JP3661750B2 - Manufacturing method of multilayer sintered sliding member - Google Patents

Manufacturing method of multilayer sintered sliding member Download PDF

Info

Publication number
JP3661750B2
JP3661750B2 JP27234498A JP27234498A JP3661750B2 JP 3661750 B2 JP3661750 B2 JP 3661750B2 JP 27234498 A JP27234498 A JP 27234498A JP 27234498 A JP27234498 A JP 27234498A JP 3661750 B2 JP3661750 B2 JP 3661750B2
Authority
JP
Japan
Prior art keywords
alloy layer
back metal
sintered
sintered alloy
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27234498A
Other languages
Japanese (ja)
Other versions
JPH11158513A (en
Inventor
眞二 山田
秀夫 小沢
充昭 安藤
康広 白坂
英行 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2027677A external-priority patent/JP3024153B2/en
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP27234498A priority Critical patent/JP3661750B2/en
Publication of JPH11158513A publication Critical patent/JPH11158513A/en
Application granted granted Critical
Publication of JP3661750B2 publication Critical patent/JP3661750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鋼板から成る裏金と該裏金の表面に一体に被着形成された焼結合金層から成る複層焼結摺動部材の製造方法に関するものである。
【0002】
【従来の技術】
従来、複層焼結摺動部材としては、例えば特開昭50−150656号公報あるいは特公昭56−12288号公報に開示された技術がある。
【0003】
前者の技術は銅系焼結合金層を鋼板から成る裏金に接合するにあたり、該焼結合金の成分中の鉄に対し酸化反応の標準エネルギの大きい元素、例えば亜鉛、カドミウム、けい素、カルシウムシリサイド、マグネシウム、アルミニウム等を配合することにより裏金表面を酸化させることなく焼結合金と裏金とを強固に接合させるものである。
【0004】
また、後者の技術は潤滑性物質として黒鉛を少なくとも3重量%分散含有した銅系焼結合金層を一体に被着した鋼薄板を厚肉鋼板上に燐青銅合金薄板を介して一体に接合したものである。
【0005】
【発明が解決しようとする問題点】
しかしながら、前者の複層焼結摺動部材は焼結合金中に亜鉛、カドミウム、けい素等の金属元素を含むことから、自ずから摺動部材の使用用途範囲が限定され、例えばプレス機械、プレス金型等の摺動部あるいは鉄道軌条ポイント部のトングレールを摺動支持する床板など、とくに高荷重、衝撃荷重が断続的に作用する用途には当該荷重により焼結合金層に塑性変形を惹起し、当該用途には適用しがたいという問題がある。
【0006】
一方、後者の複層焼結摺動部材は上記前者の摺動部材に比較して、耐荷重性、耐衝撃性が大幅に改善されているが、やはり上記用途においては焼結層の塑性変形を生じるという問題とその製造技術が煩雑でコスト高となるという経済性の問題がある。
【0007】
本発明は、上記問題点に鑑み、高荷重、衝撃荷重が断続的に作用する過酷な条件下においても使用できる複層焼結摺動部材についてのその製造技術を簡略化しコストの低減をはかることのできる複層焼結摺動部材の製造方法を得ることを目的とするものである。
【0008】
【問題点を解決するための手段】
上述した目的を達成するべく本発明は以下の構成を採る。
【0009】
すなわち、本発明の第1の構成は、表面に複数個の独立した突出部を備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に複数個の独立した突出部を備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を焼結により形成し、銅系焼結合金層が表面に形成された裏金をロール圧延する複層焼結摺動部材の製造方法である。
本発明の第2の構成は、表面に複数個の独立した突出部を備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に複数個の独立した突出部を備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を加圧下での焼結により形成する複層焼結摺動部材の製造方法である。
本発明の第3の構成は、(1)表面に複数個の独立した突出部を備えるとともに該突出部の表面が平坦面に形成され、かつその周縁部が該突出部の表面から下り勾配の傾斜面に形成された鋼板からなる裏金を用意する工程と、(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末を作製する工程と、(3)該混合粉末を該裏金の表面を覆って当該裏金の表面に一様に散布する工程と、(4)表面に一様に散布された混合粉末をもった裏金を加熱炉内に置き、870〜920℃の温度で10〜20分間、一次焼結して該混合粉末の焼結と該裏金への拡散接合とを行わしめ、焼結合金層を突出部の表面を含む裏金の表面に一体に接合させる工程と、(5)焼結合金層を一体に接合した裏金を一対のローラ間に通して圧延し、該焼結合金層の密度を高める工程と、(6)表面に焼結合金層を一体に接合した裏金を加熱炉内に置き、920〜1000℃の温度で10〜20分間、二次焼結して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、ローラ間に通して圧延し、焼結合金層の密度を高めるとともに表面を平坦化し、焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、からなる複層焼結摺動部材の製造方法である。
本発明の第4の構成は、(1)表面に複数個の独立した突出部を備えるとともに該突出部の表面が平坦面に形成され、かつその周縁部が該突出部の表面から下り勾配の傾斜面に形成された鋼板からなる裏金を用意する工程と、(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末に、ヒドロキシプロピルセルロース、ポリビニールアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、ゼラチン、アラビアゴム、スターチなどからなる粉末結合剤の1〜15重量%水溶液を該混合粉末に対して0.1〜5重量%添加し、均一に混合して原料粉末を作製する工程と、(3)該原料粉末を圧延ロールに供給して圧延シートを成形する工程と、(4)該圧延シートを該裏金上に重ね合わせ、これを還元性雰囲気もしくは真空に調整した加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合とを同時に行わしめて、表面を平坦化した焼結合金層を突出部の表面を含む裏金の表面に一体に接合させるとともに該焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、からなる複層焼結摺動部材の製造方法である。
【0010】
また、本発明の第5の構成は、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を焼結により形成し、銅系焼結合金層が表面に形成された裏金をロール圧延する複層焼結摺動部材の製造方法である。
本発明の第6の構成は、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を加圧下での焼結により形成する複層焼結摺動部材の製造方法である。
本発明の第7の構成は、(1)表面に連続した突出部を備え、該突出部の表面が平坦面に形成され、かつ周縁部が該突出部の表面から下り勾配の傾斜面に形成されているとともに該突出部によって形成された複数個の独立した凹部を備えた鋼板からなる裏金を用意する工程と、(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末を作製する工程と、(3)該混合粉末を該裏金の表面を覆って当該裏金の表面に一様に散布する工程と、(4)表面に一様に散布された混合粉末をもった裏金を加熱炉内に置き、870〜920℃の温度で10〜20分間、一次焼結して該混合粉末の焼結と該裏金への拡散接合とを行わしめ、焼結合金層を突出部の表面を含む裏金の表面に一体に接合させる工程と、(5)焼結合金層を一体に接合した裏金を一対のローラ間に通して圧延し、該焼結合金層の密度を高める工程と、(6)表面に焼結合金層を一体に接合した裏金を加熱炉内に置き、920〜1000℃の温度で10〜20分間、二次焼結して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、ローラ間に通して圧延し、焼結合金層の密度を高めるとともに表面を平坦化し、焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、からなる複層焼結摺動部材の製造方法である。
本発明の第8の構成は、(1)表面に連続した突出部を備え、該突出部の表面が平坦面に形成され、かつ周縁部が該突出部の表面から下り勾配の傾斜面に形成されているとともに該突出部によって形成された複数個の独立した凹部を備えた鋼板からなる裏金を用意する工程と、(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末に、ヒドロキシプロピルセルロース、ポリビニールアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、ゼラチン、アラビアゴム、スターチなどからなる粉末結合剤の1〜15重量%水溶液を該混合粉末に対して0.1〜5重量%添加し、均一に混合して原料粉末を作製する工程と、(3)該原料粉末を圧延ロールに供給して圧延シートを成形する工程と、(4)該圧延シートを該裏金上に重ね合わせ、これを還元性雰囲気もしくは真空に調整した加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合とを同時に行わしめて、表面を平坦化した焼結合金層を突出部の表面を含む裏金の表面に一体に接合させるとともに該焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、からなる複層焼結摺動部材の製造方法である。
【0011】
上述した第1から第4の構成において、複数個の独立した突出部としては、図1乃至図3に示すように方形状の鋼板からる裏金1の表面1aに形成された平面形状が長方形をなす突出部2で、相隣り合う突出部2は互いに交差する方向に配列されたもの、あるいは図5乃至図6に示すように方形状の鋼板からる裏金1の表面1aに形成された平面形状が円形をなす突出部3、などが好適なものとして例示される。これら突出部2、3はその表面が平坦面に形成されているとともにその周縁部は該平坦面から裏金表面1aにかけて下り勾配の傾斜面2a、3aにそれぞれ形成されている。
【0012】
また、第5から第8の構成において、連続した突出部としては、図8乃至図9に示すように方形状の鋼板からる裏金1の表面1aに互いに平行にかつ交差部をもって形成された帯状の突出部4で、裏金表面1aに該突出部4によって平面形状ひし形の独立した複数個の凹部5が形成されたもの、図11乃至図12に示すように方形状の鋼板からる裏金1の表面1aに交差部をもって形成された突出部6で、裏金表面1aに該突出部6によって平面形状六角形の独立した複数個の凹部7が形成されたもの、図14乃至図15に示すように方形状の鋼板からる裏金1の表面1aに連続した帯状の突出部8を残して平面形状円形の独立した複数個の凹部9が形成されたもの、などが好適なものとして例示される。これら突出部4、6、8の表面はそれぞれ平坦面に形成されているとともに該突出部によって形成された凹部5、7、9の周縁部はそれぞれ該平坦面から裏金表面1aにかけて下り勾配の傾斜面5a、7a、9aに形成されている。
【0013】
上述した構成において、裏金1の表面1aを覆って当該裏金1に一体に被着形成された銅系焼結合金層10は重量比で、錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなるもので、以下各成分元素について詳述する。
【0014】
焼結合金層を構成する錫は主成分をなす銅と合金化して青銅を形成し、焼結合金層の地の強度、靱性、機械的強度および耐摩耗性の向上に寄与するとともに、後述するニッケルとともに焼結合金層の多孔性を増大せしめる効果を有する。
【0015】
そして、その配合割合が4重量%以下では上述した効果が十分発揮されず、また10重量%を超えて配合すると焼結性に悪影響を及ぼす。したがって、錫の配合割合は4〜10重量%、就中5〜8重量%が適当である。
【0016】
ニッケルは主成分をなす銅に拡散して耐摩耗性ならびに地の強度向上に寄与する。ニッケルは焼結時に裏金表面および該裏金表面に形成された突出部表面に拡散してその界面を合金化し、焼結合金層の裏金表面および該裏金表面に形成された突出部表面への接合強度を増大させるとともに、後述する燐と一部合金化してニッケル・燐合金が焼結合金層と裏金表面および該裏金表面に形成された突出部表面との界面に介在して、界面で上記ニッケルの拡散による合金化と相俟って焼結合金層を裏金表面および突出部表面に強固に接合一体化させる作用をなす。
【0017】
さらに、ニッケルは焼結時に銅に拡散するさい、該焼結合金層に空隙を形成して多孔性を増大させる効果がある。
【0018】
そして、その配合割合は10重量%以下では上述した効果が得られず、また40重量%を超えて配合しても上述した効果に顕著な差が現れないため、その上限を40重量%とした。
【0019】
したがって、ニッケルの配合割合は10〜40重量%が適当である。
【0020】
燐は主成分をなす銅と、また前述したニッケルと一部合金化して地の強度を高めるとともに耐摩耗性の向上に寄与する。燐は還元力が強いため、裏金表面および該裏金表面に形成された突出部表面をその還元作用により清浄化し、前述したニッケルの裏金表面および該裏金表面に形成された突出部表面への拡散による合金化を助長する効果がある。なお、ニッケル・燐合金の効果については前述したとおりである。
【0021】
そして、その配合割合は0.1〜4重量%が適当である。
【0022】
銅系焼結合金層には、潤滑性物質として黒鉛を分散含有させる。黒鉛は自己潤滑性を付与するためには、少なくとも3重量%の配合割合を必要とするが、配合割合を増して、例えば10重量%を超えて配合すると焼結性および裏金および該裏金表面に形成された突出部表面との接合力の点で問題となる。
【0023】
したがって、黒鉛の配合割合は3〜10重量%、好ましくは5〜8重量%である。
【0024】
鉄は主成分をなす銅に対する固溶限は少ないが、合金中に分散して、とくに地の強度を高める効果および焼結時に銅が鉄に拡散するさい、焼結合金層の多孔性を増大させる効果がある。
【0025】
また、一般に鉄は燐の存在下においては燐と合金化して硬い鉄−燐合金を析出する傾向を示すが、本発明においては成分中のニッケルがその合金化を抑制する作用を発揮するため、50重量%までの比較的多量の鉄の配合が可能となる。
【0026】
マンガンは主成分をなす銅あるいは銅および鉄に拡散して耐摩耗性をあげ、地の強度向上に寄与する。
【0027】
また、焼結中に銅およびニッケルに速やかに拡散して合金化する過程で焼結合金層を膨張せしめ、該焼結合金層の多孔質化に寄与する。しかし、マンガンは燐−ニッケル合金(NiP)による液相と反応し、液相の融点を高める性質があるため、多量の配合は焼結合金層の緻密化を阻害することになる。
【0028】
したがって、マンガンの配合割合は25重量%以下が適当である。
【0029】
上述の第1から第の構成において、銅系焼結合金層を含油処理することにより、当該銅系焼結合金層を含油化することができる。このように含油化された銅系焼結合金層において、その低密度合金層は、高含油となり、その高密度合金層は、低含油となる。
【0030】
つぎに、上記第1から第の構成からなる複層焼結摺動部材の製造方法について説明する。
【0031】
(第一工程)裏金として、前述した表面に複数個の独立した突出部を備えるとともに該突出部の周縁部に傾斜面が形成された方形状の鋼板、もしくは表面に連続した突出部を備えるとともに該突出部によって形成された複数個の独立した凹部と該凹部の周縁部に傾斜面が形成された方形状の鋼板を準備し、該裏金を脱脂洗浄したのち、該裏金および該裏金表面に形成された突出部表面を、例えばサンドブラストなどの手段により粗面化する。
【0032】
(第二工程)重量比で、錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅から成る均一な混合粉末を作製する。
【0033】
(第三工程)該混合粉末を前記裏金表面を覆って当該裏金の表面に一様に散布する。
【0034】
(第四工程)表面に一様に散布された混合粉末をもった裏金を還元性雰囲気に調整された加熱炉内に置き、870〜920℃の温度で10〜20分間焼結(一次焼結)して該混合粉末の焼結と該裏金への拡散接合を行わしめ、焼結合金層を裏金表面に一体に接合させる。
【0035】
(第五工程)ついで、焼結合金層を一体に接合した裏金を一対のローラ間に3〜4回通して圧延し、該焼結合金層の密度を高める。
【0036】
(第六工程)表面に焼結合金層を一体に被着した裏金を前記加熱炉内に置き、920〜1000℃の温度で10〜20分間焼結(二次焼結)して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、該ローラ間に1回通して圧延し、該焼結合金層の密度をさらに高めるとともに表面が平坦化された複層焼結摺動部材を得る(図4、図7、図10、図13)。
【0037】
以上のように、裏金の表面に銅系焼結合金層を焼結により形成し、銅系焼結合金層が表面に形成された裏金をロール圧延する工程を経て得られた複層焼結摺動部材の焼結合金層には突出部表面の高密度合金層(同図中、符号a)と裏金表面の低密度合金層(同図中、符号b)が形成される。
【0038】
(第七工程)得られた複層焼結摺動部材に含油処理を施し、該焼結合金層の低密度合金層に高含油率、高密度合金層に低含油率の含油複層焼結摺動部材を得る。
【0039】
上述した製造方法とは別の方法として、粉体圧延法を利用することができ、以下粉体圧延法を利用した複層焼結摺動部材の製造方法について説明する。
【0040】
(第一工程)前記製造方法の(第一工程)と同じ。
【0041】
(第二工程)重量比で、錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅から成る混合粉末に、ヒドロキシプロピルセルロース(HPC)、ポリビニールアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、メチルセルロース(MC)、ゼラチン、アラビアゴム、スターチなどから成る粉末結合剤の1〜15重量%水溶液を該混合粉末に対し0.1〜5重量%添加し、均一に混合して原料粉末とする。
【0042】
(第三工程)該原料粉末を圧延ロールに供給して圧延シートを成形し、該圧延シートを適当な大きさに切断する。
【0043】
(第四工程)該圧延シートを前記(第一工程)で用意した裏金上に重ね合わせ、これを還元性雰囲気もしくは真空に調整された加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合を同時に行わしめて、表面を平坦化した焼結合金層を裏金の表面に一体に接合した複層焼結摺動部材を得る。
【0044】
裏金の表面に銅系焼結合金層を加圧下での焼結により形成する以上の工程を経て得られた複層焼結摺動部材の焼結層には突出部表面の高密度合金層と裏金表面の低密度合金層が形成される。
【0045】
(第五工程)前記製造方法の(第七工程)に同じ。
【0046】
この製造方法において、原料粉末の圧延シートの密度および厚さは圧延荷重によって調節でき、圧延荷重はロール速度およびロール間隙に依存している。
【0047】
したがって、ロール速度およびロール間隙を変えることで圧延シートの密度および厚さを適宜調節することができる。
【0048】
上述したいずれの製造方法においても、裏金表面に形成された複数個の独立した突出部あるいは連続した突出部の周縁部は傾斜面に形成されているので、該突出部と該突出部の表面を覆って一体に被着形成される焼結合金層との間には高い接合力が得られる。そして、製造された複層焼結摺動部材の焼結合金層には、低密度(5〜6g/cm)高含油率(25〜30vol%)合金層と高密度(7〜8g/cm)低含油率(11〜14vol%)合金層が形成される。
【0049】
【作用】
上述した構成から成る複層焼結摺動部材は表面の焼結合金層に低密度合金層と高密度合金層が共存しているため、焼結合金層の耐圧強度が高められ、高荷重、衝撃荷重に対し該焼結合金層の塑性変形等を生じることなく、当該荷重を摺動支持することができる。
【0050】
また、焼結合金層には高含油合金層と低含油合金層が共存しているため、摺動部材としての速度特性(摩擦係数)および耐摩耗性を大幅に向上させることができる。
【0051】
【実施例】
以下、本発明の複層焼結摺動部材の実施例について説明する。
【0052】
〈実施例:I〉
(第一工程)裏金1として、表面1aに平面形状が長方形をなす複数個の独立した突出部2が互いに直交する方向に配列され、かつ該突出部2の表面が平坦面に、周縁部が該突出部表面から裏金表面1aにかけて下り勾配の傾斜面2aに形成された縦150mm、横260mm、裏金表面までの厚さ8mm、突出部の高さ1.695mmの方形状鋼板(圧延鋼板SS41)を使用した(図1乃至図3)。この裏金表面1aに形成された突出部2の平坦面の全表面積に占める面積割合は14%であった。この裏金1の表面1aおよび突出部2の表面を脱脂洗浄したのち、サンドブラストにより粗面化した。
【0053】
(第二工程)250メッシュを通過するアトマイズ錫粉末8重量%、250メッシュを通過する電解ニッケル粉末28重量%、120メッシュを通過する燐銅(燐15%)合金粉末7重量%、150メッシュを通過する黒鉛粉末5重量%、残部150メッシュを通過する電解銅粉末をミキサーにて10分間混合し、混合粉末を得た(銅:58%、錫:8%、ニッケル:28%、燐:1%、黒鉛:5%)。
【0054】
(第三工程)この混合粉末を前記裏金表面1aを覆って当該裏金表面1aに一様に散布し、該突出部表面2上に3.5mm、裏金表面1a上に5.2mmの厚さの混合粉末層を形成した。
【0055】
(第四工程)表面に一様に散布された混合粉末層を保持した裏金1を還元性雰囲気に調整された加熱炉内に置き、これを920℃の温度で10分間焼結(一次焼結)し、該混合粉末の焼結と該裏金への拡散接合を行わしめ、焼結合金層を裏金上に一体に接合させた。
【0056】
(第五工程)ついで、焼結合金層を一体に接合した裏金を一対のローラ間に3回通して圧延し、該焼結合金層の密度を高めた。この圧延後の該焼結合金層の厚さは該裏金表面の突出部2上の焼結合金層で1.5mm、裏金表面1a上の焼結合金層で3mmであった。
【0057】
(第六工程)該焼結合金層を一体に接合した裏金を前記加熱炉内に置き、これを950℃の温度で10分間焼結(二次焼結)して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、前記一対のローラ間に1回通して圧延し、該焼結合金層の密度をさらに高めるとともに表面を精度よく平坦化した複層焼結摺動部材を得た。
【0058】
このようにして得た複層焼結摺動部材の焼結合金層は突出部2表面上に1.2mm、裏金表面1a上に2.3mmの厚さに形成され、該突出部2表面上の焼結合金層の密度は7.4g/cm、該裏金表面1a上の焼結合金層の密度は5.3g/cmであった。
【0059】
(第七工程)この複層焼結摺動部材に含油処理を施し、該突出部表面上の高密度合金層に13vol%、裏金表面上の低密度合金層に29vol%の含油率の含油複層焼結摺動部材を得た。
【0060】
〈実施例:II〉
(第一工程)裏金1として、表面1aに互いに平行にかつ交差部をもって連続した帯状の突出部4と該表面1aに該突出部4によって平面形状ひし形の独立した凹部5が形成され、該突出部4の表面が平坦面に、周縁部が該突出部表面から裏金表面にかけて下り勾配の傾斜面5aに形成された縦150mm、横260mm、裏金表面までの厚さ8mm、突出部の高さ1.695mmの長方形状の鋼板(圧延鋼板SS41)を使用した(図8乃至図9)。この裏金表面1aに連続して形成された帯状突出部4の平坦面の全表面積に占める面積割合は28%であった。この裏金1の表面1aおよび突出部4の表面を脱脂洗浄したのち、サンドブラストにより粗面化した。
【0061】
(第二工程)250メッシュを通過するアトマイズ錫粉末5重量%、250メッシュを通過する電解ニッケル粉末20重量%、120メッシュを通過する燐粉末1.5重量%、300メッシュを通過する還元鉄粉末32重量%、150メッシュを通過する黒鉛粉末5重量%、残部150メッシュを通過する電解銅粉末をミキサーにて10分間混合し、混合粉末を得た(銅:36.5%、錫:5%、ニッケル:28%、燐:1.5%、鉄:32%、黒鉛:5%)。
【0062】
(第三工程)この混合粉末を前記裏金表面1aおよび該裏金表面の突出部4表面を覆って一様に散布し、該突出部表面4上に3.5mm、裏金表面1a上に5.2mmの厚さの混合粉末層を形成した。
【0063】
(第四工程)表面に一様に散布された混合粉末層を保持した裏金1を還元性雰囲気に調整された加熱炉内に置き、これを920℃の温度で10分間焼結(一次焼結)し、該混合粉末の焼結と該裏金への拡散接合を行わしめ、焼結合金層を裏金上に一体に接合させた。
【0064】
(第五工程)ついで、焼結合金層を一体に接合した裏金を一対のローラ間に3回通して圧延し、該焼結合金層の密度を高めた。この圧延後の該焼結合金層の厚さは該裏金表面の突出部2上の焼結合金層で1.5mm、裏金表面1a上の焼結合金層で3mmであった。
【0065】
(第六工程)該焼結合金層を一体に接合した裏金を前記加熱炉内に置き、これを950℃の温度で10分間焼結(二次焼結)して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、前記一対のローラ間に1回通して圧延し、該焼結合金層の密度をさらに高めるとともに表面を精度よく平坦化した複層焼結摺動部材を得た。
【0066】
このようにして得た複層焼結摺動部材の焼結合金層は突出部2表面上に1.2mm、裏金表面1a上に2.3mmの厚さに形成され、該突出部2表面上の焼結合金層の密度は7.4g/cm、該裏金表面1a上の焼結合金層の密度は5.8g/cmであった。
【0067】
(第七工程)この複層焼結摺動部材に含油処理を施し、該突出部表面上の高密度合金層に11vol%、裏金表面上の低密度合金層に29vol%の含油率の含油複層焼結摺動部材を得た。
【0068】
つぎに、上述した実施例によって得た複層焼結摺動部材を鉄道軌条ポイント部のトングレールを摺動支持する床板に適用し、当該摺動部材の耐衝撃性および各種環境条件下における摩擦特性について試験した結果について述べる。
【0069】
(耐衝撃性の試験方法)
プレス機械のプレスボルスタ上に枕木を固定し、該枕木上に皿バネを介してロードセルを設置固定する。このロードセル上に試験片(複層焼結摺動部材)を固定するとともにプレス機械のプレススライド側に相手材を固定し、該スライドを上下方向に作動させて該試験片に衝撃荷重を加え、該試験片の厚さの変形量(μm)を測定する。
(試験条件)
・プレススライドの移動速度 80CPM
(スライドの上下移動を1サイクルとして)
・荷重 3000kgf/cm
・加速度 約20G
・耐久回数 10万回
・相手材 S50C黒皮品
【0070】
上記試験方法および試験条件で行った試験結果は、表1に示すとおりである。(以下余白)
【0071】
【表1】

Figure 0003661750
(μm)
【0072】
表中、従来技術は前記特公昭56−12288号公報に開示された技術から成る複層焼結摺動部材、現行品は圧延鋼板(SS41)に潤滑油を給油した摺動部材である。
【0073】
試験結果から、実施例Iおよび実施例IIからなる複層焼結摺動部材は従来技術から成る複層焼結摺動部材の耐衝撃性能を大幅に向上させるものであり、現行品の給油タイプの摺動部材と同等もしくはそれ以上の性能を発揮するものであった。
【0074】
また、摩擦特性についてはつぎの試験方法および試験条件で試験した。
【0075】
(試験方法)
台座上に試験片を固定し、該試験片上にトングレールを設置するとともに該トングレールを台座側に固定したエアシリンダのピストンロッドに固定する。該トングレール上に荷重を載荷し、該シリンダを往復動させて該トングレールを試験片上に摺動支持し、両者間の摩擦係数を測定する。
(試験条件)
荷重 250kgf 速度 200mm/sec
ストローク長さ 200mm
ストローク回数 各環境条件で5000回
環境条件 ▲1▼平常状態 ▲2▼摺動面への撒水状態 ▲3▼摺動面へのダスト散布状態
▲4▼摺動面への撒水およびダスト散布状態
【0076】
上記試験方法および試験条件で行った試験結果は、表2に示すとおりである。
【0077】
なお、▲2▼、▲3▼および▲4▼の撒水、ダスト散布、撒水およびダスト散布はストローク回数1000回毎に行ったものである。
(以下余白)
【0078】
【表2】
Figure 0003661750
【0079】
表中、▲1▼、▲2▼および▲3▼における摩擦係数の上限値は、摺動面への撒水時、ダスト散布時あるいは撒水およびダスト散布時の値である。
【0080】
試験結果から、実施例Iおよび実施例IIの複層焼結摺動部材は試験開始後何ら給油することなく各種環境条件下において安定した摩擦係数を示した。この摩擦係数および摩耗量は、圧延鋼板(SS41)に潤滑油を給油する現行製品と同等の性能を示すものである。
【0081】
このことは、現在トングレールを摺動支持する床板として圧延鋼板(SS51)を使用し、これに潤滑油を給油して摩耗、焼付き等を防止している実情を鑑みると、本発明の複層焼結摺動部材は手作業による潤滑油の給油作業を省略することができるという効果をもたらすものである。
【0082】
また、前述した特公昭56−12288号の技術に比べ、その製造方法が簡略化され、製品コストの低減を図ることができるものである。
【0083】
【効果】
本発明は次の特有の効果を有する。本発明では、銅系焼結合金層が表面に形成された裏金をロール圧延する工程又は焼結合金層を一体に接合した裏金を一対のローラ間に通して圧延し、該焼結合金層の密度を高め、しかも、二次焼結して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、ローラ間に通して圧延し、焼結合金層の密度を高めるとともに表面を平坦化する工程を具備しているために、一様であって均一な高密度合金層を簡単に得ることができ、また、裏金の表面に銅系焼結合金層を加圧下での焼結により形成する工程又は圧延シートを該裏金上に重ね合わせ、これを加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合とを同時に行わしめて、表面を平坦化した焼結合金層を突出部の表面を含む裏金の表面に一体に接合させるとともに該焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程を具備しているために、高密度合金層を焼結時に一挙に得ることができて製造工程を簡略化し得、いずれの場合も製品コストの低減を図ることができる。
【0084】
本発明の方法で製造された複層焼結摺動部材は次の効果を有し得る。
(a)表面に複数個の独立したもしくは連続した突出部が形成された鋼板からなる裏金と該裏金の表面を覆って当該裏金に一体に被着形成されていると共に平坦な表面を有した焼結合金層からなり、該焼結合金層は低密度合金層と高密度合金層とからなり、突出部の表面は、高密度合金層によって覆われており、突出部の表面以外の裏金の表面は、低密度合金層によって覆われているので、裏金自体の曲げ剛性が増大されており、しかも、焼結合金層の耐圧強度が高められ、高荷重、衝撃荷重に対し塑性変形等を生じることなく当該荷重を摺動支持することができる。
【0085】
(b)低密度合金層が高含油であり、高密度合金層が低含油であるように、銅系焼結合金層には含油処理が施されているので、潤滑油を別途供給することなく、潤滑性物質と協働して、安定した速度特性が得られるばかりでなく耐摩耗性を大幅に向上させる。
【0086】
(c)上記(a)および(b)の効果により、鉄道軌条ポイント部のトングレールを摺動支持する床板等、高荷重、衝撃荷重が断続的に作用する用途に適用することができる。
【図面の簡単な説明】
【図1】裏金を示す平面図である。
【図2】図1の部分拡大平面図である。
【図3】図2のA−A線断面図である。
【図4】複層焼結摺動部材を示す断面図である。
【図5】裏金の他の実施例を示す平面図である。
【図6】図5のB−B線断面図である。
【図7】複層焼結摺動部材を示す断面図である。
【図8】裏金の他の実施例を示す平面図である。
【図9】図8のC−C線断面図である。
【図10】複層焼結摺動部材を示す断面図である。
【図11】裏金の他の実施例を示す平面図である。
【図12】図11のD−D線断面図である。
【図13】複層焼結摺動部材を示す断面図である。
【図14】裏金の他の実施例を示す平面図である。
【図15】図14のE−E線断面図である。
【図16】複層焼結摺動部材を示す断面図である。
【符号の説明】
1 裏金
1a 裏金表面
2、3 独立した突出部
2a、3a 傾斜面
4、6、8 連続した突出部
5、7、9 凹部
5a、7a、9a 傾斜面
10 焼結合金層
a 高密度合金層
b 低密度合金層[0001]
[Industrial application fields]
The present invention relates to a multilayer sintered sliding member comprising a backing plate made of a steel plate and a sintered alloy layer integrally formed on the surface of the backing plate.Manufacturing methodIt is about.
[0002]
[Prior art]
Conventionally, as a multilayer sintered sliding member, there is a technique disclosed in, for example, Japanese Patent Laid-Open No. 50-150656 or Japanese Patent Publication No. 56-12288.
[0003]
In the former technique, when joining a copper-based sintered alloy layer to a back metal plate, elements having a large standard energy of oxidation reaction with respect to iron in the components of the sintered alloy, such as zinc, cadmium, silicon, calcium silicide, etc. By mixing magnesium, aluminum, etc., the sintered alloy and the back metal are firmly joined without oxidizing the back metal surface.
[0004]
In the latter technique, a steel thin plate integrally coated with a copper-based sintered alloy layer containing at least 3% by weight of graphite as a lubricating substance is integrally bonded on a thick steel plate via a phosphor bronze alloy thin plate. Is.
[0005]
[Problems to be solved by the invention]
However, since the former multilayered sintered sliding member contains metal elements such as zinc, cadmium, and silicon in the sintered alloy, the range of use of the sliding member is naturally limited. For applications where a high load or impact load acts intermittently, such as floor plates that slide and support the sliding part of a mold or the railway rail point part, plastic deformation is caused to the sintered alloy layer by the load. There is a problem that it is difficult to apply to this use.
[0006]
On the other hand, the latter multi-layer sintered sliding member has significantly improved load resistance and impact resistance compared to the former sliding member. And a problem of economic efficiency that the manufacturing technique is complicated and expensive.
[0007]
In view of the above problems, the present invention can be used under severe conditions in which high loads and impact loads act intermittently.About multilayer sintered sliding memberMulti-layered sintered sliding member that can simplify its manufacturing technology and reduce costsManufacturing methodThe purpose is to obtain.
[0008]
[Means for solving problems]
In order to achieve the above-mentioned object, the present inventionbelowTake the configuration.
[0009]
  That is, the first configuration of the present invention includes a back metal made of a steel plate having a plurality of independent protrusions on the surface, and a front surface of the back metal.FaceCoverOn the back metalIntegrally attachedWith a flat surfaceA copper-based sintered alloy layer, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer, and other than the surface of the protruding portion. A method of manufacturing a multilayer sintered sliding member in which a surface of a back metal is covered with a low-density alloy layer, comprising a back metal made of a steel plate having a plurality of independent protrusions on the surface. This is a method for producing a multilayer sintered sliding member in which a copper-based sintered alloy layer is formed on a surface by sintering, and a back metal on which the copper-based sintered alloy layer is formed is roll-rolled.
  A second configuration of the present invention includes a back metal made of a steel plate having a plurality of independent protrusions on the surface, and a front surface of the back metal.FaceCoverOn the back metalIntegrally attachedWith a flat surfaceA copper-based sintered alloy layer, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer, and other than the surface of the protruding portion. A method of manufacturing a multilayer sintered sliding member in which a surface of a back metal is covered with a low-density alloy layer, comprising a back metal made of a steel plate having a plurality of independent protrusions on the surface. It is a manufacturing method of the multilayer sintered sliding member which forms a copper system sintered alloy layer on the surface by sintering under pressure.
  According to a third configuration of the present invention, (1) the surface includes a plurality of independent protrusions, the surface of the protrusions is formed into a flat surface, and the peripheral edge of the protrusion is inclined downward from the surface of the protrusions. A step of preparing a backing made of a steel plate formed on an inclined surface; and (2) 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% iron or less, 25% manganese by weight ratio. Hereinafter, a step of producing a mixed powder composed of 3 to 10% of graphite and the remaining copper, and (3) the mixed powder is applied to the surface of the back metalFaceCoverOn the back metal surfaceA step of uniformly spraying, and (4) a back metal having a mixed powder uniformly sprayed on the surface is placed in a heating furnace and subjected to primary sintering at a temperature of 870 to 920 ° C. for 10 to 20 minutes. Sintering the mixed powder and diffusion bonding to the back metal, and joining the sintered alloy layer integrally to the surface of the back metal including the surface of the protruding portion; and (5) joining the sintered alloy layer integrally. Rolling the passed back metal between a pair of rollers to increase the density of the sintered alloy layer, and (6) placing the back metal integrally bonded with the sintered alloy layer on the surface in a heating furnace. Secondary sintering at a temperature of 10 ° C. for 10 to 20 minutes to advance the sintering of the sintered alloy layer and increase the bonding strength with the back metal, and then rolling between the rollers to roll the sintered alloy layer Increase the density and flatten the surface, and combine the sintered alloy layer with the high density alloy layer on the surface of the protrusion and the low density of the back metal surface. Forming a layer, a method of manufacturing a multilayered sintered sliding member made of.
  According to a fourth configuration of the present invention, (1) the surface is provided with a plurality of independent protrusions, the surface of the protrusion is formed into a flat surface, and the peripheral edge of the protrusion is inclined downward from the surface of the protrusion. A step of preparing a backing made of a steel plate formed on an inclined surface; and (2) 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% iron or less, 25% manganese by weight ratio. Hereinafter, 1 to 15% by weight of a powder binder composed of hydroxypropyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, gelatin, gum arabic, starch, etc., in a mixed powder composed of 3 to 10% graphite and the remaining copper A step of adding an aqueous solution in an amount of 0.1 to 5% by weight to the mixed powder and uniformly mixing the raw material powder; and (3) supplying the raw material powder to a rolling roll. And (4) superimposing the rolled sheet on the back metal and adjusting the reduced sheet to a reducing atmosphere or a vacuum at a temperature of 870 to 1000 ° C. for 0.1 to 5. 0kgf / cm2Sintering is performed for 20 to 60 minutes under the pressure of, and sintering of the rolled sheet and diffusion bonding to the back metal are performed simultaneously.To flatten the surfaceA step of integrally bonding the sintered alloy layer to the surface of the back metal including the surface of the protrusion and forming a high density alloy layer on the surface of the protrusion and a low density alloy layer on the surface of the back metal on the sintered alloy layer; It is the manufacturing method of the multilayer sintered sliding member which becomes.
[0010]
  Further, the fifth configuration of the present invention includes a back metal made of a steel plate provided with a protruding portion continuous on the surface and a plurality of independent concave portions formed by the protruding portion, and a front surface of the back metal.FaceCoverOn the back metalIntegrally attachedWith a flat surfaceA copper-based sintered alloy layer, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer, and other than the surface of the protruding portion. A method of manufacturing a multilayer sintered sliding member in which a surface of a back metal is covered with a low-density alloy layer, comprising a continuous protrusion on the surface and a plurality of independent recesses formed by the protrusion. A multi-layered sintered slide is prepared in which a copper-based sintered alloy layer is formed on the surface of the back metal by sintering, and the back metal on which the copper-based sintered alloy layer is formed is rolled. It is a manufacturing method of a member.
  According to a sixth aspect of the present invention, there is provided a back metal comprising a steel plate provided with a protruding portion continuous on the surface and a plurality of independent recesses formed by the protruding portion, and a front surface of the back metal.FaceCoverOn the back metalIntegrally attachedWith a flat surfaceA copper-based sintered alloy layer, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer, and other than the surface of the protruding portion. A method of manufacturing a multilayer sintered sliding member in which a surface of a back metal is covered with a low-density alloy layer, comprising a continuous protrusion on the surface and a plurality of independent recesses formed by the protrusion. This is a method for producing a multilayer sintered sliding member in which a back metal made of a steel plate is prepared and a copper-based sintered alloy layer is formed on the surface of the back metal by sintering under pressure.
  The seventh configuration of the present invention is (1) provided with a protruding portion that is continuous with the surface, the surface of the protruding portion is formed as a flat surface, and the peripheral edge portion is formed as an inclined surface having a downward slope from the surface of the protruding portion. And a step of preparing a back metal made of a steel plate provided with a plurality of independent recesses formed by the protrusions, and (2) 4 to 10% by weight, 10 to 40% nickel, 0% phosphorus A step of producing a mixed powder comprising 1 to 4%, iron 50% or less, manganese 25% or less, graphite 3 to 10%, and the balance copper; (3)FaceCoverOn the back metal surfaceA step of uniformly spraying, and (4) a back metal having a mixed powder uniformly sprayed on the surface is placed in a heating furnace and subjected to primary sintering at a temperature of 870 to 920 ° C. for 10 to 20 minutes. Sintering the mixed powder and diffusion bonding to the back metal, and joining the sintered alloy layer integrally to the surface of the back metal including the surface of the protruding portion; and (5) joining the sintered alloy layer integrally. Rolling the passed back metal between a pair of rollers to increase the density of the sintered alloy layer, and (6) placing the back metal integrally bonded with the sintered alloy layer on the surface in a heating furnace. Secondary sintering at a temperature of 10 ° C. for 10 to 20 minutes to advance the sintering of the sintered alloy layer and increase the bonding strength with the back metal, and then rolling between the rollers to roll the sintered alloy layer Increase the density and flatten the surface, and combine the sintered alloy layer with the high density alloy layer on the surface of the protrusion and the low density of the back metal surface. Forming a layer, a method of manufacturing a multilayered sintered sliding member made of.
  The eighth configuration of the present invention is (1) provided with a projecting portion that is continuous with the surface, the surface of the projecting portion is formed as a flat surface, and the peripheral portion is formed as an inclined surface having a downward slope from the surface of the projecting portion. And a step of preparing a back metal made of a steel plate provided with a plurality of independent recesses formed by the protrusions, and (2) 4 to 10% by weight, 10 to 40% nickel, 0% phosphorus .1 to 4%, iron 50% or less, manganese 25% or less, graphite 3 to 10%, balance powder consisting of copper, hydroxypropylcellulose, polyvinyl alcohol, carboxymethylcellulose, hydroxyethylcellulose, methylcellulose, gelatin, gum arabic , 0.1 to 5% by weight of a powder binder consisting of starch and the like is added to the mixed powder in an amount of 0.1 to 5% by weight and mixed uniformly to produce a raw material powder. And (3) supplying the raw material powder to a rolling roll to form a rolled sheet, and (4) superimposing the rolled sheet on the back metal and heating the sheet in a reducing atmosphere or vacuum. 0.1 to 5.0 kgf / cm at a temperature of 870 to 1000 ° C. in the furnace2Sintering is performed for 20 to 60 minutes under the pressure of, and sintering of the rolled sheet and diffusion bonding to the back metal are performed simultaneously.To flatten the surfaceA step of integrally bonding the sintered alloy layer to the surface of the back metal including the surface of the protrusion and forming a high density alloy layer on the surface of the protrusion and a low density alloy layer on the surface of the back metal on the sintered alloy layer; It is the manufacturing method of the multilayer sintered sliding member which becomes.
[0011]
First mentioned aboveTo 4thIn the structure of FIG. 1, the plurality of independent protrusions are made of a rectangular steel plate as shown in FIGS.NaThe projections 2 are formed in a rectangular shape on the surface 1a of the back metal 1 and the adjacent projections 2 are arranged in a direction intersecting each other, or as shown in FIGS. 5 to 6 From steel sheetNaA projection 3 having a circular planar shape formed on the surface 1a of the back metal 1 is exemplified as a preferable one. The protrusions 2 and 3 have a flat surface, and their peripheral portions are formed on the inclined surfaces 2a and 3a having a downward slope from the flat surface to the back metal surface 1a.
[0012]
Also,5th to 8thIn the configuration of FIG. 8, the continuous protrusions are made of a rectangular steel plate as shown in FIGS.NaA strip-shaped protrusion 4 formed on the surface 1a of the back metal 1 in parallel with and crossing each other, and a plurality of independent concave portions 5 of a planar rhombus are formed on the back metal surface 1a by the protrusion 4; From a rectangular steel plate as shown in FIGS.NaFIG. 14 to FIG. 15 are projections 6 formed with intersections on the front surface 1a of the back metal 1 and a plurality of independent hexagonal concave portions 7 formed by the projections 6 on the back metal surface 1a. From a square steel plate as shown inNaA preferable example is one in which a plurality of independent concave portions 9 having a planar shape are formed on the surface 1a of the backing metal 1 while leaving a continuous band-like protrusion 8. The surfaces of the protrusions 4, 6, and 8 are each formed on a flat surface, and the peripheral portions of the recesses 5, 7, and 9 formed by the protrusions are inclined downward from the flat surface to the back metal surface 1a. It is formed on the surfaces 5a, 7a, 9a.
[0013]
  In the configuration described above, the surface 1 of the back metal 1aCoverOn the back metal 1The integrally formed copper-based sintered alloy layer 10 has a weight ratio of tin 4 to 10%, nickel 10 to 40%, phosphorus 0.1 to 4%, iron 50% or less, manganese 25% or less, graphite It consists of 3 to 10% and the balance copper, and each component element will be described in detail below.
[0014]
Tin constituting the sintered alloy layer is alloyed with copper, which is the main component, to form bronze, which contributes to the improvement of the ground strength, toughness, mechanical strength and wear resistance of the sintered alloy layer, and will be described later. Together with nickel, it has the effect of increasing the porosity of the sintered alloy layer.
[0015]
When the blending ratio is 4% by weight or less, the above-described effects are not sufficiently exhibited. When the blending ratio exceeds 10% by weight, the sinterability is adversely affected. Therefore, the mixing ratio of tin is suitably 4 to 10% by weight, especially 5 to 8% by weight.
[0016]
Nickel diffuses into copper, which is the main component, and contributes to improvement of wear resistance and ground strength. Nickel diffuses to the back metal surface and the surface of the protrusion formed on the back metal surface during sintering to alloy the interface, and the bonding strength of the sintered alloy layer to the back metal surface and the surface of the protrusion formed on the back metal surface The nickel-phosphorus alloy is partially alloyed with phosphorus, which will be described later, and the nickel-phosphorus alloy is interposed at the interface between the sintered alloy layer, the back metal surface, and the protrusion surface formed on the back metal surface. Combined with alloying by diffusion, the sintered alloy layer is firmly joined and integrated with the back metal surface and the protrusion surface.
[0017]
Furthermore, when nickel diffuses into copper during sintering, it has the effect of increasing the porosity by forming voids in the sintered alloy layer.
[0018]
And if the blending ratio is 10% by weight or less, the above-mentioned effect cannot be obtained, and even if blending exceeds 40% by weight, there is no significant difference in the above-mentioned effect, so the upper limit was made 40% by weight. .
[0019]
Therefore, the mixing ratio of nickel is suitably 10 to 40% by weight.
[0020]
Phosphorus is partly alloyed with copper, which is the main component, and nickel as described above to increase the strength of the ground and contribute to the improvement of wear resistance. Since phosphorus has a strong reducing power, the back metal surface and the surface of the protrusion formed on the back metal surface are cleaned by the reducing action, and the above-described diffusion of nickel to the back metal surface and the surface of the protrusion formed on the back metal surface results in There is an effect of promoting alloying. The effects of the nickel / phosphorus alloy are as described above.
[0021]
The blending ratio is suitably 0.1 to 4% by weight.
[0022]
In the copper-based sintered alloy layer, graphite is dispersed as a lubricating substance. Graphite requires a blending ratio of at least 3% by weight in order to impart self-lubricating properties. However, if the blending ratio is increased, for example, it exceeds 10% by weight, the sinterability and the back metal and the back metal surface are added. This is a problem in terms of bonding strength with the surface of the formed protrusion.
[0023]
Therefore, the blending ratio of graphite is 3 to 10% by weight, preferably 5 to 8% by weight.
[0024]
Although iron has a limited solid solubility limit for copper, which is the main component, it is dispersed in the alloy, increasing the strength of the ground, and increasing the porosity of the sintered alloy layer especially when copper diffuses into the iron during sintering. There is an effect to make.
[0025]
In general, iron tends to alloy with phosphorus in the presence of phosphorus to precipitate a hard iron-phosphorus alloy, but in the present invention, nickel in the component exerts an action of suppressing the alloying, A relatively large amount of iron up to 50% by weight can be blended.
[0026]
Manganese diffuses into the main component copper or copper and iron to increase wear resistance and contribute to improving the strength of the ground.
[0027]
In addition, the sintered alloy layer is expanded in the process of rapidly diffusing and alloying with copper and nickel during the sintering, thereby contributing to making the sintered alloy layer porous. However, manganese is a phosphorus-nickel alloy (Ni3Since it reacts with the liquid phase by P) and increases the melting point of the liquid phase, a large amount of compounding inhibits densification of the sintered alloy layer.
[0028]
Therefore, the mixing ratio of manganese is suitably 25% by weight or less.
[0029]
1st to 1st above8In this configuration, the copper-based sintered alloy layer can be oil-impregnated by oil-impregnating the copper-based sintered alloy layer. In the copper-based sintered alloy layer thus oil-impregnated, the low-density alloy layer has a high oil content, and the high-density alloy layer has a low oil content.
[0030]
Next, from the first to the first8The manufacturing method of the multilayer sintered sliding member which consists of these is demonstrated.
[0031]
(First step) As a back metal, a plurality of independent protrusions are provided on the surface as described above, and a rectangular steel plate having an inclined surface formed on the peripheral edge of the protrusion, or a protrusion continuous with the surface is provided. A plurality of independent recesses formed by the protrusions and a rectangular steel plate having inclined surfaces formed on the peripheral edges of the recesses.PreparationThen, after degreasing and cleaning the backing metal, the backing metal and the surface of the protrusion formed on the backing metal surface are roughened by means such as sandblasting.
[0032]
(Second step) Uniformly composed of 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% or less iron, 25% or less manganese, 3 to 10% graphite, and the remaining copper by weight ratio To prepare a mixed powder.
[0033]
(Third step) The mixed powder is used as the backing metal.ofCovering the surfaceOn the back metal surfaceSpread evenly.
[0034]
(Fourth step) The back metal having the mixed powder uniformly distributed on the surface is placed in a heating furnace adjusted to a reducing atmosphere and sintered at a temperature of 870 to 920 ° C. for 10 to 20 minutes (primary sintering). Then, the mixed powder is sintered and diffusion bonded to the back metal, and the sintered alloy layer is integrally bonded to the back metal surface.
[0035]
(Fifth Step) Next, the back metal integrally joined with the sintered alloy layer is rolled 3-4 times between a pair of rollers to increase the density of the sintered alloy layer.
[0036]
(Sixth step) A back metal having a sintered alloy layer integrally deposited on the surface is placed in the heating furnace and sintered (secondary sintering) at a temperature of 920 to 1000 ° C. for 10 to 20 minutes. After the sintering of the gold layer has progressed and the bonding force with the back metal has been increased, rolling is performed once between the rollers to further increase the density of the sintered alloy layer and the surface is flattened. A knotting sliding member is obtained (FIGS. 4, 7, 10, and 13).
[0037]
As described above, a copper-based sintered alloy layer is formed on the surface of the back metal by sintering, and the back metal on which the copper-based sintered alloy layer is formed is rolled.The sintered alloy layer of the multilayered sintered sliding member obtained through the process includes a high-density alloy layer on the surface of the protrusion (symbol a in the figure) and a low-density alloy layer on the back metal surface (symbol in the figure). b)WhenIs formed.
[0038]
(Seventh step) The obtained multi-layer sintered sliding member is subjected to oil impregnation treatment, and the sintered alloy layer has a low oil content in the low density alloy layer and a low oil content in the high density alloy layer. A sliding member is obtained.
[0039]
As a method different from the manufacturing method described above, a powder rolling method can be used, and a method for manufacturing a multilayer sintered sliding member using the powder rolling method will be described below.
[0040]
(First step) Same as (First step) in the above production method.
[0041]
(Second step) Mixing of 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% or less iron, 25% or less manganese, 3 to 10% graphite, and the remaining copper by weight ratio 1-15 powder binders comprising hydroxypropylcellulose (HPC), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), methylcellulose (MC), gelatin, gum arabic, starch, etc. A 0.1% by weight to 5% by weight aqueous solution is added to the mixed powder and mixed uniformly to obtain a raw material powder.
[0042]
(Third step) The raw material powder is supplied to a rolling roll to form a rolled sheet, and the rolled sheet is cut into an appropriate size.
[0043]
(Fourth step) The rolled sheet is superposed on the back metal prepared in the (first step), and this is 0.1 to 870 to 1000 ° C. in a heating furnace adjusted to a reducing atmosphere or vacuum. 5.0kgf / cm2Sintering is performed for 20 to 60 minutes under the pressure of, and sintering of the rolled sheet and diffusion bonding to the back metal are performed simultaneously.To the surface of the back metalA multilayer sintered sliding member joined integrally is obtained.
[0044]
More than forming a copper-based sintered alloy layer on the back metal surface by sintering under pressureThe sintered layer of the multilayer sintered sliding member obtained through the process includes a high-density alloy layer on the surface of the protrusion and a low-density alloy layer on the surface of the back metal.WhenIs formed.
[0045]
(Fifth step) Same as (Seventh step) in the above manufacturing method.
[0046]
In this production method, the density and thickness of the rolled sheet of the raw material powder can be adjusted by the rolling load, and the rolling load depends on the roll speed and the roll gap.
[0047]
Therefore, the density and thickness of the rolled sheet can be appropriately adjusted by changing the roll speed and the roll gap.
[0048]
In any of the manufacturing methods described above, a plurality of independent protrusions formed on the back metal surface or peripheral edges of the continuous protrusions are formed on an inclined surface. Therefore, the protrusions and the surfaces of the protrusions are formed. A high bonding force can be obtained between the sintered alloy layers that are covered and integrally formed. And the sintered alloy layer of the manufactured multilayer sintered sliding member has a low density (5 to 6 g / cm3) High oil content (25-30 vol%) alloy layer and high density (7-8 g / cm)3) A low oil content (11-14 vol%) alloy layer is formed.
[0049]
[Action]
In the multilayer sintered sliding member having the above-described configuration, since the low-density alloy layer and the high-density alloy layer coexist on the surface of the sintered alloy layer, the pressure resistance strength of the sintered alloy layer is increased, The load can be slidably supported without causing plastic deformation or the like of the sintered alloy layer with respect to the impact load.
[0050]
In addition, since the high oil-impregnated alloy layer and the low oil-impregnated alloy layer coexist in the sintered alloy layer, speed characteristics (friction coefficient) and wear resistance as a sliding member can be greatly improved.
[0051]
【Example】
Examples of the multilayer sintered sliding member of the present invention will be described below.
[0052]
<Example: I>
(First Step) As the back metal 1, a plurality of independent protrusions 2 having a rectangular planar shape are arranged on the surface 1a in a direction orthogonal to each other, the surface of the protrusion 2 is a flat surface, and the peripheral edge is A rectangular steel plate (rolled steel plate SS41) having a length of 150 mm, a width of 260 mm, a thickness of 8 mm to the back metal surface, and a height of 1.695 mm of the protrusion formed on the inclined surface 2a having a downward slope from the surface of the protrusion to the back metal surface 1a. Was used (FIGS. 1 to 3). The area ratio which occupies for the total surface area of the flat surface of the protrusion part 2 formed in this back metal surface 1a was 14%. The surface 1a of the back metal 1 and the surface of the protrusion 2 were degreased and cleaned, and then roughened by sandblasting.
[0053]
(Second step) 8% by weight of atomized tin powder passing through 250 mesh, 28% by weight of electrolytic nickel powder passing through 250 mesh, 7% by weight of phosphorous copper (phosphorus 15%) alloy powder passing through 120 mesh, 150 mesh 5% by weight of graphite powder passing through and the electrolytic copper powder passing through the remaining 150 mesh were mixed with a mixer for 10 minutes to obtain a mixed powder (copper: 58%, tin: 8%, nickel: 28%, phosphorus: 1 %, Graphite: 5%).
[0054]
(Third step) This mixed powder is used as the back metal surface 1aCoverOn the back metal surface 1aIt sprayed uniformly and the mixed powder layer of thickness 3.5mm was formed on this protrusion part surface 2 and the back metal surface 1a.
[0055]
(Fourth step) The back metal 1 holding the mixed powder layer uniformly dispersed on the surface is placed in a heating furnace adjusted to a reducing atmosphere, and this is sintered at a temperature of 920 ° C. for 10 minutes (primary sintering). The mixed powder was sintered and diffusion bonded to the back metal, and the sintered alloy layer was integrally bonded onto the back metal.
[0056]
(Fifth step) Next, the backing metal integrally bonded with the sintered alloy layer was rolled three times between a pair of rollers to increase the density of the sintered alloy layer. The thickness of the sintered alloy layer after the rolling was 1.5 mm for the sintered alloy layer on the protrusion 2 on the back metal surface and 3 mm for the sintered alloy layer on the back metal surface 1a.
[0057]
(Sixth step) The back metal integrally bonded with the sintered alloy layer is placed in the heating furnace, and this is sintered at a temperature of 950 ° C. for 10 minutes (secondary sintering) to sinter the sintered alloy layer. Multi-layer sintering in which the sintering is advanced and the joining force with the back metal is increased, and then rolled once through the pair of rollers to further increase the density of the sintered alloy layer and flatten the surface with high accuracy. A sliding member was obtained.
[0058]
The sintered alloy layer of the multilayer sintered sliding member thus obtained is formed to a thickness of 1.2 mm on the surface of the protrusion 2 and 2.3 mm on the back metal surface 1a. The density of the sintered alloy layer is 7.4 g / cm3The density of the sintered alloy layer on the back metal surface 1a is 5.3 g / cm.3Met.
[0059]
(Seventh step) The multilayer sintered sliding member is subjected to an oil impregnation treatment, and the oil-impregnated composite having an oil content of 13 vol% in the high-density alloy layer on the surface of the protrusion and 29 vol% in the low-density alloy layer on the back metal surface. A layer-sintered sliding member was obtained.
[0060]
<Example: II>
(First Step) As the back metal 1, a strip-shaped protrusion 4 that is continuous with the surface 1a in parallel with each other and having an intersecting portion, and a planar diamond-shaped independent recess 5 is formed on the surface 1a by the protrusion 4. The surface of the portion 4 is a flat surface, and the peripheral portion is formed on the inclined surface 5a having a descending slope from the surface of the protruding portion to the back metal surface. The vertical surface is 150 mm, the width is 260 mm, the thickness to the back metal surface is 8 mm, and the height of the protruding portion is 1 .695 mm rectangular steel plate (rolled steel plate SS41) was used (FIGS. 8 to 9). The area ratio in the total surface area of the flat surface of the belt-like protrusion 4 formed continuously on the back metal surface 1a was 28%. The surface 1a of the back metal 1 and the surface of the protrusion 4 were degreased and cleaned, and then roughened by sandblasting.
[0061]
(Second step) 5% by weight of atomized tin powder passing through 250 mesh, 20% by weight of electrolytic nickel powder passing through 250 mesh, 1.5% by weight of phosphorus powder passing through 120 mesh, reduced iron powder passing through 300 mesh 32% by weight, 5% by weight of graphite powder passing through 150 mesh, and electrolytic copper powder passing through the remaining 150 mesh were mixed with a mixer for 10 minutes to obtain a mixed powder (copper: 36.5%, tin: 5%) Nickel: 28%, phosphorus: 1.5%, iron: 32%, graphite: 5%).
[0062]
(Third step) The mixed powder is uniformly spread over the back metal surface 1a and the protrusion 4 surface of the back metal surface, and is 3.5 mm on the protrusion surface 4 and 5.2 mm on the back metal surface 1a. A mixed powder layer having a thickness of 5 mm was formed.
[0063]
(Fourth step) The back metal 1 holding the mixed powder layer uniformly dispersed on the surface is placed in a heating furnace adjusted to a reducing atmosphere, and this is sintered at a temperature of 920 ° C. for 10 minutes (primary sintering). The mixed powder was sintered and diffusion bonded to the back metal, and the sintered alloy layer was integrally bonded onto the back metal.
[0064]
(Fifth step) Next, the backing metal integrally bonded with the sintered alloy layer was rolled three times between a pair of rollers to increase the density of the sintered alloy layer. The thickness of the sintered alloy layer after the rolling was 1.5 mm for the sintered alloy layer on the protrusion 2 on the back metal surface and 3 mm for the sintered alloy layer on the back metal surface 1a.
[0065]
(Sixth step) The back metal integrally bonded with the sintered alloy layer is placed in the heating furnace, and this is sintered at a temperature of 950 ° C. for 10 minutes (secondary sintering) to sinter the sintered alloy layer. Multi-layer sintering in which the sintering is advanced and the joining force with the back metal is increased, and then rolled once through the pair of rollers to further increase the density of the sintered alloy layer and flatten the surface with high accuracy. A sliding member was obtained.
[0066]
The sintered alloy layer of the multilayer sintered sliding member thus obtained is formed to a thickness of 1.2 mm on the surface of the protrusion 2 and 2.3 mm on the back metal surface 1a. The density of the sintered alloy layer is 7.4 g / cm3The density of the sintered alloy layer on the back metal surface 1a is 5.8 g / cm.3Met.
[0067]
(Seventh step) The multilayer sintered sliding member is subjected to oil impregnation treatment, and the oil-impregnated composite having an oil content of 11 vol% on the surface of the protruding portion and 29 vol% on the low-density alloy layer on the back metal surface. A layer-sintered sliding member was obtained.
[0068]
Next, the multilayer sintered sliding member obtained by the above-described embodiment is applied to a floor plate that slide-supports the Tongleil at the railway rail point portion, and the impact resistance of the sliding member and friction under various environmental conditions are applied. The results of testing the characteristics will be described.
[0069]
(Impact resistance test method)
A sleeper is fixed on a press bolster of a press machine, and a load cell is installed and fixed on the sleeper via a disc spring. Fix the test piece (multi-layer sintered sliding member) on this load cell and fix the mating material on the press slide side of the press machine, actuate the slide up and down to apply an impact load to the test piece, The deformation amount (μm) of the thickness of the test piece is measured.
(Test conditions)
・ Press slide movement speed 80 CPM
(Up / down movement of slide is one cycle)
・ Load 3000kgf / cm2
・ Acceleration about 20G
・ Durability 100,000 times
-Partner material S50C black leather
[0070]
Table 1 shows the test results of the test methods and test conditions. (The following margin)
[0071]
[Table 1]
Figure 0003661750
(Μm)
[0072]
In the table, the prior art is a multilayer sintered sliding member comprising the technique disclosed in Japanese Patent Publication No. 56-12288, and the current product is a sliding member in which lubricating oil is supplied to a rolled steel plate (SS41).
[0073]
From the test results, the multilayer sintered sliding member of Example I and Example II greatly improves the impact resistance performance of the multilayer sintered sliding member of the prior art. The same performance as or better than that of the sliding member.
[0074]
Further, the friction characteristics were tested by the following test method and test conditions.
[0075]
(Test method)
A test piece is fixed on the pedestal, a tongrel is set on the test piece, and the tongrel is fixed to a piston rod of an air cylinder fixed to the pedestal side. A load is loaded on the tongrel, the cylinder is reciprocated to slide and support the tongrel on a test piece, and the coefficient of friction between the two is measured.
(Test conditions)
Load 250kgf Speed 200mm / sec
Stroke length 200mm
Number of strokes 5000 times for each environmental condition
Environmental conditions (1) Normal condition (2) Flooding condition on sliding surface (3) Dust spraying condition on sliding surface
(4) Sprayed water and dust on the sliding surface
[0076]
Table 2 shows the results of the tests conducted under the above test methods and test conditions.
[0077]
In addition, (2), (3), and (4) water spraying, dust spraying, water spraying, and dust spraying are performed every 1000 strokes.
(The following margin)
[0078]
[Table 2]
Figure 0003661750
[0079]
In the table, the upper limit values of the friction coefficients in (1), (2) and (3) are the values when water is sprayed on the sliding surface, when dust is sprayed, or when water and dust are sprayed.
[0080]
From the test results, the multilayer sintered sliding members of Example I and Example II showed a stable coefficient of friction under various environmental conditions without any oil supply after the start of the test. The coefficient of friction and the amount of wear show the same performance as the current product that supplies lubricating oil to the rolled steel sheet (SS41).
[0081]
In view of the fact that a rolled steel plate (SS51) is currently used as a floor plate for slidingly supporting the Tongrel and lubricating oil is supplied to this to prevent wear, seizure, etc., the compound of the present invention. The layer-sintered sliding member brings about an effect that the lubricating oil supply operation by manual operation can be omitted.
[0082]
Further, the manufacturing method is simplified and the product cost can be reduced as compared with the technique disclosed in Japanese Patent Publication No. 56-12288.
[0083]
【effect】
  The present invention has the following specific effects. In the present invention, the step of rolling the back metal on which the copper-based sintered alloy layer is formed or the back metal integrally bonded with the sintered alloy layer is rolled through a pair of rollers, and the sintered alloy layer The density is increased, and further, the sintering of the sintered alloy layer is progressed by secondary sintering and the bonding strength with the back metal is increased, and then the sheet is rolled between rollers to increase the density of the sintered alloy layer. In addition, a uniform and uniform high-density alloy layer can be easily obtained, and a copper-based sintered alloy layer is applied to the surface of the back metal under pressure. The step of forming by sintering or a rolled sheet is superposed on the back metal, and this is 0.1 to 5.0 kgf / cm at a temperature of 870 to 1000 ° C. in a heating furnace.2Sintering is performed for 20 to 60 minutes under the pressure of, and sintering of the rolled sheet and diffusion bonding to the back metal are performed simultaneously.To flatten the surfaceAnd a step of integrally bonding the sintered alloy layer to the surface of the back metal including the surface of the protruding portion and forming a high density alloy layer on the surface of the protruding portion and a low density alloy layer on the surface of the back metal on the sintered alloy layer. Therefore, a high-density alloy layer can be obtained at a time during sintering, the manufacturing process can be simplified, and in any case, the product cost can be reduced.
[0084]
  The multilayer sintered sliding member produced by the method of the present invention can have the following effects.
  (A)A back plate made of a steel plate having a plurality of independent or continuous protrusions formed on the surface, and a surface of the back plateFaceCoverOn the back metalIntegrally formedAnd has a flat surfaceThe sintered alloy layer is composed of a low-density alloy layer and a high-density alloy layer, and the surface of the protrusion is covered with the high-density alloy layer. Is covered with a low-density alloy layer, so that the bending rigidity of the backing metal itself is increased, and the pressure resistance of the sintered alloy layer is increased, and plastic deformation or the like is applied to high loads and impact loads. The load can be slidably supported without being generated.
[0085]
  (B)The copper-based sintered alloy layer is oil-impregnated so that the low-density alloy layer has high oil content and the high-density alloy layer has low oil content. In cooperation with the material, not only stable speed characteristics can be obtained, but also the wear resistance is greatly improved.
[0086]
  (C)the above(A)and(B)Due to the above effect, it can be applied to applications in which high loads and impact loads act intermittently, such as floor boards that slide-support the Tongleil at the railway rail point portion.
[Brief description of the drawings]
FIG. 1 is a plan view showing a back metal.
FIG. 2 is a partially enlarged plan view of FIG. 1;
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a cross-sectional view showing a multilayer sintered sliding member.
FIG. 5 is a plan view showing another embodiment of the back metal.
6 is a cross-sectional view taken along line BB in FIG.
FIG. 7 is a cross-sectional view showing a multilayer sintered sliding member.
FIG. 8 is a plan view showing another embodiment of the back metal.
9 is a cross-sectional view taken along the line CC of FIG.
FIG. 10 is a cross-sectional view showing a multilayer sintered sliding member.
FIG. 11 is a plan view showing another embodiment of the back metal.
12 is a cross-sectional view taken along line DD of FIG.
FIG. 13 is a cross-sectional view showing a multilayer sintered sliding member.
FIG. 14 is a plan view showing another embodiment of the back metal.
15 is a cross-sectional view taken along the line EE of FIG.
FIG. 16 is a cross-sectional view showing a multilayer sintered sliding member.
[Explanation of symbols]
1 Back metal
1a Back metal surface
A few independent protrusions
2a, 3a inclined surface
4, 6, 8 consecutive protrusions
5, 7, 9 recess
5a, 7a, 9a Inclined surface
10 Sintered alloy layer
a High-density alloy layer
b Low density alloy layer

Claims (12)

表面に複数個の独立した突出部を備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に複数個の独立した突出部を備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を焼結により形成し、銅系焼結合金層が表面に形成された裏金をロール圧延する複層焼結摺動部材の製造方法。A backing comprising a plurality of separate steel plate having a protruding portion was on the surface, the copper-based sintered alloy layer having a flat surface with which is applied integrally with the backing plate covering the front surface of the backing metal The sintered alloy layer is composed of a low density alloy layer and a high density alloy layer, the surface of the protrusion is covered with the high density alloy layer, and the surface of the back metal other than the surface of the protrusion is a low density alloy A method of manufacturing a multilayer sintered sliding member covered with a layer, comprising a back metal made of a steel plate having a plurality of independent protrusions on the surface, and a copper-based sintered alloy on the surface of the back metal A method for producing a multilayer sintered sliding member, in which a layer is formed by sintering, and a back metal having a copper-based sintered alloy layer formed on the surface thereof is rolled. 表面に複数個の独立した突出部を備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に複数個の独立した突出部を備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を加圧下での焼結により形成する複層焼結摺動部材の製造方法。A backing comprising a plurality of separate steel plate having a protruding portion was on the surface, the copper-based sintered alloy layer having a flat surface with which is applied integrally with the backing plate covering the front surface of the backing metal The sintered alloy layer is composed of a low density alloy layer and a high density alloy layer, the surface of the protrusion is covered with the high density alloy layer, and the surface of the back metal other than the surface of the protrusion is a low density alloy A method of manufacturing a multilayer sintered sliding member covered with a layer, comprising a back metal made of a steel plate having a plurality of independent protrusions on the surface, and a copper-based sintered alloy on the surface of the back metal A method for producing a multilayer sintered sliding member, wherein a layer is formed by sintering under pressure. 複数個の独立した突出部は、その表面が平坦面に形成されているとともにその周縁部は、該突出部の表面から裏金の表面にかけて下り勾配の傾斜面に形成されている請求項1又は2に記載の複層焼結摺動部材の製造方法。  The surface of the plurality of independent protrusions is formed as a flat surface, and the peripheral edge thereof is formed as an inclined surface having a downward slope from the surface of the protrusion to the surface of the back metal. The manufacturing method of the multilayer sintered sliding member of description. 表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を焼結により形成し、銅系焼結合金層が表面に形成された裏金をロール圧延する複層焼結摺動部材の製造方法。 Flat and back metal made of steel plate and a plurality of independent recess formed by successive projection and projecting portion on the surface, along with being applied integrally to the backing plate covering the front surface of the backing metal A copper-based sintered alloy layer having a smooth surface, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer. A method of manufacturing a multilayer sintered sliding member in which the surface of the back metal other than the surface of the part is covered with a low-density alloy layer, and a plurality of independent protrusions formed on the surface and formed by the protrusions A backing metal made of a steel plate provided with a recessed portion is prepared, a copper-based sintered alloy layer is formed on the surface of the backing metal by sintering, and the backing metal on which the copper-based sintered alloy layer is formed is rolled. A method for manufacturing a layer-sintered sliding member. 表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金と、該裏金の表面を覆って当該裏金に一体に被着されていると共に平坦な表面を有した銅系焼結合金層とからなり、該焼結合金層が低密度合金層と高密度合金層とからなり、突出部の表面が高密度合金層によって覆われており、突出部の表面以外の裏金の表面が低密度合金層によって覆われている複層焼結摺動部材の製造方法であって、表面に連続した突出部と該突出部によって形成された複数個の独立した凹部とを備えた鋼板からなる裏金を準備し、この裏金の表面に銅系焼結合金層を加圧下での焼結により形成する複層焼結摺動部材の製造方法。 Flat and back metal made of steel plate and a plurality of independent recess formed by successive projection and projecting portion on the surface, along with being applied integrally to the backing plate covering the front surface of the backing metal A copper-based sintered alloy layer having a smooth surface, the sintered alloy layer comprising a low-density alloy layer and a high-density alloy layer, and the surface of the protruding portion is covered with the high-density alloy layer. A method of manufacturing a multilayer sintered sliding member in which the surface of the back metal other than the surface of the part is covered with a low-density alloy layer, and a plurality of independent protrusions formed on the surface and formed by the protrusions A method for producing a multilayer sintered sliding member, comprising preparing a backing metal comprising a steel plate provided with a recessed portion and forming a copper-based sintered alloy layer on the surface of the backing metal by sintering under pressure. 連続した突出部の表面は、平坦面に形成されているとともに、該突出部によって形成された複数個の独立した凹部の周縁部は、該突出部の表面から裏金表面にかけて下り勾配の傾斜面に形成されている請求項4又は5に記載の複層焼結摺動部材の製造方法。  The surface of the continuous protrusion is formed as a flat surface, and the peripheral edges of the plurality of independent recesses formed by the protrusion are inclined downwardly from the surface of the protrusion to the back metal surface. The manufacturing method of the multilayer sintered sliding member of Claim 4 or 5 currently formed. 銅系焼結合金層は、重量比で、錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる請求項1から6のいずれか一項に記載の複層焼結摺動部材の製造方法 The copper-based sintered alloy layer is composed of 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% or less iron, 25% or less manganese, 3 to 10% graphite, and the remaining copper. The manufacturing method of the multilayer sintered sliding member as described in any one of Claim 1 to 6 which consists of . (1)表面に複数個の独立した突出部を備えるとともに該突出部の表面が平坦面に形成され、かつその周縁部が該突出部の表面から下り勾配の傾斜面に形成された鋼板からなる裏金を用意する工程と、
(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末を作製する工程と、
(3)該混合粉末を該裏金の表面を覆って当該裏金の表面に一様に散布する工程と、
(4)表面に一様に散布された混合粉末をもった裏金を加熱炉内に置き、870〜920℃の温度で10〜20分間、一次焼結して該混合粉末の焼結と該裏金への拡散接合とを行わしめ、焼結合金層を突出部の表面を含む裏金の表面に一体に接合させる工程と、
(5)焼結合金層を一体に接合した裏金を一対のローラ間に通して圧延し、該焼結合金層の密度を高める工程と、
(6)表面に焼結合金層を一体に接合した裏金を加熱炉内に置き、920〜1000℃の温度で10〜20分間、二次焼結して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、ローラ間に通して圧延し、焼結合金層の密度を高めるとともに表面を平坦化し、焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、
からなる複層焼結摺動部材の製造方法。
(1) The surface comprises a plurality of independent protrusions, the surface of the protrusions is formed as a flat surface, and the peripheral edge thereof is formed of a steel plate formed on a slope inclined downward from the surface of the protrusions. The process of preparing the backing metal,
(2) A mixed powder consisting of 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% or less iron, 25% or less manganese, 3 to 10% graphite, and the remaining copper by weight ratio. And a process of
(3) a step of uniformly sprayed on the surface of the backing the powder mixture over the front surface of the backing metal,
(4) Place the back metal having the mixed powder uniformly distributed on the surface in a heating furnace, and perform primary sintering at a temperature of 870 to 920 ° C. for 10 to 20 minutes to sinter the mixed powder and the back metal Performing a diffusion bonding to and integrally bonding the sintered alloy layer to the surface of the back metal including the surface of the protruding portion;
(5) a step of rolling the back metal integrally joined with the sintered alloy layer between a pair of rollers to increase the density of the sintered alloy layer;
(6) The back metal with the sintered alloy layer integrally bonded to the surface is placed in a heating furnace and subjected to secondary sintering at a temperature of 920 to 1000 ° C. for 10 to 20 minutes to advance the sintering of the sintered alloy layer. And then increasing the bonding strength with the back metal, and then rolling it between the rollers to increase the density of the sintered alloy layer and flatten the surface. Forming a low density alloy layer of
The manufacturing method of the multilayer sintered sliding member which consists of.
(1)表面に連続した突出部を備え、該突出部の表面が平坦面に形成され、かつ周縁部が該突出部の表面から下り勾配の傾斜面に形成されているとともに該突出部によって形成された複数個の独立した凹部を備えた鋼板からなる裏金を用意する工程と、
(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末を作製する工程と、
(3)該混合粉末を該裏金の表面を覆って当該裏金の表面に一様に散布する工程と、
(4)表面に一様に散布された混合粉末をもった裏金を加熱炉内に置き、870〜920℃の温度で10〜20分間、一次焼結して該混合粉末の焼結と該裏金への拡散接合とを行わしめ、焼結合金層を突出部の表面を含む裏金の表面に一体に接合させる工程と、
(5)焼結合金層を一体に接合した裏金を一対のローラ間に通して圧延し、該焼結合金層の密度を高める工程と、
(6)表面に焼結合金層を一体に接合した裏金を加熱炉内に置き、920〜1000℃の温度で10〜20分間、二次焼結して該焼結合金層の焼結を進行させるとともに裏金との接合力を高めたのち、ローラ間に通して圧延し、焼結合金層の密度を高めるとともに表面を平坦化し、焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、
からなる複層焼結摺動部材の製造方法。
(1) Provided with a protruding portion that is continuous on the surface, the surface of the protruding portion is formed as a flat surface, and the peripheral edge portion is formed as an inclined surface descending from the surface of the protruding portion and is formed by the protruding portion Preparing a backing metal made of a steel plate with a plurality of independent recesses made,
(2) A mixed powder consisting of 4 to 10% tin, 10 to 40% nickel, 0.1 to 4% phosphorus, 50% or less iron, 25% or less manganese, 3 to 10% graphite, and the remaining copper by weight ratio. And a process of
(3) a step of uniformly sprayed on the surface of the backing the powder mixture over the front surface of the backing metal,
(4) Place the back metal having the mixed powder uniformly distributed on the surface in a heating furnace, and perform primary sintering at a temperature of 870 to 920 ° C. for 10 to 20 minutes to sinter the mixed powder and the back metal Performing a diffusion bonding to and integrally bonding the sintered alloy layer to the surface of the back metal including the surface of the protruding portion;
(5) a step of rolling the back metal integrally joined with the sintered alloy layer between a pair of rollers to increase the density of the sintered alloy layer;
(6) The back metal with the sintered alloy layer integrally bonded to the surface is placed in a heating furnace and subjected to secondary sintering at a temperature of 920 to 1000 ° C. for 10 to 20 minutes to advance the sintering of the sintered alloy layer. And then increasing the bonding strength with the back metal, and then rolling it between the rollers to increase the density of the sintered alloy layer and flatten the surface. Forming a low density alloy layer of
The manufacturing method of the multilayer sintered sliding member which consists of.
(1)表面に複数個の独立した突出部を備えるとともに該突出部の表面が平坦面に形成され、かつその周縁部が該突出部の表面から下り勾配の傾斜面に形成された鋼板からなる裏金を用意する工程と、
(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末に、ヒドロキシプロピルセルロース、ポリビニールアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、ゼラチン、アラビアゴム、スターチなどからなる粉末結合剤の1〜15重量%水溶液を該混合粉末に対して0.1〜5重量%添加し、均一に混合して原料粉末を作製する工程と、
(3)該原料粉末を圧延ロールに供給して圧延シートを成形する工程と、
(4)該圧延シートを該裏金上に重ね合わせ、これを還元性雰囲気もしくは真空に調整した加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合とを同時に行わしめて、表面を平坦化した焼結合金層を突出部の表面を含む裏金の表面に一体に接合させるとともに該焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、
からなる複層焼結摺動部材の製造方法。
(1) The surface comprises a plurality of independent protrusions, the surface of the protrusions is formed as a flat surface, and the peripheral edge thereof is formed of a steel plate formed on a slope inclined downward from the surface of the protrusions. The process of preparing the backing metal,
(2) In a mixed powder composed of tin 4 to 10%, nickel 10 to 40%, phosphorus 0.1 to 4%, iron 50% or less, manganese 25% or less, graphite 3 to 10%, and remaining copper by weight ratio, 0.1 to 5% by weight of a powder binder consisting of hydroxypropyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, gelatin, gum arabic, starch and the like is added to the mixed powder in an amount of 0.1 to 5% by weight. And uniformly mixing to produce a raw material powder,
(3) supplying the raw material powder to a rolling roll to form a rolled sheet;
(4) The rolled sheet is superposed on the back metal, and this is heated at a temperature of 870 to 1000 ° C. under a pressure of 0.1 to 5.0 kgf / cm 2 in a heating furnace adjusted to a reducing atmosphere or vacuum. Sintered for ~ 60 minutes, simultaneously sintering the rolled sheet and diffusion bonding to the back metal, and joining the sintered alloy layer having a flattened surface integrally to the surface of the back metal including the surface of the protrusion And forming a high density alloy layer on the surface of the protrusion and a low density alloy layer on the back metal surface on the sintered alloy layer,
The manufacturing method of the multilayer sintered sliding member which consists of.
(1)表面に連続した突出部を備え、該突出部の表面が平坦面に形成され、かつ周縁部が該突出部の表面から下り勾配の傾斜面に形成されているとともに該突出部によって形成された複数個の独立した凹部を備えた鋼板からなる裏金を用意する工程と、
(2)重量比で錫4〜10%、ニッケル10〜40%、燐0.1〜4%、鉄50%以下、マンガン25%以下、黒鉛3〜10%、残部銅からなる混合粉末に、ヒドロキシプロピルセルロース、ポリビニールアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、ゼラチン、アラビアゴム、スターチなどからなる粉末結合剤の1〜15重量%水溶液を該混合粉末に対して0.1〜5重量%添加し、均一に混合して原料粉末を作製する工程と、
(3)該原料粉末を圧延ロールに供給して圧延シートを成形する工程と、
(4)該圧延シートを該裏金上に重ね合わせ、これを還元性雰囲気もしくは真空に調整した加熱炉内で870〜1000℃の温度で0.1〜5.0kgf/cmの圧力下で20〜60分間焼結し、該圧延シートの焼結と該裏金への拡散接合とを同時に行わしめて、表面を平坦化した焼結合金層を突出部の表面を含む裏金の表面に一体に接合させるとともに該焼結合金層に突出部表面の高密度合金層と裏金表面の低密度合金層とを形成する工程と、
からなる複層焼結摺動部材の製造方法。
(1) Provided with a protruding portion that is continuous on the surface, the surface of the protruding portion is formed as a flat surface, and the peripheral edge portion is formed as an inclined surface descending from the surface of the protruding portion and is formed by the protruding portion Preparing a backing metal made of a steel plate with a plurality of independent recesses made,
(2) In a mixed powder composed of tin 4 to 10%, nickel 10 to 40%, phosphorus 0.1 to 4%, iron 50% or less, manganese 25% or less, graphite 3 to 10%, and remaining copper by weight ratio, 0.1 to 5% by weight of a powder binder consisting of hydroxypropyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, gelatin, gum arabic, starch and the like is added to the mixed powder in an amount of 0.1 to 5% by weight. And uniformly mixing to produce a raw material powder,
(3) supplying the raw material powder to a rolling roll to form a rolled sheet;
(4) The rolled sheet is superposed on the back metal, and this is heated at a temperature of 870 to 1000 ° C. under a pressure of 0.1 to 5.0 kgf / cm 2 in a heating furnace adjusted to a reducing atmosphere or vacuum. Sintered for ~ 60 minutes, simultaneously sintering the rolled sheet and diffusion bonding to the back metal, and joining the sintered alloy layer having a flattened surface integrally to the surface of the back metal including the surface of the protrusion And forming a high density alloy layer on the surface of the protrusion and a low density alloy layer on the back metal surface on the sintered alloy layer,
The manufacturing method of the multilayer sintered sliding member which consists of.
焼結合金層に含油処理を施し、低密度合金層を高含油とし、高密度合金層を低含油とする請求項1から1のいずれか一項に記載の複層焼結摺動部材の製造方法。The sintered multilayer sliding member according to any one of claims 1 to 11, wherein the sintered alloy layer is subjected to oil impregnation treatment, the low density alloy layer is made highly oil-impregnated, and the high density alloy layer is made low oil-impregnated. Production method.
JP27234498A 1990-02-07 1998-09-25 Manufacturing method of multilayer sintered sliding member Expired - Lifetime JP3661750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27234498A JP3661750B2 (en) 1990-02-07 1998-09-25 Manufacturing method of multilayer sintered sliding member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2027677A JP3024153B2 (en) 1990-02-07 1990-02-07 Multi-layer sintered sliding member
JP27234498A JP3661750B2 (en) 1990-02-07 1998-09-25 Manufacturing method of multilayer sintered sliding member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2027677A Division JP3024153B2 (en) 1990-02-07 1990-02-07 Multi-layer sintered sliding member

Publications (2)

Publication Number Publication Date
JPH11158513A JPH11158513A (en) 1999-06-15
JP3661750B2 true JP3661750B2 (en) 2005-06-22

Family

ID=34751877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27234498A Expired - Lifetime JP3661750B2 (en) 1990-02-07 1998-09-25 Manufacturing method of multilayer sintered sliding member

Country Status (1)

Country Link
JP (1) JP3661750B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988093B2 (en) * 2001-01-24 2012-08-01 大豊工業株式会社 Phosphor bronze composite sintered material
JP4794814B2 (en) * 2003-12-16 2011-10-19 大豊工業株式会社 Copper alloy sintered sliding material
JP5207848B2 (en) * 2008-06-23 2013-06-12 Ntn株式会社 Sintered metal bearing
JP2015042907A (en) * 2014-12-05 2015-03-05 株式会社サンコー Gas cock

Also Published As

Publication number Publication date
JPH11158513A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3024153B2 (en) Multi-layer sintered sliding member
EP1434665B1 (en) Lead-free bearing
JP5374722B2 (en) Abrasion-resistant lead-free alloy bushing and method for producing the same
JP3508604B2 (en) Method for producing high-strength sponge-like fired metal composite plate
CN106041099B (en) A kind of high-strength antifriction bilayer iron-base powder metallurgy material and preparation method thereof
KR20090089334A (en) Multilayer sliding member and method for manufacturing the same
JP3661750B2 (en) Manufacturing method of multilayer sintered sliding member
GB2137660A (en) Composite material for a sliding member
JP2013023732A (en) Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5298750B2 (en) Method for producing metal porous body
JP2004084038A (en) Sliding component and its manufacturing method
US20150017464A1 (en) Porous sintered body and process for producing porous sintered body
CN102966667A (en) Metal plastic composite material bearing and manufacturing method thereof
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
JPH05156388A (en) Double-layered sintered sliding member and its manufacture
JPH0791569B2 (en) Method for manufacturing sintered sliding member composed of multiple layers
JPH04145225A (en) Multilayer bearing and manufacture thereof
JP3941110B2 (en) High strength sponge-like fired metal composite plate
CN202946546U (en) Metal-plastic composite bearing
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP3578409B2 (en) Manufacturing method of sintered sliding member
CN201615141U (en) Supporting bearing applicable for horizontal ball mill
JP3397332B2 (en) Sintered sliding member and manufacturing method thereof
JPH03274237A (en) Copper base plain bearing material and its manufacture
JPH0677365A (en) Radiation board material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

EXPY Cancellation because of completion of term