JP2004178820A - Sealing plate for battery - Google Patents

Sealing plate for battery Download PDF

Info

Publication number
JP2004178820A
JP2004178820A JP2002340022A JP2002340022A JP2004178820A JP 2004178820 A JP2004178820 A JP 2004178820A JP 2002340022 A JP2002340022 A JP 2002340022A JP 2002340022 A JP2002340022 A JP 2002340022A JP 2004178820 A JP2004178820 A JP 2004178820A
Authority
JP
Japan
Prior art keywords
sealing plate
battery
flat portion
safety valve
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340022A
Other languages
Japanese (ja)
Other versions
JP4219661B2 (en
Inventor
Masaaki Kaneda
正明 金田
Kazuhiko Watanabe
和彦 渡▲邉▼
Kanehito Masumoto
兼人 増本
Yasushi Hirakawa
靖 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002340022A priority Critical patent/JP4219661B2/en
Publication of JP2004178820A publication Critical patent/JP2004178820A/en
Application granted granted Critical
Publication of JP4219661B2 publication Critical patent/JP4219661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safety valve that breaks by the deformation of a case when the internal pressure of a battery is increased. <P>SOLUTION: A sealing plate for sealing an opening part of the battery case is made of a plate-like material, the sealing plate has the safety valve, the safety valve has a lower surface comprising a thin flat part formed by seat-press working in the plate-like material, and the flat part is broken by tension in the surface direction of the plate-like material caused by the deformation of the case by the deformation of the case when the internal pressure of the battery is increased. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電池内圧上昇時のケースの変形により破断する電池用封口板およびそれを用いた密閉型電池に関する。
【0002】
【従来の技術】
密閉型電池を異常な条件で取り扱うと、電池内部にガスが発生し、内圧が上昇することがある。そこで、このような場合に、電池内圧の過剰な上昇を防ぐための安全弁が開発されている。安全弁は、電池内圧が所定値以上に達したときに作動し、電池内部のガスを外部へ放出する。このような安全弁としては、例えば以下に示すものが提案されている。
【0003】
まず、電池ケースの開口部を封口する金属板に、所定の輪郭を有する肉薄部を形成し、その肉薄部を金属板の表面側に膨出させた安全弁が開発されている(例えば、特許文献1、2参照)。また、長辺と短辺を有する矩形または長円形の一方の長辺を除く輪郭に沿って、肉薄部を形成し、電池の内部圧力の上昇により、上部に向かって蝶番式に開裂する安全弁が開発されている(例えば、特許文献3参照)。
【0004】
【特許文献1】
特許第3222418号公報(請求項1、図7)
【特許文献2】
特開2001−325934公報(請求項1、図1、2)
【特許文献3】
特開2002−8615号公報(請求項1、図1、2)
【0005】
しかし、上記安全弁は、いずれも、電池内部のガスが弁体を上方に押し上げる力によって破断するものである。これらの安全弁は、電池内部のガス圧そのものによって作動する。そのため、肉薄部を膨出させたり、ドーム状にしたりして、破断させる部分がガスによる上方への圧力を受けやすいように設計されている。しかし、このような安全弁は、肉薄部を非常に薄くする必要がある上、性能の均一性を保つことが困難である。従って、安全弁の作動圧力が安定せず、電池内圧の過剰な上昇を十分に防ぐことは困難である。
【0006】
【発明が解決しようとする課題】
本発明は、電池内圧上昇時のケースの変形により破断する安全弁を提供するものであり、上述のような従来の安全弁の欠点を改善するものである。
【0007】
【課題を解決するための手段】
本発明は、電池ケースの開口部を封口する板状材料からなる封口板であって、前記封口板は、安全弁を有し、前記安全弁は、前記板状材料に座押し加工により形成された下面が平坦な肉薄部からなり、前記肉薄部は、座押し加工により形成されたさらに肉薄な平坦部を有し、前記平坦部は、電池内圧上昇時の前記ケースの変形により、前記板状材料の面方向への張力により破断する電池用封口板に関する。
【0008】
前記平坦部の厚さは30〜80μmであることが好ましい。
前記平坦部の幅は0.1mm以上であることが好ましい。
【0009】
本発明は、また、電極群、電解液、前記電極群と前記非水電解液とを収容する角形電池ケース、ならびに前記ケースの開口部を封口する板状材料からなる封口板からなり、前記封口板が上記安全弁を有する密閉型電池に関する。
前記ケースの壁材の厚さは、1〜0.1mmであることが好ましい。
【0010】
【発明の実施の形態】
本発明の封口板およびそれを用いた密閉型電池の好ましい実施形態について説明する。
本発明の封口板は、板状材料からなり、安全弁を有する。板状材料には、金属板が好ましく用いられ、なかでもアルミニウム、鉄などからなる金属板が好ましく用いられる。板状材料の厚さは0.6〜2mmであることが好ましい。板状材料が厚すぎると、肉薄部にかかる面方向への張力が小さくなり、薄すぎると、肉薄部以外での変形が大きくなり、安全弁の安定した作動が達成されないことがある。
【0011】
安全弁は、板状材料に座押し加工により形成された下面が平坦な肉薄部からなる。また、肉薄部は、座押し加工により形成された、さらに肉薄な平坦部(以下、平坦部という。)を有する。平坦部以外の肉薄部の厚さは、50〜100μmであることが好ましい。平坦部以外の肉薄部が厚すぎると、加工が困難になり、薄すぎると、安全弁の破断部分が定まらず安定した作動が達成されないことがある。
【0012】
平坦部は、電池内圧上昇時の前記ケースの変形により、板状材料の面方向への張力により破断する。このような面方向への張力によれば、平坦部が多少厚くても比較的容易に破断され得る。従って、本発明の安全弁の平坦部は、従来の上方への力によって破断する安全弁の破断部分に比べて、より厚くすることができる。例えば、従来の上方への力によって破断する安全弁の場合、破断部分の厚さを20μm以下にする必要がある。一方、本発明の安全弁の平坦部の厚さは30〜80μm、より好ましくは35〜50μmとすることが可能である。
【0013】
本発明の安全弁は、破断部分を従来よりも厚くすることができるため、多少の厚さの変動があっても、その変動が作動圧力に与える影響は小さく、結果として安全弁の作動圧力が安定する。また、封口板の大きさにもよるが、作動圧力を、より安定させる観点から、平坦部の幅は0.1mm以上、さらには1mm以上とすることが好ましい。ある程度までは、平坦部の幅が広い程、作動圧力は安定する。
【0014】
以下、好ましい平坦部を有する封口板を例示する。
実施形態1
本実施形態に係る封口板の上面図を図1に示す。また、図1に示す封口板のII−II線拡大断面図を図2に、III−III線拡大部分断面図を図3に示す。
本実施形態に係る封口板の安全弁は、図1〜3に示すように、板状材料12に座押し加工により形成された下面が平坦な肉薄部11からなる。図1では、肉薄部11は、略長円形の輪郭10を有するが、肉薄部の輪郭に、特に限定はない。肉薄部11には、一対の平行な直線部を有する略長円形の輪郭に沿って、溝状の平坦部13が形成されている。溝状の平坦部13は、このような略長円形の他に、矩形の輪郭に沿った形状でもよい。なお、封口板の中央には、電極端子を挿入するための端子孔14aが設けられており、その周囲には、電極端子と封口板とを絶縁する絶縁材料を嵌め込むための凹部14bが設けられている。また、封口板の安全弁のない他端には、電解液を注液するための注液孔15aが設けられており、その周囲には、封栓を嵌め込むための凹部15bが設けられている。
【0015】
溝幅は、上述のように、0.1mm以上であることが好ましく、1mm以下であることが特に好ましい。溝の深さ(B1)は、肉薄部11の厚さ(A1)および平坦部の厚さ(C1)により決定される。このような溝状の平坦部の場合、平坦部の厚さ(C1)は、特に30〜80μmであることが好ましい。溝の深さは、図2、3に示すように一定であることが好ましいが、部分的に溝の深さを変化させてもよい。溝の壁面にはテーパーを付してもよい。
【0016】
略長円形の直線部の長さ(L1)は、0.5〜10mmであることが好ましいが、直線部は10mmより長くても良い。直線部が長いほど、平坦部の厚さを厚くすることができる。直線部の長さが短すぎると、ケースが膨らんで面方向への張力が生じたときに、張力によって平坦部が破断しにくくなる。直線部は、ケースが膨らんだときに平坦部13が破断しやすいように、封口板の長手方向に対して平行もしくは、ほぼ平行であることが好ましい。また、直線部間の距離(W1)は、1.5〜8mmであることが好ましい。この距離が短すぎると、安全弁が作動しても、破断部分による開口部が小さくなり、ガスを放出する能力が不十分になる。
【0017】
封口板の大きさにもよるが、封口板の強度を保つ観点からは、肉薄部からなる安全弁の面積が小さい方が好ましい。一方、ガスを放出するという安全弁の機能を高める観点からは、安全弁の破断部分の面積が大きい方が好ましい。従って、より小さく、作動時においては複数の破断部分を生じる安全弁が最も好ましい。本実施形態に係る安全弁は、以下に述べる実施形態2、3に係る安全弁に比べて、排気能力が優れており、高容量な電池の封口板に好適である。
【0018】
実施形態2
本実施形態に係る封口板の上面図を図4に示す。また、図4に示す封口板のV−V線拡大断面図を図5に、VI−VI線拡大部分断面図を図6に示す。
本実施形態に係る封口板の安全弁は、図4に示すように、一対の平行な直線に沿う溝状の平坦部20を有する。その他の構造については、実施形態1と同様である。溝幅は0.1mm以上であることが好ましく、1mm以下であることが好ましい。このような溝状の平坦部の場合、平坦部の厚さ(C2)は、特に30〜50μmであることが好ましい。溝の深さ(B2)は、肉薄部21の厚さ(A2)および平坦部の厚さ(C2)により決定される。溝の深さは、図4に示すように一定であることが好ましいが、部分的に溝の深さを変化させてもよい。
【0019】
直線部の長さ(L2)は、0.5〜10mmであることが好ましいが、直線部は10mmより長くても良い。直線部の長さが短すぎると、ケースが膨らんで面方向への張力が生じたときに、張力によって平坦部が破断しにくくなる。直線部は、ケースが膨らんだときに平坦部20が破断しやすいように、封口板の長手方向に対して平行もしくは、ほぼ平行であることが好ましい。また、直線部間の距離(W2)は、1.5〜8mmであることが好ましい。この距離が短すぎると、安全弁が作動しても、破断部分による開口部が小さくなり、ガスを放出する能力が不十分になる。。
【0020】
実施形態3
本実施形態に係る封口板の上面図を図7に示す。また、図7に示す封口板のVIII−VIII線拡大断面図を図8に、IX−IX線拡大部分断面図を図9に示す。
本実施形態に係る封口板の安全弁も、図7に示すように、肉薄部31に一対の平行な直線に沿う溝状の平坦部30を有する。そして、一対の直線の対向する端部間を結ぶR状の輪郭に沿って、複数の小さな平坦部32が間欠的に設けられていること以外は、実施形態2の封口板と同様の構造を有する。複数の小さな平坦部32の厚さ(C3’)は、直線に沿う溝状の平坦部30の厚さ(C3)よりも厚くしてもよい。
【0021】
実施形態4
本実施形態に係る封口板の上面図を図10に示す。また、図10に示す封口板のXI−XI線拡大断面図を図11に、XII−XII線拡大部分断面図を図12に示す。本実施形態に係る封口板の安全弁は、図10〜12に示すように、略長円形の輪郭で囲まれた凹部からなる平坦部40を有する。その他の構造については、実施形態1と同様である。ここでも略長円形の輪郭は、一対の平行な直線部を有する。このような略長円形の他に、矩形の輪郭で囲まれた凹部からなる平坦部であってもよい。
【0022】
略長円形の直線部の長さ(L4)は、0.5〜10mmであることが好ましいが、直線部は10mmより長くても良い。直線部の長さが短すぎると、ケースが膨らんで面方向への張力が生じたときに、張力によって平坦部が破断しにくくなる。直線部は、ケースが膨らんだときに平坦部40が破断しやすいように、封口板の長手方向に対して平行もしくは、ほぼ平行であることが好ましい。
【0023】
直線部間の距離(W4)は、1.5〜8mmであることが好ましい。この距離が短すぎると、安全弁が作動しても、破断部分による開口部が小さくなり、ガスを放出する能力が不十分になる。凹部の深さ(B4)は、肉薄部の厚さ(A4)および平坦部の厚さ(C4)により決定される。このような平坦部の場合、平坦部の厚さ(C4)は、特に30〜80μmであることが好ましい。凹部の深さは、図11、12に示すように一定であることが好ましいが、部分的に深さを変化させてもよい。
【0024】
上記のような封口板は、例えば、所定の凹凸形状を有するプレス金型を用いて、平坦な板状材料に、座押し加工(平坦な面を作るプレス加工)を施すことにより、得ることができる。座押し加工によれば、下面が平坦な肉薄部からなる安全弁を容易に得ることができる。板状材料に下面が平坦な肉薄部を形成する場合、製品のバラツキが少なくなり、加工条件の管理も容易である。そのような方法の一例について、実施形態1の封口板を例にとって、以下に具体的に説明する。
【0025】
図13は、実施形態1の封口板の製造工程を示すものであり、黒矢印は工程の流れを示す。先ず、加工し易い大きさの板状材料50を準備する。ここでは、板状材料の短手方向における断面図をA1〜D1に示し、長手方向における断面図をA2〜D2に示す。
安全弁は、2段階のプレス加工により形成することができる。1段階目のプレス加工では、A1、A2に示すように上金型51aと下金型51bにより、白抜矢印が示す方向に圧力をかけて、B1、B2に示すような肉薄部52を形成する。
このとき、B2に示すように、肉薄部52の形成と同時に端子孔54と注液孔55を形成してもよい。
【0026】
次に、上金型53および下金型53bを用いて、2段階目のプレス加工(座押し加工)を行う。上金型53の下面には、略長円形の輪郭に沿う頂部が平坦なリブ53aが形成されており、リブ53aに沿ってC1、C2に示すような平坦部56が形成される。
最後に、所定形状の開口部を有する切断刃57により、板状材料から所定形状の封口板を切り出せば、実施形態1に係る安全弁を有する封口板が得られる。次いで、得られた封口板から歪みを除去するために、切り出された封口板を焼鈍することが好ましい。焼鈍は、例えば100〜300℃で行えばよい。
【0027】
次に、上記のような封口板と組み合わせる電池ケースの一例について説明する。
図14に、密閉型電池に用いる角形電池ケース60の一例の縦断面図を示す。ここでは、ケースと封口板の構造を理解し易いように、電池ケース60の開口部を上述の実施形態1の封口板61によって塞いだ図を示すが、電池の製造工程では、ケース内に、正極、負極およびセパレータを積層し、捲回してなる電極群とが収容されてからケースの開口部が閉じられる。封口板中央の端子孔には、絶縁材料62を介して、電極端子63が挿入されている。電極端子63の両側には、安全弁64と電解液の注液孔が設けられており、注液孔は封栓65によって塞がれている。封口板の周縁部と電池ケースの開口端部、および注液孔と封栓は、それぞれレーザー溶接などにより接合される。
【0028】
ケースの膨れやすさと電池ケースの寸法との間には、以下のような相関関係がある。電池ケースの厚さに対する横幅(X)の比、すなわち、封口板の短手方向の長さに対する長手方向の長さの比は3〜17であることが好ましく、電池ケースの厚さに対する高さ(Y)の比は、3〜35であることが好ましい。また、XとYとの比:X/Yは、0.3〜1.5であることが好ましい。
【0029】
電池ケースの材質には、金属が好ましく用いられ、なかでもアルミニウム、鉄などが好ましく用いられる。電池ケースの広い方の側壁の厚さは、従来よりも薄くすることが安全弁の作動安定性を高める上で好ましく、例えば0.1〜0.3mmであることが好ましい。前記側壁の厚さが厚すぎると、電池内圧の上昇時におけるケースの変形が妨げられて、安全弁が作動しにくくなる。一方、前記側壁の厚さが薄すぎると、電池ケースの強度を十分に確保することが困難になる。
【0030】
電池ケース内にガスが発生し、電池ケースが厚さ方向に膨らむと、封口板には短手方向の張力が働く。そして、張力が一定値を超えると、安全弁の中で最も肉薄な平坦部が破断し、電池内部のガスが外部に放出される。
本発明は、非水電解液二次電池、アルカリ蓄電池および各種一次電池に適用することができるが、以下の実施例では、非水電解液二次電池を例にとって説明する。
【0031】
【実施例】
《実施例1》
(イ)封口板の作製
板状材料として厚さ1mmのアルミニウム板と、所定の凹凸形状を有するプレス金型を用いて、下記封口板A、B、Cをそれぞれを作製した。各封口板の寸法は、下記電池ケースの開口部の大きさに適合させて長さ34mm、幅4.5mmとした。
まず、所定形状のアルミニウム板に、座押し加工により、長径3.6mm、短径2.4mmの略長円形の輪郭を有し、厚さ80μmの肉薄部を形成した。次に、肉薄部にさらなる座押し加工を施すことにより、所定の平坦部を形成した。平坦部の厚さは、いずれの封口板においても50μmとした。
【0032】
封口板Aの平坦部は、図1〜3に示すものと同様であり、一対の平行な直線部を有する略長円形の輪郭に沿う溝形状とした。溝幅(平坦部の幅)は0.1mmとした。直線部の長さ(L1)は1.2mm、直線部間の距離(W1)は3.2mmとした。
封口板Bの平坦部は、図4〜6に示すものと同様であり、一対の平行な直線に沿う溝形状とした。溝幅(平坦部の幅)は0.1mmとした。直線部の長さ(L2)は1.2mm、直線部間の距離(W2)は3.2mmとした。
封口板Cの平坦部は、図10〜12に示すものと同様であり、一対の平行な直線部を有する略長円形の輪郭で囲まれた凹部形状とした。直線部の長さ(L4)は1.2mm、直線部間の距離(W4)は3.2mmとした。
【0033】
(ロ)正極の作製
100重量部の正極活物質(LiCoO)に、導電材として3重量部のアセチレンブラックと、結着剤として7重量部のポリテトラフルオロエチレンと、カルボキシメチルセルロースを1重量%含む水溶液100重量部とを加え、撹拌・混合し、ペースト状の正極合剤を得た。この正極合剤を、集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥後、全体を圧延し、所定寸法に裁断して、正極を得た。
【0034】
(ハ)負極の作製
平均粒子径が約20μmになるように粉砕・分級した100重量部の鱗片状黒鉛に、結着剤としてスチレン/ブタジエンゴムを3重量部と、カルボキシメチルセルロースを1重量%含む水溶液100重量部とを加え、撹拌・混合し、ペースト状の負極合剤を得た。この負極合剤を、集電体となる厚さ15μmの銅箔の両面に塗布し、乾燥後、全体を圧延し、所定寸法に裁断して、負極を得た。
【0035】
(ニ)電池の組み立て
上記正極と負極を用い、所定の封口板とアルミニウム製の図14に示した形状の角形電池ケース(アルミニウム材の厚さ0.3mm)を用いて、非水電解液二次電池(厚さ5mm、幅34mm、高さ50mm)を組み立てた。製造した電池の一部を切り欠いた部分斜視図を図15に示す。
まず、正極と負極とを、厚さ25μmの微多孔性ポリエチレン樹脂製セパレータを介して捲回して、電極群70を構成した。正極と負極には、それぞれアルミニウム製正極リード71およびニッケル製負極リード72を溶接した。電極群の上部にポリエチレン樹脂製の絶縁板73を装着し、電池ケース74内に収容した。正極リードの他端は、下記の所定の安全弁77を有する封口板78の下面にスポット溶接した。また、負極リードの他端は、封口板の中心部にある端子孔に絶縁材料76を介して挿入されているニッケル製負極端子75の下部と電気的に接続した。
【0036】
電池ケースの開口端部と封口板の周縁部とをレーザ溶接してから、封口板に設けてある注入孔から所定量の非水電解液を注液した。最後に注入孔をアルミニウム製の封栓79で塞ぎ、レーザー溶接で注液孔を密封して、電池を完成させた。非水電解液には、エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に、1.0mol/Lの濃度でLiPFを溶解したものを用いた。
なお、封口板A〜Cを用いた電池は、それぞれ10個作製した。
【0037】
(ホ)電池の評価
環境温度25℃で、各電池の電圧が4.2Vになるまで定電流充電を行い、電圧が4.2Vに到達してからは、合計充電時間が3時間になるように定電圧充電を行った。その後、各電池を250℃のホットプレートに乗せ、安全弁の開裂試験を行った。
上記試験の後、電池を観察したところ、それぞれ10個中10個の電池の安全弁が作動しており、電池の破裂・発火などは全く発生しなかった。このことから、本発明によれば、安全弁の破断部分の厚さが従来よりも厚く50μmであったにもかかわらず、安全弁が安定して作動することを確認することができた。
【0038】
【発明の効果】
以上のように、本発明によれば、電池内圧上昇時のケースの変形により破断する安全弁を採用するため、安全弁の製造が比較的容易であり、しかも、安全弁の作動電圧が安定するため、密閉型電池の安全性を高めることができる。
【図面の簡単な説明】
【図1】実施形態1に係る封口板の上面図である。
【図2】図1に示す封口板のII−II線拡大断面図である。
【図3】図1に示す封口板のIII−III線拡大部分断面図である。
【図4】実施形態2に係る封口板の上面図である。
【図5】図4に示す封口板のV−V線拡大断面図である。
【図6】図4に示す封口板のVI−VI線拡大部分断面図である。
【図7】実施形態3に係る封口板の上面図である。
【図8】図7に示す封口板のVIII−VIII線拡大断面図である。
【図9】図7に示す封口板のIX−IX線拡大部分断面図である。
【図10】実施形態4に係る封口板の上面図である。
【図11】図10に示す封口板のXI−XI線拡大断面図である。
【図12】図11に示す封口板のXII−XII線拡大部分断面図である。
【図13】実施形態1に係る封口板の製造工程図である。
【図14】密閉型電池に用いる角形電池ケースの一例の縦断面図である。
【図15】本発明に係る非水電解液二次電池の一部を切り欠いた部分斜視図である。
【符号の説明】
10 略長円形の輪郭
11、21、31、52 肉薄部
12、50 板状材料
13、20、30、32、40、56 平坦部
14a 端子孔
14b 端子孔周囲の凹部
15a 注液孔
15b 注液孔周囲の凹部
51a、53 上金型
51b、53b 下金型
53a リブ
54 端子孔
55 注液孔
57 切断刃
60、74 角形電池ケース
61、78 封口板
62、76 絶縁材料
63 電極端子
64、77 安全弁
65、79 封栓
70 電極群
71 正極リード
72 負極リード
73 絶縁板
75 負極端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery sealing plate that breaks due to deformation of a case when the internal pressure of a battery increases, and a sealed battery using the same.
[0002]
[Prior art]
If a sealed battery is handled under abnormal conditions, gas may be generated inside the battery and the internal pressure may increase. Therefore, in such a case, a safety valve has been developed to prevent the battery internal pressure from excessively increasing. The safety valve operates when the internal pressure of the battery reaches a predetermined value or more, and discharges gas inside the battery to the outside. As such a safety valve, for example, the following has been proposed.
[0003]
First, a safety valve has been developed in which a thin portion having a predetermined contour is formed on a metal plate that seals an opening of a battery case, and the thin portion bulges toward the surface of the metal plate (for example, Patent Documents). 1, 2). Also, a safety valve that forms a thin part along the contour excluding one long side of a rectangle or an oval having a long side and a short side, and that is opened in a hinged manner toward the top due to an increase in internal pressure of the battery. It has been developed (for example, see Patent Document 3).
[0004]
[Patent Document 1]
Japanese Patent No. 3222418 (Claim 1, FIG. 7)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-325934 (Claim 1, FIGS. 1 and 2)
[Patent Document 3]
JP-A-2002-8615 (Claims 1, FIGS. 1 and 2)
[0005]
However, all of the above safety valves are broken by the force of the gas inside the battery pushing up the valve body. These safety valves operate by the gas pressure itself inside the battery. For this reason, the thin portion is designed to bulge or become dome-shaped so that the portion to be broken is easily subjected to upward pressure by gas. However, in such a safety valve, it is necessary to make the thin portion extremely thin, and it is difficult to maintain uniform performance. Therefore, the operating pressure of the safety valve is not stable, and it is difficult to sufficiently prevent an excessive increase in battery internal pressure.
[0006]
[Problems to be solved by the invention]
The present invention provides a safety valve that breaks due to deformation of a case when the internal pressure of a battery rises, and improves the above-described disadvantages of the conventional safety valve.
[0007]
[Means for Solving the Problems]
The present invention is a sealing plate made of a plate-like material for closing an opening of a battery case, wherein the sealing plate has a safety valve, and the safety valve is a lower surface formed by stamping the plate-like material. Is composed of a flat thin portion, and the thin portion has a thinner flat portion formed by push-in processing, and the flat portion is formed of the plate-shaped material by deformation of the case when a battery internal pressure rises. The present invention relates to a battery sealing plate that is broken by a tension in a plane direction.
[0008]
It is preferable that the thickness of the flat portion is 30 to 80 μm.
The width of the flat portion is preferably 0.1 mm or more.
[0009]
The present invention also includes an electrode group, an electrolyte, a prismatic battery case containing the electrode group and the non-aqueous electrolyte, and a sealing plate made of a plate-like material for sealing an opening of the case. It relates to a sealed battery whose plate has the above-mentioned safety valve.
The thickness of the wall material of the case is preferably 1 to 0.1 mm.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the sealing plate of the present invention and a sealed battery using the same will be described.
The sealing plate of the present invention is made of a plate-like material and has a safety valve. As the plate material, a metal plate is preferably used, and among them, a metal plate made of aluminum, iron, or the like is preferably used. The thickness of the plate-like material is preferably 0.6 to 2 mm. If the plate-shaped material is too thick, the surface tension applied to the thin portion becomes small, and if it is too thin, deformation other than the thin portion becomes large, and stable operation of the safety valve may not be achieved.
[0011]
The safety valve comprises a thin portion having a flat lower surface formed by a stamping process on a plate-like material. In addition, the thin portion has a thinner flat portion (hereinafter, referred to as a flat portion) formed by push-in processing. The thickness of the thin portion other than the flat portion is preferably 50 to 100 μm. If the thin portion other than the flat portion is too thick, the working becomes difficult, and if it is too thin, the break portion of the safety valve is not determined and stable operation may not be achieved.
[0012]
The flat part is broken by the tension in the surface direction of the plate-like material due to the deformation of the case when the internal pressure of the battery rises. According to the tension in the plane direction, even if the flat portion is somewhat thick, it can be relatively easily broken. Therefore, the flat portion of the safety valve according to the present invention can be made thicker than the broken portion of the safety valve which breaks due to the conventional upward force. For example, in the case of a conventional safety valve that is broken by an upward force, the thickness of the broken portion needs to be 20 μm or less. On the other hand, the thickness of the flat portion of the safety valve of the present invention can be 30 to 80 μm, and more preferably 35 to 50 μm.
[0013]
Since the safety valve of the present invention can make the break portion thicker than before, even if there is a slight variation in thickness, the variation has little effect on the operating pressure, and as a result, the operating pressure of the safety valve is stabilized. . In addition, although it depends on the size of the sealing plate, the width of the flat portion is preferably 0.1 mm or more, more preferably 1 mm or more, from the viewpoint of further stabilizing the operating pressure. To some extent, the wider the flat portion, the more stable the operating pressure.
[0014]
Hereinafter, a sealing plate having a preferable flat portion will be exemplified.
Embodiment 1
FIG. 1 shows a top view of the sealing plate according to the present embodiment. FIG. 2 is an enlarged sectional view taken along the line II-II of the sealing plate shown in FIG. 1, and FIG. 3 is an enlarged partial sectional view taken along the line III-III of the sealing plate.
As shown in FIGS. 1 to 3, the safety valve of the sealing plate according to the present embodiment includes a thin portion 11 having a flat lower surface formed by stamping a plate-shaped material 12. In FIG. 1, the thin portion 11 has a substantially elliptical outline 10, but the outline of the thin portion is not particularly limited. In the thin portion 11, a groove-shaped flat portion 13 is formed along a substantially oval contour having a pair of parallel straight portions. The groove-shaped flat portion 13 may have a shape along a rectangular outline other than such a substantially elliptical shape. A terminal hole 14a for inserting an electrode terminal is provided at the center of the sealing plate, and a concave portion 14b for fitting an insulating material for insulating the electrode terminal and the sealing plate is provided around the terminal hole 14a. Have been. Further, at the other end of the sealing plate without the safety valve, an injection hole 15a for injecting the electrolyte is provided, and around the opening, a concave portion 15b for fitting a plug is provided. .
[0015]
As described above, the groove width is preferably 0.1 mm or more, and particularly preferably 1 mm or less. The depth (B1) of the groove is determined by the thickness (A1) of the thin portion 11 and the thickness (C1) of the flat portion. In the case of such a groove-shaped flat portion, the thickness (C1) of the flat portion is particularly preferably 30 to 80 μm. Although the depth of the groove is preferably constant as shown in FIGS. 2 and 3, the depth of the groove may be partially changed. The wall surface of the groove may be tapered.
[0016]
The length (L1) of the substantially oval straight portion is preferably 0.5 to 10 mm, but the straight portion may be longer than 10 mm. The longer the straight portion, the thicker the flat portion can be. If the length of the straight portion is too short, the flat portion is less likely to break due to the tension when the case expands and tension is generated in the surface direction. The linear portion is preferably parallel or substantially parallel to the longitudinal direction of the sealing plate so that the flat portion 13 is easily broken when the case is expanded. Further, the distance (W1) between the straight portions is preferably 1.5 to 8 mm. If this distance is too short, the opening due to the break will be small and the ability to release gas will be insufficient even when the safety valve is activated.
[0017]
Although it depends on the size of the sealing plate, from the viewpoint of maintaining the strength of the sealing plate, it is preferable that the area of the safety valve including the thin portion is small. On the other hand, from the viewpoint of enhancing the function of the safety valve to release gas, it is preferable that the area of the break portion of the safety valve is large. Accordingly, a safety valve that is smaller and produces multiple breaks during operation is most preferred. The safety valve according to the present embodiment has an excellent exhaust capability as compared with the safety valves according to Embodiments 2 and 3 described below, and is suitable for a sealing plate of a high-capacity battery.
[0018]
Embodiment 2
FIG. 4 shows a top view of the sealing plate according to the present embodiment. FIG. 5 is an enlarged sectional view taken along line VV of the sealing plate shown in FIG. 4, and FIG. 6 is an enlarged partial sectional view taken along line VI-VI of the sealing plate.
As shown in FIG. 4, the safety valve of the sealing plate according to the present embodiment has a pair of parallel flat straight grooves 20. Other structures are the same as in the first embodiment. The groove width is preferably 0.1 mm or more, and more preferably 1 mm or less. In the case of such a groove-shaped flat portion, the thickness (C2) of the flat portion is particularly preferably 30 to 50 μm. The depth (B2) of the groove is determined by the thickness (A2) of the thin portion 21 and the thickness (C2) of the flat portion. Although the depth of the groove is preferably constant as shown in FIG. 4, the depth of the groove may be partially changed.
[0019]
The length (L2) of the straight portion is preferably 0.5 to 10 mm, but the straight portion may be longer than 10 mm. If the length of the straight portion is too short, the flat portion is less likely to break due to the tension when the case expands and tension is generated in the surface direction. The straight portion is preferably parallel or substantially parallel to the longitudinal direction of the sealing plate so that the flat portion 20 is easily broken when the case is expanded. Further, the distance (W2) between the straight portions is preferably 1.5 to 8 mm. If this distance is too short, the opening due to the break will be small and the ability to release gas will be insufficient even when the safety valve is activated. .
[0020]
Embodiment 3
FIG. 7 shows a top view of the sealing plate according to the present embodiment. FIG. 8 is an enlarged sectional view taken along line VIII-VIII of the sealing plate shown in FIG. 7, and FIG. 9 is an enlarged partial sectional view taken along line IX-IX.
As shown in FIG. 7, the safety valve of the sealing plate according to the present embodiment also has the thin portion 31 and the groove-shaped flat portion 30 along a pair of parallel straight lines. The same structure as that of the sealing plate of the second embodiment except that a plurality of small flat portions 32 are provided intermittently along an R-shaped contour connecting between opposed ends of a pair of straight lines. Have. The thickness (C3 ′) of the plurality of small flat portions 32 may be larger than the thickness (C3) of the groove-shaped flat portion 30 along the straight line.
[0021]
Embodiment 4
FIG. 10 shows a top view of the sealing plate according to the present embodiment. FIG. 11 is an enlarged sectional view taken along line XI-XI of the sealing plate shown in FIG. 10, and FIG. 12 is an enlarged partial sectional view taken along line XII-XII of the sealing plate. As shown in FIGS. 10 to 12, the safety valve of the sealing plate according to the present embodiment has a flat portion 40 including a concave portion surrounded by a substantially oval outline. Other structures are the same as in the first embodiment. Again, the generally oval contour has a pair of parallel straight sections. In addition to such a substantially elliptical shape, a flat portion composed of a concave portion surrounded by a rectangular outline may be used.
[0022]
The length (L4) of the substantially oval straight portion is preferably 0.5 to 10 mm, but the straight portion may be longer than 10 mm. If the length of the straight portion is too short, the flat portion is less likely to break due to the tension when the case expands and tension is generated in the surface direction. The straight portion is preferably parallel or almost parallel to the longitudinal direction of the sealing plate so that the flat portion 40 is easily broken when the case is expanded.
[0023]
The distance (W4) between the linear portions is preferably 1.5 to 8 mm. If this distance is too short, the opening due to the break will be small and the ability to release gas will be insufficient even when the safety valve is activated. The depth (B4) of the concave portion is determined by the thickness (A4) of the thin portion and the thickness (C4) of the flat portion. In the case of such a flat portion, the thickness (C4) of the flat portion is particularly preferably 30 to 80 μm. The depth of the recess is preferably constant as shown in FIGS. 11 and 12, but the depth may be partially changed.
[0024]
The sealing plate as described above can be obtained, for example, by subjecting a flat plate-shaped material to a stamping process (a press process for forming a flat surface) using a press die having a predetermined uneven shape. it can. According to the push-in process, a safety valve having a thin portion with a flat lower surface can be easily obtained. In the case where a thin portion having a flat lower surface is formed on a plate-like material, variations in products are reduced and processing conditions are easily managed. An example of such a method will be specifically described below, taking the sealing plate of Embodiment 1 as an example.
[0025]
FIG. 13 illustrates a manufacturing process of the sealing plate of the first embodiment, and a black arrow indicates a flow of the process. First, a plate-like material 50 having a size that can be easily processed is prepared. Here, sectional views of the plate-like material in the lateral direction are shown in A1 to D1, and sectional views in the longitudinal direction are shown in A2 to D2.
The safety valve can be formed by two-stage pressing. In the first-stage press working, as shown by A1 and A2, pressure is applied in the direction indicated by the white arrow by the upper mold 51a and the lower mold 51b to form a thin portion 52 as shown by B1 and B2. I do.
At this time, as shown in B2, the terminal hole 54 and the liquid injection hole 55 may be formed simultaneously with the formation of the thin portion 52.
[0026]
Next, the second stage of press working (spotting) is performed using the upper mold 53 and the lower mold 53b. On the lower surface of the upper mold 53, a rib 53a having a flat top is formed along a substantially elliptical outline, and a flat portion 56 as shown by C1 and C2 is formed along the rib 53a.
Finally, a sealing plate having a safety valve according to the first embodiment can be obtained by cutting out a sealing plate having a predetermined shape from a plate-like material with a cutting blade 57 having an opening having a predetermined shape. Next, in order to remove distortion from the obtained sealing plate, it is preferable to anneal the cut-out sealing plate. Annealing may be performed, for example, at 100 to 300 ° C.
[0027]
Next, an example of a battery case combined with the above-described sealing plate will be described.
FIG. 14 shows a longitudinal sectional view of an example of a prismatic battery case 60 used for a sealed battery. Here, in order to facilitate understanding of the structure of the case and the sealing plate, a diagram in which the opening of the battery case 60 is closed with the sealing plate 61 of the above-described first embodiment is shown. The opening of the case is closed after the positive electrode, the negative electrode and the separator are stacked and the wound electrode group is accommodated. An electrode terminal 63 is inserted into the terminal hole at the center of the sealing plate via an insulating material 62. On both sides of the electrode terminal 63, a safety valve 64 and an electrolyte injection hole are provided, and the injection hole is closed by a plug 65. The peripheral edge of the sealing plate and the opening end of the battery case, and the liquid injection hole and the plug are respectively joined by laser welding or the like.
[0028]
The following correlation exists between the swellability of the case and the dimensions of the battery case. The ratio of the width (X) to the thickness of the battery case, that is, the ratio of the length in the longitudinal direction to the length in the short direction of the sealing plate is preferably 3 to 17, and the height relative to the thickness of the battery case. The ratio of (Y) is preferably from 3 to 35. Further, the ratio of X to Y: X / Y is preferably 0.3 to 1.5.
[0029]
As the material of the battery case, a metal is preferably used, and among them, aluminum, iron and the like are preferably used. The thickness of the wider side wall of the battery case is preferably smaller than that of the related art in order to enhance the operation stability of the safety valve, and for example, is preferably 0.1 to 0.3 mm. If the thickness of the side wall is too large, deformation of the case when the internal pressure of the battery rises is hindered, and the safety valve becomes difficult to operate. On the other hand, if the thickness of the side wall is too small, it is difficult to sufficiently secure the strength of the battery case.
[0030]
When gas is generated in the battery case and the battery case swells in the thickness direction, tension in the short direction acts on the sealing plate. When the tension exceeds a certain value, the thinnest flat portion of the safety valve is broken, and the gas inside the battery is released to the outside.
The present invention can be applied to a non-aqueous electrolyte secondary battery, an alkaline storage battery, and various primary batteries. In the following examples, a non-aqueous electrolyte secondary battery will be described as an example.
[0031]
【Example】
<< Example 1 >>
(A) Production of sealing plates Using an aluminum plate having a thickness of 1 mm as a plate-like material and a press die having a predetermined uneven shape, the following sealing plates A, B and C were produced. The dimensions of each sealing plate were 34 mm in length and 4.5 mm in width in accordance with the size of the opening of the battery case described below.
First, a thin part having an approximately elliptical outline with a major axis of 3.6 mm and a minor axis of 2.4 mm and a thickness of 80 μm was formed on an aluminum plate having a predetermined shape by countersinking. Next, a predetermined flat portion was formed by further pressing the thin portion. The thickness of the flat part was 50 μm in each sealing plate.
[0032]
The flat portion of the sealing plate A is the same as that shown in FIGS. 1 to 3 and has a groove shape along a substantially elliptical contour having a pair of parallel linear portions. The groove width (width of the flat portion) was 0.1 mm. The length (L1) of the straight portion was 1.2 mm, and the distance (W1) between the straight portions was 3.2 mm.
The flat portion of the sealing plate B is the same as that shown in FIGS. 4 to 6 and has a groove shape along a pair of parallel straight lines. The groove width (width of the flat portion) was 0.1 mm. The length (L2) of the straight portion was 1.2 mm, and the distance (W2) between the straight portions was 3.2 mm.
The flat portion of the sealing plate C is the same as that shown in FIGS. 10 to 12 and has a concave shape surrounded by a substantially elliptical outline having a pair of parallel linear portions. The length (L4) of the straight portion was 1.2 mm, and the distance (W4) between the straight portions was 3.2 mm.
[0033]
(B) Preparation of positive electrode In 100 parts by weight of a positive electrode active material (LiCoO 2 ), 3 parts by weight of acetylene black as a conductive material, 7 parts by weight of polytetrafluoroethylene as a binder, and 1% by weight of carboxymethyl cellulose. And 100 parts by weight of the resulting aqueous solution, and the mixture was stirred and mixed to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both sides of a 20 μm-thick aluminum foil serving as a current collector, dried, rolled, and cut into predetermined dimensions to obtain a positive electrode.
[0034]
(C) Preparation of negative electrode 100 parts by weight of flaky graphite pulverized and classified so that the average particle diameter becomes about 20 μm, containing 3 parts by weight of styrene / butadiene rubber as a binder and 1% by weight of carboxymethyl cellulose. 100 parts by weight of an aqueous solution were added, and the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to both surfaces of a copper foil having a thickness of 15 μm as a current collector, dried, rolled, and cut into predetermined dimensions to obtain a negative electrode.
[0035]
(D) Battery assembly Using the above positive electrode and negative electrode, a predetermined sealing plate and an aluminum square battery case (aluminum material having a thickness of 0.3 mm) having the shape shown in FIG. A secondary battery (thickness 5 mm, width 34 mm, height 50 mm) was assembled. FIG. 15 is a partial perspective view in which a part of the manufactured battery is cut away.
First, the positive electrode and the negative electrode were wound via a 25 μm-thick microporous polyethylene resin separator to form an electrode group 70. An aluminum positive electrode lead 71 and a nickel negative electrode lead 72 were welded to the positive electrode and the negative electrode, respectively. An insulating plate 73 made of polyethylene resin was mounted on the upper part of the electrode group, and housed in a battery case 74. The other end of the positive electrode lead was spot-welded to the lower surface of a sealing plate 78 having a predetermined safety valve 77 described below. The other end of the negative electrode lead was electrically connected to a lower part of a nickel negative electrode terminal 75 inserted into a terminal hole at the center of the sealing plate via an insulating material 76.
[0036]
After the opening end of the battery case and the peripheral edge of the sealing plate were laser-welded, a predetermined amount of non-aqueous electrolyte was injected from an injection hole provided in the sealing plate. Finally, the injection hole was closed with an aluminum stopper 79, and the injection hole was sealed by laser welding to complete the battery. As the non-aqueous electrolyte, one obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 3 was used.
In addition, ten batteries each using the sealing plates A to C were produced.
[0037]
(E) Battery evaluation At constant temperature of 25 ° C., constant-current charging is performed until the voltage of each battery reaches 4.2 V, and after the voltage reaches 4.2 V, the total charging time is 3 hours. Was charged at a constant voltage. Thereafter, each battery was placed on a hot plate at 250 ° C., and a safety valve tear test was performed.
After the test, the batteries were observed. As a result, the safety valves of 10 out of 10 batteries were activated, and the batteries did not rupture or ignite at all. From this, according to the present invention, it was confirmed that the safety valve operates stably even though the thickness of the break portion of the safety valve is 50 μm thicker than before.
[0038]
【The invention's effect】
As described above, according to the present invention, the safety valve is relatively easy to manufacture because a safety valve that breaks due to deformation of the case when the internal pressure of the battery rises is employed. The safety of the rechargeable battery can be improved.
[Brief description of the drawings]
FIG. 1 is a top view of a sealing plate according to a first embodiment.
FIG. 2 is an enlarged sectional view taken along line II-II of the sealing plate shown in FIG.
FIG. 3 is an enlarged partial cross-sectional view of the sealing plate shown in FIG. 1, taken along the line III-III.
FIG. 4 is a top view of a sealing plate according to a second embodiment.
FIG. 5 is an enlarged sectional view taken along line VV of the sealing plate shown in FIG.
6 is an enlarged partial cross-sectional view of the sealing plate shown in FIG. 4, taken along the line VI-VI.
FIG. 7 is a top view of a sealing plate according to a third embodiment.
FIG. 8 is an enlarged sectional view taken along line VIII-VIII of the sealing plate shown in FIG. 7;
9 is an IX-IX line enlarged partial sectional view of the sealing plate shown in FIG. 7;
FIG. 10 is a top view of a sealing plate according to a fourth embodiment.
FIG. 11 is an enlarged cross-sectional view taken along line XI-XI of the sealing plate shown in FIG.
12 is an enlarged partial cross-sectional view of the sealing plate shown in FIG. 11, taken along the line XII-XII.
FIG. 13 is a manufacturing process diagram of the sealing plate according to the first embodiment.
FIG. 14 is a longitudinal sectional view of an example of a prismatic battery case used for a sealed battery.
FIG. 15 is a partial perspective view of the nonaqueous electrolyte secondary battery according to the present invention, with a portion cut away.
[Explanation of symbols]
10 Oval outline 11, 21, 31, 52 Thin part 12, 50 Plate material 13, 20, 30, 32, 40, 56 Flat part 14a Terminal hole 14b Concave part 15a around terminal hole Injection hole 15b Injection Recesses 51a, 53 around the hole Upper mold 51b, 53b Lower mold 53a Rib 54 Terminal hole 55 Liquid injection hole 57 Cutting blade 60, 74 Square battery case 61, 78 Sealing plate 62, 76 Insulating material 63 Electrode terminal 64, 77 Safety valve 65, 79 Seal 70 Electrode group 71 Positive lead 72 Negative lead 73 Insulating plate 75 Negative terminal

Claims (13)

電池ケースの開口部を封口する板状材料からなる封口板であって、
前記封口板は、安全弁を有し、
前記安全弁は、前記板状材料に座押し加工により形成された下面が平坦な肉薄部からなり、
前記肉薄部は、座押し加工により形成されたさらに肉薄な平坦部を有し、
前記平坦部は、電池内圧上昇時の前記ケースの変形により、前記板状材料の面方向への張力により破断する電池用封口板。
A sealing plate made of a plate-like material for closing an opening of the battery case,
The sealing plate has a safety valve,
The safety valve comprises a flat thin portion formed on the lower surface of the plate-like material by buckling,
The thin portion has a thinner flat portion formed by a push process,
The sealing plate for a battery, wherein the flat portion is broken by a tension in a surface direction of the plate-shaped material due to deformation of the case when a battery internal pressure rises.
前記平坦部の厚さが30〜80μmである請求項1記載の電池用封口板。The battery sealing plate according to claim 1, wherein the flat portion has a thickness of 30 to 80 m. 前記平坦部の幅が0.1mm以上である請求項1または2記載の電池用封口板。3. The battery sealing plate according to claim 1, wherein the width of the flat portion is 0.1 mm or more. 前記平坦部は、矩形の輪郭または一対の平行な直線部を有する略長円形の輪郭に沿って溝を形成している請求項1〜3のいずれかに記載の電池用封口板。The battery sealing plate according to any one of claims 1 to 3, wherein the flat portion forms a groove along a rectangular outline or a substantially oval outline having a pair of parallel linear portions. 前記平坦部は、一対の平行な直線に沿って溝を形成している請求項1〜3のいずれかに記載の電池用封口板。The battery sealing plate according to any one of claims 1 to 3, wherein the flat portion has a groove formed along a pair of parallel straight lines. 前記平坦部は、矩形の輪郭または一対の平行な直線部を有する略長円形の輪郭で囲まれた凹部を形成している請求項1〜3のいずれかに記載の電池用封口板。The battery sealing plate according to any one of claims 1 to 3, wherein the flat portion forms a concave portion surrounded by a rectangular outline or a substantially oval outline having a pair of parallel linear portions. 電極群、電解液、前記電極群と前記非水電解液とを収容する角形電池ケース、ならびに前記ケースの開口部を封口する板状材料からなる封口板からなり、
前記封口板は、安全弁を有し
前記安全弁は、前記板状材料に座押し加工により形成された下面が平坦な肉薄部からなり、
前記肉薄部は、座押し加工により形成されたさらに肉薄な平坦部を有し、
前記平坦部は、電池内圧上昇時の前記ケースの変形により、前記板状材料の面方向への張力により破断する密閉型電池。
An electrode group, an electrolyte, a prismatic battery case containing the electrode group and the non-aqueous electrolyte, and a sealing plate made of a plate-like material for sealing an opening of the case,
The sealing plate has a safety valve, the safety valve is formed of a thin portion having a flat bottom surface formed by pressing the plate-shaped material,
The thin portion has a thinner flat portion formed by a push process,
A sealed battery in which the flat portion is broken by a tension in a plane direction of the plate-like material due to deformation of the case when a battery internal pressure increases.
前記平坦部の厚さが30〜80μmである請求項7記載の密閉型電池。The sealed battery according to claim 7, wherein the flat portion has a thickness of 30 to 80 m. 前記ケースの壁材の厚さは、1〜0.1mmである請求項7または8記載の密閉型電池。9. The sealed battery according to claim 7, wherein the thickness of the wall material of the case is 1 to 0.1 mm. 前記平坦部の幅が0.1mm以上である請求項7〜9のいずれかに記載の密閉型電池。The sealed battery according to any one of claims 7 to 9, wherein the width of the flat portion is 0.1 mm or more. 前記平坦部は、矩形の輪郭または一対の平行な直線部を有する略長円形の輪郭に沿って溝を形成している請求項7〜10のいずれかに記載の密閉型電池。The sealed battery according to any one of claims 7 to 10, wherein the flat portion forms a groove along a rectangular outline or a substantially oval outline having a pair of parallel linear portions. 前記平坦部は、一対の平行な直線に沿って溝を形成している請求項7〜11のいずれかに記載の密閉型電池。The sealed battery according to claim 7, wherein the flat portion forms a groove along a pair of parallel straight lines. 前記平坦部は、矩形の輪郭または一対の平行な直線部を有する略長円形の輪郭を有する凹面を形成している請求項7〜12のいずれかに記載の密閉型電池。The sealed battery according to any one of claims 7 to 12, wherein the flat portion forms a concave surface having a rectangular outline or a substantially oval outline having a pair of parallel linear portions.
JP2002340022A 2002-11-22 2002-11-22 Battery sealing plate Expired - Fee Related JP4219661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340022A JP4219661B2 (en) 2002-11-22 2002-11-22 Battery sealing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340022A JP4219661B2 (en) 2002-11-22 2002-11-22 Battery sealing plate

Publications (2)

Publication Number Publication Date
JP2004178820A true JP2004178820A (en) 2004-06-24
JP4219661B2 JP4219661B2 (en) 2009-02-04

Family

ID=32702820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340022A Expired - Fee Related JP4219661B2 (en) 2002-11-22 2002-11-22 Battery sealing plate

Country Status (1)

Country Link
JP (1) JP4219661B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129524A (en) * 2003-10-20 2005-05-19 Samsung Sdi Co Ltd Lithium ion secondary battery
JP2006236949A (en) * 2005-02-28 2006-09-07 Kaga Inc Safety valve plate of sealed battery case, its molding method and its molding device
JP2007080598A (en) * 2005-09-13 2007-03-29 Hitachi Maxell Ltd Sealed square battery
JP2007179793A (en) * 2005-12-27 2007-07-12 Denso Corp Cover for sealed battery
JP2008204789A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009140753A (en) * 2007-12-06 2009-06-25 Fuji Hatsujo Kk Aluminum square secondary battery case
KR100914115B1 (en) * 2007-09-10 2009-08-27 삼성에스디아이 주식회사 Secondary battery
WO2010074169A1 (en) * 2008-12-26 2010-07-01 三洋電機株式会社 Sealing body for sealed battery and sealed battery using same
KR101011179B1 (en) * 2005-09-13 2011-01-26 히다치 막셀 가부시키가이샤 Sealed and square type battery
KR101043577B1 (en) 2011-01-14 2011-06-22 주식회사 범천정밀 The battery cap plate which has the electric automatic borrowing safety valve and the manufacturing method
WO2012049907A1 (en) * 2010-10-13 2012-04-19 株式会社ソーデナガノ Battery case lid and manufacturing method for battery case lid
JP2013541152A (en) * 2010-09-21 2013-11-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Housing for galvanic elements
JP2021511965A (en) * 2018-01-18 2021-05-13 ポムチョン プレシジョン カンパニー リミテッドBumchun Precision Co.,Ltd. Secondary battery cap plate Safety valve manufacturing method and manufacturing equipment, cap plate manufacturing method using the safety valve manufacturing method, secondary battery cap plate manufactured by the cap plate manufacturing method
WO2023173428A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell and manufacturing method and manufacturing apparatus therefor, battery, and power consuming apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129524A (en) * 2003-10-20 2005-05-19 Samsung Sdi Co Ltd Lithium ion secondary battery
JP2006236949A (en) * 2005-02-28 2006-09-07 Kaga Inc Safety valve plate of sealed battery case, its molding method and its molding device
US7989100B2 (en) * 2005-09-13 2011-08-02 Hitachi Maxell Energy, Ltd. Sealed prismatic battery
JP2007080598A (en) * 2005-09-13 2007-03-29 Hitachi Maxell Ltd Sealed square battery
KR101011179B1 (en) * 2005-09-13 2011-01-26 히다치 막셀 가부시키가이샤 Sealed and square type battery
JP2007179793A (en) * 2005-12-27 2007-07-12 Denso Corp Cover for sealed battery
JP2008204789A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100914115B1 (en) * 2007-09-10 2009-08-27 삼성에스디아이 주식회사 Secondary battery
US8053099B2 (en) 2007-09-10 2011-11-08 Samsung Sdi Co., Ltd. Secondary battery
JP2009140753A (en) * 2007-12-06 2009-06-25 Fuji Hatsujo Kk Aluminum square secondary battery case
WO2010074169A1 (en) * 2008-12-26 2010-07-01 三洋電機株式会社 Sealing body for sealed battery and sealed battery using same
JP4869438B2 (en) * 2008-12-26 2012-02-08 三洋電機株式会社 Sealing body for sealed battery and sealed battery using the same
US8765292B2 (en) 2008-12-26 2014-07-01 Sanyo Electric Co., Ltd. Sealing body for a sealed cell, and a sealed cell using the sealing body
JP2013541152A (en) * 2010-09-21 2013-11-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Housing for galvanic elements
WO2012049907A1 (en) * 2010-10-13 2012-04-19 株式会社ソーデナガノ Battery case lid and manufacturing method for battery case lid
US9287539B2 (en) 2010-10-13 2016-03-15 Soode Nagano Co., Ltd. Manufacturing method for battery case lid including explosion-proof valve
US9653716B2 (en) 2010-10-13 2017-05-16 Soode Nagano Co., Ltd. Manufacturing method for battery case lid including explosion-proof valve
US10340490B2 (en) 2010-10-13 2019-07-02 Soode Nagano Co., Ltd. Manufacturing method for battery case lid including explosion-proof valve
KR101043577B1 (en) 2011-01-14 2011-06-22 주식회사 범천정밀 The battery cap plate which has the electric automatic borrowing safety valve and the manufacturing method
JP2021511965A (en) * 2018-01-18 2021-05-13 ポムチョン プレシジョン カンパニー リミテッドBumchun Precision Co.,Ltd. Secondary battery cap plate Safety valve manufacturing method and manufacturing equipment, cap plate manufacturing method using the safety valve manufacturing method, secondary battery cap plate manufactured by the cap plate manufacturing method
WO2023173428A1 (en) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 Battery cell and manufacturing method and manufacturing apparatus therefor, battery, and power consuming apparatus

Also Published As

Publication number Publication date
JP4219661B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR101028621B1 (en) Closed Type Battery
US8277970B2 (en) Pouch-type secondary battery having an non-sealing residue portion
KR100883179B1 (en) Sealed and square type battery
JP4124756B2 (en) Sealed battery
US7517607B2 (en) Lithium ion secondary battery
JP5096671B2 (en) Sealed prismatic battery
US6571816B2 (en) Cell safety valve and method for manufacturing the same
JP2003187774A (en) Safety valve of battery
JP4219661B2 (en) Battery sealing plate
US20080102364A1 (en) Prismatic can type lithium ion rechargeable battery
EP2273584B1 (en) Lithium ion battery
JP2009037817A (en) Battery
KR101011179B1 (en) Sealed and square type battery
JP2005038773A (en) Sealed type battery with cleavage groove
JP2010040328A (en) Sealed battery
JP2002050322A (en) Sealed square flat cell
JP2011175937A (en) Sealed battery
JP2003297322A (en) Battery
KR100601508B1 (en) Secondary battery increased safety about horizontal pressure
JP2008112723A (en) Secondary battery
JP4716538B2 (en) Battery safety valve and manufacturing method thereof
JP2002008615A (en) Sealed type battery
JP4100978B2 (en) Sealed battery with cleavage groove
WO2012105364A1 (en) Prismatic sealed cell
JP2001357887A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees