.
[0027]
[Table 1]
Figure 0003662175
[0028]
From the results shown in Table 1, it was found that when the opening angle of the groove B is set within a range of 120 ° to 160 °, the opening J (explosion-proof opening) is reliably formed.
[0029]
The groove A induces the formation of the fold, and the groove B induces the formation of the opening J. If the opening angle θ of the groove B is less than 120 °, a crease is likely to be formed in the groove A, but it is difficult to open the groove B due to the tensile stress I. Further, when the angle θ of the groove B exceeds 160 °, it becomes difficult to form a crease. Therefore, the opening angle θ for opening the groove B by efficiently folding along the groove A is preferably 120 ° or more and 160 ° or less (120 ° ≦ θ ≦ 160 °).
[0030]
【The invention's effect】
As described above, according to the explosion-proof structure of the present invention, the groove A is formed along the longitudinal center line S on the outer surface of the bottom of the can of the rectangular battery, a groove B which are symmetrical with respect to the center line S formed as angle open towards the short side of the can bottom theta is 120 ° to 160 ° (120 ° ≦ θ ≦ 160 ° ) in such Runode Thus, it is possible to reliably cope with a sudden increase in internal pressure that occurs during compression fracture.
[0031]
In addition, when the internal pressure rises abnormally due to overcharging or misuse of the battery, the groove A and the groove B intersect, and four grooves are formed radially from each intersection. Stress concentrates at this intersection, it is easy to form an explosion-proof opening, the need to reduce the thickness of the thin portion is relaxed, and the processing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view showing an explosion-proof groove shape of a square battery can bottom according to an embodiment of the present invention.
FIG. 2A is a perspective view showing an entire battery including a bottom portion of a battery according to an embodiment of the present invention, and FIG. 2B is a plan view schematically showing an enlarged groove in the bottom portion.
3A is a perspective view showing a state in which an abnormal external pressure F is applied to the battery, and FIG. 3B is a plan view schematically showing the direction of stress I applied to the bottom at that time. It is.
FIG. 4A is a perspective view schematically showing a state when a breaking pressure is applied to the battery, and FIG. 4B schematically shows a state where an explosion-proof opening is shown at the bottom at that time. It is a top view.
[Explanation of symbols]
A Groove B Groove E Can bottom outer surface F Compressive force G Initial can thickness H Compressive can thickness I Tensile stress J Opening K Distance K between points P and P 'Groove A distance M Can bottom longitudinal distance P, P 'Intersection S of groove A and groove S Centerline in the can bottom longitudinal direction W Distance in the can bottom short direction θ Opening angle of groove B

Claims (1)

角型電池の缶底外表面に長手方向中心線Sに沿って溝Aを形成し、該溝Aの両端より内側において該溝Aと交わり該中心線Sに対して対称となる溝Bを該缶底の短辺側に向けて開き角度θが120゜〜160゜( 120 °≦θ≦ 160 °)となるように形成してなることを特徴とする角型電池の防爆構造。A groove A is formed along the longitudinal center line S on the outer surface of the bottom of the can of the rectangular battery, and the groove B that intersects the groove A and is symmetric with respect to the center line S inside the both ends of the groove A An explosion-proof structure for a prismatic battery, characterized in that the opening angle θ is 120 ° to 160 ° ( 120 ° ≦ θ ≦ 160 °) toward the short side of the can bottom.
JP2000206551A 2000-07-07 2000-07-07 Explosion-proof structure for prismatic battery Expired - Lifetime JP3662175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206551A JP3662175B2 (en) 2000-07-07 2000-07-07 Explosion-proof structure for prismatic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206551A JP3662175B2 (en) 2000-07-07 2000-07-07 Explosion-proof structure for prismatic battery

Publications (2)

Publication Number Publication Date
JP2002025525A JP2002025525A (en) 2002-01-25
JP3662175B2 true JP3662175B2 (en) 2005-06-22

Family

ID=18703457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206551A Expired - Lifetime JP3662175B2 (en) 2000-07-07 2000-07-07 Explosion-proof structure for prismatic battery

Country Status (1)

Country Link
JP (1) JP3662175B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953225B2 (en) 2005-10-31 2012-06-13 日立マクセルエナジー株式会社 Sealed prismatic battery
KR101023919B1 (en) * 2008-06-09 2011-03-22 삼성에스디아이 주식회사 Lithium Secondary Battery
JP5075138B2 (en) * 2009-01-27 2012-11-14 トヨタ自動車株式会社 Safety valve and manufacturing method, sealed battery and manufacturing method, vehicle, battery-equipped equipment
JP4881409B2 (en) * 2009-06-04 2012-02-22 トヨタ自動車株式会社 Sealed battery
JP6011635B2 (en) 2012-11-06 2016-10-19 株式会社豊田自動織機 Power storage device
US9583741B2 (en) 2013-07-05 2017-02-28 Samsung Sdi Co., Ltd. Secondary battery
WO2017126285A1 (en) * 2016-01-21 2017-07-27 日立オートモティブシステムズ株式会社 Power storage device
CN107369796A (en) * 2017-08-29 2017-11-21 力信(江苏)能源科技有限责任公司 A kind of lithium ion battery anti-exploding valve

Also Published As

Publication number Publication date
JP2002025525A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
CN109417145B (en) Battery block
TW201921764A (en) Sealing plate
JP3662175B2 (en) Explosion-proof structure for prismatic battery
JP4881409B2 (en) Sealed battery
US9899651B2 (en) Power storage device having a pressure release valve
JP4955865B2 (en) Sealing plate for sealed battery and method for manufacturing the same
JP4247831B2 (en) Sealed prismatic battery
EP3907773A1 (en) Secondary battery
WO2023217242A1 (en) Explosion-proof valve, battery, battery module, battery pack and vehicle
JP3943063B2 (en) Sealing plate and sealed battery
CN109830627B (en) Battery module
EP3509133A1 (en) Vent for secondary battery top cover, top cover assembly, secondary battery and vehicle
WO2006035653A1 (en) Can lid
JP2005174903A (en) Sealed square battery
US20160293917A1 (en) Electric storage device
WO2005078824A1 (en) Substantially oblong-shaped battery
JP2008251438A (en) Battery
JPH11213978A (en) Explosion-proof electric element
KR101164285B1 (en) Safety valve for sealed cells
JP2004178820A (en) Sealing plate for battery
JP2001126693A (en) Sealed battery
JP4622027B2 (en) Sealed battery
JP5593285B2 (en) Secondary battery
WO2021181893A1 (en) Gas discharge valve of battery and battery
JP2021158014A (en) Manufacturing method of battery case

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3662175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term