JP5298750B2 - Method for producing metal porous body - Google Patents

Method for producing metal porous body Download PDF

Info

Publication number
JP5298750B2
JP5298750B2 JP2008259390A JP2008259390A JP5298750B2 JP 5298750 B2 JP5298750 B2 JP 5298750B2 JP 2008259390 A JP2008259390 A JP 2008259390A JP 2008259390 A JP2008259390 A JP 2008259390A JP 5298750 B2 JP5298750 B2 JP 5298750B2
Authority
JP
Japan
Prior art keywords
porosity
metal
plate
metal porous
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008259390A
Other languages
Japanese (ja)
Other versions
JP2010090416A (en
Inventor
栄子 神田
雄三 太期
正弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008259390A priority Critical patent/JP5298750B2/en
Publication of JP2010090416A publication Critical patent/JP2010090416A/en
Application granted granted Critical
Publication of JP5298750B2 publication Critical patent/JP5298750B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous metal body with a large area by securely joining sheet parts composed of metal porous materials with optional material and structure. <P>SOLUTION: In the method of producing a metal porous body 10 with which a plurality of polyhedral voids whose sides are composed of the skeletons of a metal sintered body are formed in a mutually continuous state, using a plurality of sheet parts 11 each composed of a metal porous material obtained by molding foamable slurry comprising metal powder and a foaming agent into a sheet shape, foaming the molding and thereafter performing sintering. A void ratio by the voids formed between the skeletons is 65 to 99%, the ratio of the opening ratio of the voids in the surface and back face is 15 to 85%, and the average opening size of the voids is 50 to 600 &mu;m, these sheet parts 11 are partially laminated, are compressed in a thickness direction till the vois ratio of the laminated parts reaches 40 to 98% and also the thickness thereof reaches &le;80% before the compression, and are joined to each other. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、金属多孔質体の製造方法に関する。   The present invention relates to a method for producing a metal porous body.

従来、金属粉末を含有する発泡性スラリーを調整し、これを成形、乾燥、焼成して得られる、発泡構造を有する多孔質金属体が開発されている。この多孔質金属体は、たとえば特許文献1に記載されているように、ドクターブレードによって発泡性スラリーをシート状に成形することにより、シート状に製造される。   Conventionally, a porous metal body having a foamed structure, which is obtained by adjusting a foamable slurry containing metal powder and molding, drying, and firing the slurry, has been developed. For example, as described in Patent Document 1, this porous metal body is manufactured into a sheet shape by forming a foamable slurry into a sheet shape using a doctor blade.

多孔質金属体には、触媒担持体、フィルタ、伝熱部材等の種々の用途が考えられるので、たとえば面積の大きい多孔質金属体が求められる。しかしながら、前述のドクターブレードを用いて成形した場合、成形装置の大きさに応じて成形可能なグリーンシートの幅が限定されてしまう。また、大面積のグリーンシートを形成できても、焼結炉の大型化が必要となり、製造コストや設置場所の点で問題が生じるおそれがある。さらに、大面積のグリーンシートを焼結した場合、収縮して割れる場合がある。このため、従来の方法では大面積の多孔質金属体を製造することが困難であった。   Since the porous metal body can be used for various purposes such as a catalyst carrier, a filter, a heat transfer member, etc., for example, a porous metal body having a large area is required. However, when the above-described doctor blade is used for forming, the width of the green sheet that can be formed is limited depending on the size of the forming apparatus. Even if a large-area green sheet can be formed, it is necessary to increase the size of the sintering furnace, which may cause problems in terms of manufacturing cost and installation location. Further, when a large area green sheet is sintered, it may shrink and crack. For this reason, it was difficult to produce a porous metal body having a large area by the conventional method.

これに対して、特許文献1では、焼結前のグリーンシートを重ね合わせた状態で焼結することにより、種々の形状の多孔質金属体を製造することを提案している。この方法によれば、焼結後の多孔質金属板同士を熱可塑性樹脂や溶融金属によって接合する場合と異なり、接合部分での物性の変化を防止しながら大面積の多孔質金属体を製造することができる。
特開平9−87707号公報
On the other hand, Patent Document 1 proposes manufacturing porous metal bodies having various shapes by sintering in a state where green sheets before sintering are overlapped. According to this method, unlike the case where the sintered porous metal plates are joined to each other with a thermoplastic resin or a molten metal, a porous metal body having a large area is produced while preventing changes in physical properties at the joining portion. be able to.
JP-A-9-87707

しかしながら、特許文献1の方法では、組み合わせるグリーンシート同士の焼結条件が同一でなければ、組み合わせた状態での焼結が不可能であるため、たとえば異種金属のグリーンシート同士の接合が難しい。また、同じ金属であっても、たとえば空隙率が異なる場合には焼結時の収縮率が異なるため、接合強度の不足や変形等の問題が生じるおそれがある。   However, in the method of Patent Document 1, if the sintering conditions of the green sheets to be combined are not the same, sintering in the combined state is impossible, and therefore it is difficult to bond the green sheets of different metals, for example. Even if the same metal is used, for example, when the porosity is different, the shrinkage rate during sintering is different, which may cause problems such as insufficient bonding strength and deformation.

本発明は、このような事情に鑑みてなされたもので、任意の材質や構造を有する金属多孔質材からなる板部品同士を確実に接合して、大面積の多孔質金属体を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a porous metal body having a large area by reliably joining plate parts made of a metal porous material having an arbitrary material or structure. With the goal.

本発明は、金属焼結体の骨格により辺が構成されてなる複数の多面体状の空隙が相互に連続状態に形成されている金属多孔質体の製造方法であって、金属粉末と発泡剤とを含有する発泡性スラリーを板状に成形し、発泡させた後に焼結してなり、前記骨格の間に形成される前記空隙による空隙率がそれぞれ65%以上99%以下、表裏面における前記空隙の開口面積の割合が15%以上85%以下、前記空隙の平均開口径が50μm以上600μm以下である金属多孔質材からなる板部品を複数枚用いて、これら板部品を、部分的に積層し、この積層部分の空隙率が40%以上98%以下となるまでかつその厚さが圧縮前の80%以下となるまで厚さ方向に圧縮して、相互に接合する。   The present invention is a method for producing a porous metal body in which a plurality of polyhedral voids whose sides are constituted by a skeleton of a sintered metal body is formed in a continuous state, and includes a metal powder, a foaming agent, The foamable slurry containing slabs is molded into a plate shape, foamed and then sintered, and the porosity due to the voids formed between the skeletons is 65% to 99%, respectively, and the voids on the front and back surfaces A plurality of plate parts made of a metal porous material having an opening area ratio of 15% to 85% and an average opening diameter of the voids of 50 μm to 600 μm are used, and these plate parts are partially laminated. The laminated portions are compressed in the thickness direction until the porosity becomes 40% or more and 98% or less and the thickness becomes 80% or less before compression, and bonded together.

この製造方法によれば、焼結後の金属多孔質材からなる板部品を積層して積層方向に圧縮することにより、接合面において空隙の開口部を通じて互いの骨格が絡み合うので、これら板部品同士を接合できる。なお、板部品の空隙率については、圧縮後の多孔質性および接合性の確保のために下限を65%と設定し、強度確保のために上限を99%と設定している。また、板部品の空隙の開口面積および平均開口径についても、多孔質性、接合性および強度確保のために各上限値および下限値を設定している。さらに、圧縮前の板部品の厚さに対する圧縮後の金属多孔質体の厚さは、下限は圧縮前後の空隙率に応じて自ずと決定されるが、板部品同士の接合性を確保するために上限は80%と設定している。   According to this manufacturing method, by laminating plate parts made of a sintered metal porous material and compressing them in the laminating direction, the skeletons of each other are intertwined through the opening of the gap at the joint surface. Can be joined. In addition, about the porosity of board components, the minimum is set to 65% in order to ensure the porosity and joining property after compression, and the upper limit is set to 99% in order to ensure strength. Further, the upper limit value and the lower limit value are set for the opening area and the average opening diameter of the voids of the plate parts in order to ensure the porous property, the bonding property and the strength. Furthermore, the thickness of the metal porous body after compression relative to the thickness of the plate parts before compression is naturally determined according to the porosity before and after compression, but in order to ensure the bondability between the plate parts The upper limit is set to 80%.

本発明の製造方法では、接合面において空隙の開口部を通じて互いの骨格が絡み合うことによって、金属多孔質材からなる板部品同士が接合される。したがって、本発明によれば、異なる金属からなる金属多孔質材同士や、空隙率が異なる金属多孔質材同士など、任意の組み合わせで確実に接合することができ、材質や面積、形状、空隙率等、多様な多孔質金属体を実現できる。また、焼結後の板部品同士を接合するので、成形装置や焼結炉を大型化する必要がなく、製造コストの増大を抑えることができる。さらに、厚い金属多孔質体は従来の製造方法では空隙が均一に形成されにくい等の問題があり製造が困難であったが、本発明の製造方法によれば、均一な空隙を有する板部品を多数枚積層して接合できるので、均一な空隙を有する厚い金属多孔質体を製造することができる。   In the manufacturing method of the present invention, plate parts made of a metal porous material are joined to each other by tangling each other's skeletons through the opening of the gap on the joining surface. Therefore, according to the present invention, metal porous materials made of different metals or metal porous materials with different porosity can be reliably bonded in any combination, and the material, area, shape, porosity. Various porous metal bodies can be realized. Moreover, since the plate parts after sintering are joined together, it is not necessary to increase the size of the molding apparatus or the sintering furnace, and an increase in manufacturing cost can be suppressed. Furthermore, a thick metal porous body has been difficult to manufacture due to problems such as the formation of uniform voids in the conventional manufacturing method, but according to the manufacturing method of the present invention, a plate component having a uniform void is obtained. Since a large number of sheets can be laminated and joined, a thick metal porous body having uniform voids can be produced.

以下、本発明に係る金属多孔質体の製造方法の実施形態について説明する。
図1(a),(b)に示すように、板部品11を部分的に積層し、これらを積層方向(厚さ方向)に圧縮することにより、図2に示すようにこれら板部品11同士が一体に接合された金属多孔質体10を製造する。なお、板部品11の圧縮は、圧延加工、プレス成形等により行うことができる
Hereinafter, an embodiment of a method for producing a metal porous body according to the present invention will be described.
As shown in FIGS. 1 (a) and 1 (b), the plate components 11 are partially stacked and compressed in the stacking direction (thickness direction), so that these plate components 11 are connected to each other as shown in FIG. The metal porous body 10 in which is integrally bonded is manufactured. The plate component 11 can be compressed by rolling, press molding, or the like.

この板部品11の表面の拡大図を図3に示す。板部品11は、金属焼結体の骨格11aにより辺が構成されてなる複数の多面体状の空隙11bが相互に連続状態に形成されている金属多孔質体材である。空隙11bは、骨格11aにより辺が構成された複数の多面体状のポアが総合に連続するように形成されていて、表裏面に開口する複数の開口部11cを有している。   An enlarged view of the surface of the plate component 11 is shown in FIG. The plate component 11 is a metal porous body material in which a plurality of polyhedral voids 11b each having a side constituted by a skeleton 11a of a metal sintered body are formed in a continuous state. The gap 11b is formed such that a plurality of polyhedral pores whose sides are constituted by the skeleton 11a is continuously formed, and has a plurality of openings 11c that open to the front and back surfaces.

[空隙率]
圧縮前の板部品11において、空隙11b全体の体積は65%以上99%以下を閉めている。以下、この空隙11bの体積割合を空隙率と呼ぶ。空隙率は、同形の中実体の重量に対する実測重量から算出することができる。
[Porosity]
In the plate component 11 before compression, the volume of the entire gap 11b is closed to 65% or more and 99% or less. Hereinafter, the volume ratio of the void 11b is referred to as the void ratio. The porosity can be calculated from the actually measured weight with respect to the weight of the solid body of the same shape.

[開口率]
板部品11の表裏面において、空隙11bの開口部11cの面積は15%以上85%以下を占めている。以下、板部品11の表裏面における開口部11cの開口面積の割合を開口率と呼ぶ。開口率は、板部品11の表面を撮影した25〜100倍顕微鏡写真を用いて、視野面積Aと、この視野中の最外面の全ての開口部11cの面積和Apとを測定し、次の式によって算出する。
開口率(%)=Ap/A×100
[Aperture ratio]
On the front and back surfaces of the plate part 11, the area of the opening 11c of the gap 11b occupies 15% or more and 85% or less. Hereinafter, the ratio of the opening area of the opening 11c on the front and back surfaces of the plate component 11 is referred to as an opening ratio. Aperture ratio, using 25 to 100-fold micrograph surface was photographed plate part 11, and the viewing area A, the area sum Ap of all openings 1 1c of the outermost surface in the visual field was measured, the following It is calculated by the following formula.
Opening ratio (%) = Ap / A × 100

[平均開口径]
この開口部11cの平均開口サイズは、開口部11cを円形とみなした場合の直径で表すことができ、以下、これを平均開口径と呼ぶ。平均開口径は、25〜100倍顕微鏡写真において、視野中の最外面の各開口部11cの面積を測定して算出した各円相当径の算術平均である。本発明の板部品11の平均開口径は、50μm以上600μm以下である。
[Average opening diameter]
The average opening size of the opening 11c can be represented by a diameter when the opening 11c is regarded as a circle, and hereinafter, this is referred to as an average opening diameter. The average opening diameter is an arithmetic average of the equivalent circle diameters calculated by measuring the area of each opening 11c on the outermost surface in the field of view in a 25-100 magnification photomicrograph. The average opening diameter of the plate component 11 of the present invention is 50 μm or more and 600 μm or less.

本発明の製造方法では、複数枚の板部品11を部分的に積層し、積層部分の空隙率が圧縮によって40%以上98%以下、かつ厚さが圧縮前の80%以下となるまで板部品11を圧縮することにより、これら板部品11同士を接合し、金属多孔質体10を製造する。   In the manufacturing method of the present invention, a plurality of plate parts 11 are partially laminated, and the plate parts until the porosity of the laminated part is 40% or more and 98% or less by compression and the thickness is 80% or less before compression. By compressing 11, these plate parts 11 are joined together to manufacture the metal porous body 10.

[接合強度の評価]
板部品同士を積層して圧縮した場合の接合強度について、次のように評価した。
試験片としては、図1(a),(b)および図2に示す金属多孔質体10と同様に、幅30mm、長さ100mmの2枚の板部品30を長さ方向に50mmずつ重なるように積層し、これらを積層方向にプレスして接合した金属多孔質体31を作成する。この金属多孔質体を形成する板部品30の空隙率、開口率、平均開口径、プレス前後の厚さ等を変化させて、表1に示すように本発明の実施例1〜6および比較例1〜5の試験片を作成し、図3に示すようにこれらの試験片を外径110mmの円筒32に巻き付け、積層部分の剥離の有無を確認する剥離試験を行った。
[Evaluation of bonding strength]
The bonding strength when the plate parts were laminated and compressed was evaluated as follows.
As a test piece, two plate parts 30 having a width of 30 mm and a length of 100 mm are overlapped by 50 mm in the length direction in the same manner as the metal porous body 10 shown in FIGS. 1 (a), 1 (b) and FIG. The metal porous body 31 is produced by laminating and pressing these in the laminating direction. By changing the porosity, opening ratio, average opening diameter, thickness before and after pressing, etc. of the plate part 30 forming this metal porous body, as shown in Table 1, Examples 1 to 6 and Comparative Examples of the present invention Test pieces 1 to 5 were prepared, and these test pieces were wound around a cylinder 32 having an outer diameter of 110 mm as shown in FIG.

Figure 0005298750
Figure 0005298750

<実施例1および比較例1>
圧縮前の空隙率87%、開口率24%、平均開口径104μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.76mm(圧縮前の76%)、空隙率が83%となるまで圧縮して試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
一方、圧縮前の空隙率64%、開口率24%、平均開口径104μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.82mm(圧縮前の82%)、空隙率が56%となるまで圧縮して、比較例1の試験片を作成した。すなわち、比較例1の試験片は、圧縮前の空隙率が本発明の下限値よりも低い板部品を用いて作成されており、実施例1と異なるのは圧縮前の板部品の空隙率のみである。この試験片においては、前記剥離試験によって積層部分の剥離が生じた。
<Example 1 and Comparative Example 1>
A plate part having a porosity of 87% before compression, an opening ratio of 24%, an average opening diameter of 104 μm, and a thickness of 0.5 mm is laminated, the thickness of the laminated portion is 0.76 mm (76% before compression), and the porosity is A test piece was prepared by compressing to 83%. In this test piece, peeling of the laminated portion by the peeling test did not occur.
On the other hand, a plate component having a porosity of 64% before compression, an aperture ratio of 24%, an average aperture diameter of 104 μm, and a thickness of 0.5 mm is laminated, and the thickness of the laminated portion is 0.82 mm (82% before compression). The test piece of Comparative Example 1 was prepared by compressing until the rate became 56%. That is, the test piece of Comparative Example 1 is made using a plate component whose porosity before compression is lower than the lower limit of the present invention, and the only difference from Example 1 is the porosity of the plate component before compression. It is. In this test piece, peeling of the laminated portion occurred by the peeling test.

<実施例2>
圧縮前の空隙率65%、開口率63%、平均開口径164μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.80mm(圧縮前の80%)、空隙率が56%となるまで圧縮して、実施例2の試験片を作成した。すなわち、実施例2においては、圧縮前の空隙率が本発明の下限値である板部品を用いて試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
<Example 2>
A plate component having a porosity of 65% before compression, an aperture ratio of 63%, an average aperture diameter of 164 μm, and a thickness of 0.5 mm is laminated, the thickness of the laminated portion is 0.80 mm (80% before compression), and the porosity is The test piece of Example 2 was prepared by compressing to 56%. That is, in Example 2, a test piece was prepared using a plate component in which the porosity before compression was the lower limit of the present invention. In this test piece, peeling of the laminated portion by the peeling test did not occur.

<実施例3および比較例2>
圧縮前の空隙率98.5%、開口率81%、平均開口径362μm、厚さ1mmの板部品を積層し、積層部分の厚さが1.48mm(圧縮前の74%)、空隙率が98.0%となるまで圧縮して、実施例3の試験片を作成した。すなわち、実施例3においては、圧縮後の空隙率が本発明の上限値である板部品を用いて試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
一方、比較例2は、実施例3と同じ板部品を用いて、積層部分の厚さが1.58mm(圧縮前の79%)、空隙率が98.1%となるまで圧縮して、試験片を作成した。すなわち、比較例2においては、圧縮後の厚さは本発明の範囲内であるが、圧縮後の空隙率が本発明の上限値よりも大きい。この試験片においては、前記剥離試験によって積層部分の剥離が生じた。
<Example 3 and Comparative Example 2>
A plate part having a porosity of 98.5% before compression, an opening ratio of 81%, an average opening diameter of 362 μm, and a thickness of 1 mm is laminated. The thickness of the laminated portion is 1.48 mm (74% before compression), and the porosity is The test piece of Example 3 was prepared by compressing to 98.0%. That is, in Example 3, a test piece was prepared using a plate component whose porosity after compression was the upper limit of the present invention. In this test piece, peeling of the laminated portion by the peeling test did not occur.
On the other hand, Comparative Example 2 was tested using the same plate parts as Example 3 until the thickness of the laminated portion was 1.58 mm (79% before compression) and the porosity was 98.1%. Created a piece. That is, in Comparative Example 2, the thickness after compression is within the range of the present invention, but the porosity after compression is larger than the upper limit value of the present invention. In this test piece, peeling of the laminated portion occurred by the peeling test.

<実施例4および比較例3>
圧縮前の空隙率83%、開口率15%、平均開口径87μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.77mm(圧縮前の77%)、空隙率が78%となるまで圧縮して、実施例4の試験片を作成した。すなわち、実施例4においては、開口率が本発明の下限値である板部品を用いて試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
一方、比較例3は、圧縮前の空隙率83%、開口率14%、平均開口径87μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.77mm(圧縮前の77%)、空隙率が78%となるまで圧縮して、試験片を作成した。すなわち、実施例4と比較すると、圧縮前の開口率が本発明の下限値よりも小さい。この試験片においては、前記剥離試験によって積層部分の剥離が生じた。
<Example 4 and Comparative Example 3>
A plate part having a porosity of 83% before compression, an aperture ratio of 15%, an average opening diameter of 87 μm, and a thickness of 0.5 mm is laminated, the thickness of the laminated portion is 0.77 mm (77% before compression), and the porosity is The test piece of Example 4 was prepared by compressing to 78%. That is, in Example 4, a test piece was prepared using a plate component having an aperture ratio that is the lower limit of the present invention. In this test piece, peeling of the laminated portion by the peeling test did not occur.
On the other hand, in Comparative Example 3, plate parts having a porosity of 83% before compression, an opening ratio of 14%, an average opening diameter of 87 μm, and a thickness of 0.5 mm were laminated, and the thickness of the laminated portion was 0.77 mm (before compression). 77%), and compression was performed until the porosity became 78% to prepare a test piece. That is, compared with Example 4, the aperture ratio before compression is smaller than the lower limit value of the present invention. In this test piece, peeling of the laminated portion occurred by the peeling test.

<実施例5および比較例4>
圧縮前の空隙率70%、開口率16%、平均開口径50μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.79mm(圧縮前の79%)、空隙率が62%となるまで圧縮して、実施例5の試験片を作成した。すなわち、実施例5においては、平均開口径が本発明の下限値である板部品を用いて試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
一方、比較例4は、圧縮前の空隙率70%、開口率16%、平均開口径30μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.79mm(圧縮前の79%)、空隙率が62%となるまで圧縮して、試験片を作成した。すなわち、実施例5と比較すると、圧縮前の平均開口径が本発明の下限値よりも小さい。この試験片においては、前記剥離試験によって積層部分の剥離が生じた。
<Example 5 and Comparative Example 4>
A plate component having a porosity of 70% before compression, an aperture ratio of 16%, an average opening diameter of 50 μm, and a thickness of 0.5 mm is laminated, the thickness of the laminated portion is 0.79 mm (79% before compression), and the porosity is The test piece of Example 5 was prepared by compressing to 62%. That is, in Example 5, a test piece was prepared using a plate component whose average opening diameter is the lower limit value of the present invention. In this test piece, peeling of the laminated portion by the peeling test did not occur.
On the other hand, in Comparative Example 4, plate parts having a porosity of 70% before compression, an opening ratio of 16%, an average opening diameter of 30 μm, and a thickness of 0.5 mm were laminated, and the thickness of the laminated portion was 0.79 mm (before compression). 79%), and compression was performed until the porosity became 62% to prepare a test piece. That is, compared with Example 5, the average opening diameter before compression is smaller than the lower limit of the present invention. In this test piece, peeling of the laminated portion occurred by the peeling test.

<実施例6および比較例5>
圧縮前の空隙率93%、開口率80%、平均開口径600μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.78mm(圧縮前の78%)、空隙率が91%となるまで圧縮して、実施例6の試験片を作成した。すなわち、実施例6においては、平均開口径が本発明の上限値である板部品を用いて試験片を作成した。この試験片においては、前記剥離試験による積層部分の剥離は生じなかった。
一方、比較例5は、圧縮前の空隙率93%、開口率80%、平均開口径612μm、厚さ0.5mmの板部品を積層し、積層部分の厚さが0.78mm(圧縮前の78%)、空隙率が91%となるまで圧縮して、試験片を作成した。すなわち、実施例6と比較すると、圧縮前の平均開口径が本発明の上限値よりも大きい。この試験片においては、前記剥離試験によって積層部分の剥離が生じた。
<Example 6 and Comparative Example 5>
A plate part having a porosity of 93% before compression, an aperture ratio of 80%, an average opening diameter of 600 μm, and a thickness of 0.5 mm is laminated, the thickness of the laminated portion is 0.78 mm (78% before compression), and the porosity is The test piece of Example 6 was prepared by compressing to 91%. That is, in Example 6, a test piece was prepared using a plate component whose average opening diameter is the upper limit value of the present invention. In this test piece, peeling of the laminated portion by the peeling test did not occur.
On the other hand, in Comparative Example 5, plate parts having a porosity of 93% before compression, an opening ratio of 80%, an average opening diameter of 612 μm, and a thickness of 0.5 mm were laminated, and the thickness of the laminated portion was 0.78 mm (before compression). 78%), and compression was performed until the porosity became 91% to prepare a test piece. That is, compared with Example 6, the average opening diameter before compression is larger than the upper limit value of the present invention. In this test piece, peeling of the laminated portion occurred by the peeling test.

以上のように、本発明の実施例1〜6では、前記剥離試験によっても金属多孔質体10に剥離は生じず、2枚の板部品11が確実に接合されていることが確認できた。一方、板部品の特性や圧縮後の厚さ、空隙率が本発明の範囲外である比較例1〜5では、前記剥離試験によって剥離が生じ、2枚の板部品の接合が確実ではないことが確認できた。   As described above, in Examples 1 to 6 of the present invention, the metal porous body 10 was not peeled even by the peel test, and it was confirmed that the two plate components 11 were securely joined. On the other hand, in Comparative Examples 1 to 5 in which the characteristics of the plate parts, the thickness after compression, and the porosity are outside the scope of the present invention, peeling occurs due to the peeling test, and the joining of the two board parts is not reliable. Was confirmed.

ここで、板部品11の製造方法の一例について、図5を参照して説明する。板部品11は、金属粉末と発泡剤とを含有する発泡性スラリーを板状に成形し、発泡させた後に焼結して形成される。
〈発泡性スラリー作成工程〉
まず、金属粉末と発泡剤とを含有する発泡性スラリーSを作成する。発泡性スラリーSは、骨格11aを形成する金属粉末、バインダ(水溶性樹脂結合剤)、発泡剤および水と、必要に応じて界面活性剤および/または可塑剤とを混合することにより作成される。より具体的には、まず金属粉末、バインダおよび水を含有するスラリーを作成した後、このスラリーに発泡剤を添加し、ミキサーなどの攪拌装置で攪拌する。
Here, an example of the manufacturing method of the board component 11 is demonstrated with reference to FIG. The plate component 11 is formed by forming a foamable slurry containing a metal powder and a foaming agent into a plate shape, foaming and then sintering.
<Foaming slurry preparation process>
First, a foamable slurry S containing metal powder and a foaming agent is prepared. The foamable slurry S is prepared by mixing a metal powder forming a skeleton 11a, a binder (water-soluble resin binder), a foaming agent and water, and a surfactant and / or a plasticizer as necessary. . More specifically, a slurry containing a metal powder, a binder, and water is first prepared, and then a foaming agent is added to the slurry, followed by stirring with a stirring device such as a mixer.

金属粉末としては、特に限定されないが、耐食性等の点から、Ni,Cu,Ti,Al,Ag,ステンレス鋼等が好ましい。また、この金属粉末は平均粒径0.5μm以上30μm以下が好ましい。このような粉末は、水アトマイズ法,プラズマアトマイズ法などのアトマイズ法、酸化物還元法,湿式還元法,カルボニル反応法などの化学プロセス法によって製造することができる。   Although it does not specifically limit as metal powder, Ni, Cu, Ti, Al, Ag, stainless steel, etc. are preferable from points, such as corrosion resistance. The metal powder preferably has an average particle size of 0.5 μm or more and 30 μm or less. Such a powder can be produced by an atomizing method such as a water atomizing method or a plasma atomizing method, a chemical process method such as an oxide reduction method, a wet reduction method, or a carbonyl reaction method.

バインダ(水溶性樹脂結合剤)としては、メチルセルロース,ヒドロキシプロピルメチルセルロース,ヒドロキシエチルメチルセルロース,カルボキシメチルセルロースアンモニウム,エチルセルロース,ポリビニルアルコールなどを使用することができる。   As the binder (water-soluble resin binder), methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose ammonium, ethylcellulose, polyvinyl alcohol, and the like can be used.

発泡剤は、ガスを発生してスラリーに気泡を形成できるものであればよく、揮発性有機溶剤、例えば、ペンタン,ネオペンタン,ヘキサン,イソヘキサン,イソペプタン,ベンゼン,オクタン,トルエンなどの炭素数5〜8の非水溶性炭化水素系有機溶剤を使用することができる。この発泡剤の含有量としては、発泡性スラリーSに対して0.1〜5重量%とすることが好ましい。   The foaming agent is not particularly limited as long as it can generate gas and form bubbles in the slurry, and is a volatile organic solvent such as pentane, neopentane, hexane, isohexane, isopeptane, benzene, octane, toluene, etc. The water-insoluble hydrocarbon-based organic solvent can be used. The foaming agent content is preferably 0.1 to 5% by weight with respect to the foamable slurry S.

界面活性剤としては、アルキルベンゼンスルホン酸塩,α‐オレフィンスルホン酸塩,アルキル流酸エステル塩,アルキルエーテル硫酸エステル塩,アルカンスルホン酸塩等のアニオン界面活性剤,ポリエチレングリコール誘導体,多価アルコール誘導体などの非イオン性界面活性剤および両性界面活性剤などを使用することができる。   Surfactants include anionic surfactants such as alkylbenzene sulfonate, α-olefin sulfonate, alkyl sulfonate, alkyl ether sulfate, alkane sulfonate, polyethylene glycol derivatives, polyhydric alcohol derivatives, etc. Nonionic surfactants and amphoteric surfactants can be used.

可塑剤は、スラリーを成形して得られる成形体に可塑性を付与するために添加され、例えばエチレングリコール,ポリエチレングリコール,グリセリンなどの多価アルコール、鰯油,菜種油,オリーブ油などの油脂、石油エーテルなどのエーテル類、フタル酸ジエチル,フタル酸ジNブチル,フタル酸ジエチルヘキシル,フタル酸ジオクチル,ソルビタンモノオレート,ソルビタントリオレート,ソルビタンパルミテート,ソルビタンステアレートなどのエステル等を使用することができる。   The plasticizer is added to impart plasticity to a molded product obtained by molding a slurry. For example, polyhydric alcohols such as ethylene glycol, polyethylene glycol, and glycerin, fats and oils such as coconut oil, rapeseed oil, and olive oil, petroleum ether, etc. And ethers such as diethyl phthalate, di-N-butyl phthalate, diethyl hexyl phthalate, dioctyl phthalate, sorbitan monooleate, sorbitan trioleate, sorbitan palmitate, sorbitan stearate and the like can be used.

さらに、スラリーの特性や成形性を向上させるために任意の添加成分を加えてもよい。例えば、防腐剤を添加してスラリーの保存性を向上させたり、結合助材としてポリマー系化合物を加えて成形体の強度を向上させたりすることができる。   Furthermore, an optional additive component may be added to improve the properties and moldability of the slurry. For example, a preservative can be added to improve the storage stability of the slurry, or a polymer compound can be added as a binding aid to improve the strength of the molded body.

このように作成した発泡性スラリーSから、図5に示す成形装置20を用いて、グリーンシートを形成する成形工程および発泡乾燥工程を行う。
〈成形工程〉
成形装置20は、ドクターブレード法を用いてシートを形成する装置であり、発泡性スラリーSが貯留されるホッパ21、ホッパ21から供給された発泡性スラリーSを移送するキャリヤシート22、キャリヤシート22を支持するローラ23、キャリヤシート22上の発泡性スラリーSを所定厚さに成形するブレード(ドクターブレード)24、発泡性スラリーSを発泡させる恒温・高湿度槽25、および発泡したスラリーを乾燥させる乾燥槽26を備えている。なお、キャリヤシート22の下面は、支持プレートPによって支えられている。
Using the forming apparatus 20 shown in FIG. 5, a forming process for forming a green sheet and a foam drying process are performed from the foamable slurry S thus created.
<Molding process>
The forming apparatus 20 is an apparatus that forms a sheet using a doctor blade method. The hopper 21 stores the foamable slurry S, the carrier sheet 22 transports the foamable slurry S supplied from the hopper 21, and the carrier sheet 22. , A blade (doctor blade) 24 for forming the foamable slurry S on the carrier sheet 22 to a predetermined thickness, a constant temperature / high humidity tank 25 for foaming the foamable slurry S, and the foamed slurry are dried. A drying tank 26 is provided. The lower surface of the carrier sheet 22 is supported by the support plate P.

成形装置20においては、まず、発泡性スラリーSをホッパ21に投入しておき、このホッパ21から発泡性スラリーSをキャリヤシート22上に供給する。キャリヤシート22は図の右方向へ回転するローラ23および支持プレートPによって支持されており、その上面が図の右方向へと移動している。キャリヤシート22上に供給された発泡性スラリーSは、キャリヤシート22とともに移動しながらブレード24によって薄板状に成形される。   In the molding apparatus 20, first, the foamable slurry S is put into the hopper 21, and the foamable slurry S is supplied onto the carrier sheet 22 from the hopper 21. The carrier sheet 22 is supported by a roller 23 and a support plate P that rotate in the right direction in the figure, and its upper surface moves in the right direction in the figure. The foamable slurry S supplied onto the carrier sheet 22 is formed into a thin plate shape by the blade 24 while moving together with the carrier sheet 22.

〈発泡乾燥工程〉
次いで、薄板状の発泡性スラリーSは、所定条件(例えば温度30℃〜40°、湿度75%〜95%)の恒温・高湿度槽25内を、例えば10分〜20分かけて移動しながら発泡する。続いて、この恒温・高湿度槽25内で発泡したスラリーSは、所定条件(例えば温度50℃〜70℃)の乾燥槽26内を例えば10分〜20分かけて移動し、乾燥される。これにより、スポンジ状のグリーンシートが得られる。
<Foam drying process>
Next, the thin plate-like foamable slurry S moves in the constant temperature / high humidity tank 25 under predetermined conditions (for example, temperature 30 ° C. to 40 °, humidity 75% to 95%) over 10 minutes to 20 minutes, for example. Foam. Subsequently, the slurry S foamed in the constant temperature / high humidity tank 25 moves in the drying tank 26 under a predetermined condition (for example, a temperature of 50 ° C. to 70 ° C.) over, for example, 10 minutes to 20 minutes, and is dried. Thereby, a sponge-like green sheet is obtained.

〈焼結工程〉
このようにして得られたグリーンシートを脱脂・焼結することにより、薄板状の金属多孔質材を形成する。具体的には、例えば真空中、温度550℃〜650℃、25分〜35分の条件下でグリーンシート中のバインダ(水溶性樹脂結合剤)を除去(脱脂)した後、さらに真空中、温度700℃〜1300℃、60分〜120分の条件下で焼結する。この金属多孔質材を任意の形状に切断することにより、本発明の金属多孔質体10を構成する板部品11を製造することができる。
<Sintering process>
The thin sheet metal porous material is formed by degreasing and sintering the green sheet thus obtained. Specifically, for example, after removing (degreasing) the binder (water-soluble resin binder) in the green sheet under vacuum at temperatures of 550 ° C. to 650 ° C. for 25 minutes to 35 minutes, the temperature is further increased in vacuum. Sintering is performed at 700 ° C to 1300 ° C for 60 minutes to 120 minutes. The plate component 11 which comprises the metal porous body 10 of this invention can be manufactured by cut | disconnecting this metal porous material in arbitrary shapes.

このような方法によれば、本発明の金属多孔質体の製造方法に適切な空隙率、開口率、平均開口径を有する板部品11を形成することができる。この板部品11を積層して圧縮すると、互いの骨格11aが開口部11cを通じて互いに入り込み、絡み合うように変形することにより、隣接する2枚の板部品11同士が接合される。   According to such a method, it is possible to form the plate component 11 having a porosity, an aperture ratio, and an average aperture diameter suitable for the method for producing a metal porous body of the present invention. When the plate parts 11 are stacked and compressed, the skeletons 11a enter each other through the openings 11c and are deformed so as to be entangled with each other, thereby joining the two adjacent plate parts 11 together.

たとえば、図6に示すように、複数枚の板部品40a,40bおよび40cを組み合わせることにより、面積の大きい金属多孔質体40を製造することができる。この金属多孔質体40は、各辺が60mmの正方形板である板部品40aを1枚、各辺が40mmの正方形板である板部品40bを1枚、幅40mm、長さ60mmの長方形板である板部品40cを2枚組み合わせて配置した下層40Aに対して、これら板部品40a,40bおよび40cを各接合線が重ならないように配置した上層40Bを積層し、その積層方向に圧縮して下層40Aと上層40Bとを接合することにより、各辺100mmの正方形板として形成されている。すなわち、最大幅が60mmである板部品から、幅が100mmの金属多孔質体40を製造できる。   For example, as shown in FIG. 6, a metal porous body 40 having a large area can be manufactured by combining a plurality of plate parts 40a, 40b and 40c. This metal porous body 40 is a rectangular plate having a width of 40 mm and a length of 60 mm, one plate component 40 a that is a square plate having a side of 60 mm, and one plate component 40 b that is a square plate having a side of 40 mm. An upper layer 40B in which these plate components 40a, 40b and 40c are arranged so that the joining lines do not overlap each other is laminated on the lower layer 40A in which two plate components 40c are arranged in combination, and the lower layer 40A is compressed in the laminating direction to be the lower layer 40A and the upper layer 40B are joined to form a square plate having a side of 100 mm. That is, the metal porous body 40 having a width of 100 mm can be manufactured from a plate component having a maximum width of 60 mm.

また、図7(a)に示すように、金属多孔質体40の下層40Aと上層40Bとの間に、各辺が60mmの正方形板である板部品40aと、各辺が40mmの正方形板である板部品40bとを積層し(図7(b))、図7(c)に示すように全体が一定の厚さとなるように圧縮して各板部品40a,40bおよび40cを接合した金属多孔質体41を製造することができる。   Moreover, as shown to Fig.7 (a), between the lower layer 40A and the upper layer 40B of the metal porous body 40, it is the board component 40a which is a square plate with each side 60mm, and the square plate with each side 40mm. A porous metal plate obtained by laminating a certain plate component 40b (FIG. 7B) and compressing the entire plate component 40a, 40b and 40c so as to have a constant thickness as shown in FIG. 7C. The mass 41 can be manufactured.

この金属多孔質体41では、中心部41Aにおいては4層、外周部41Bにおいては2層、中心部41Aと外周部41Bとの間の部分41Cにおいては3層の板部品が積層されているため、各部分における圧縮後の空隙率が積層数に応じて異なっている。すなわち、板部品40a,40bおよび40cがいずれも厚さ0.5mm、空隙率90%であり、圧縮後の厚さが0.5mmである場合、4層を圧縮した中心部41Aの空隙率は60%、3層を圧縮した部分41Cの空隙率は70%、2層を圧縮した外周部41Bの空隙率は80%となる。   In this metal porous body 41, four layers are laminated in the central portion 41A, two layers in the outer peripheral portion 41B, and three layers of plate parts in the portion 41C between the central portion 41A and the outer peripheral portion 41B. The porosity after compression in each portion differs depending on the number of layers. That is, when the plate parts 40a, 40b and 40c are all 0.5 mm in thickness and the porosity is 90%, and the thickness after compression is 0.5 mm, the porosity of the central portion 41A obtained by compressing the four layers is The porosity of the portion 41C in which the three layers are compressed is 70%, and the porosity of the outer peripheral portion 41B in which the two layers are compressed is 80%.

示す金属多孔質体42は、空隙率90%、厚さ1mmの円板状の板部品42a(直径40mm)、板部品42b(直径70mm)、板部品42c(直径100mm)を図8(a)および図8(b)に示すように同心円状に積層し、厚さ1mmに圧縮したものである。図8(a)のVIIIa−VIIIa線に沿う断面を図8(c)に示す。この金属多孔質体42の場合、中心部42Aにおいては3層、外周部42Bにおいては1層、中心部42Aと外周部42Bとの間の部分42Cにおいては2層の板部品が積層されているため、各部分における圧縮後の空隙率が積層数に応じて異なっている。すなわち、3層を圧縮した中心部42Aの空隙率は70%、圧縮していない外周部42Bの空隙率は90%、2層を圧縮した部分42Cの空隙率は80%となり、中心ほど密度が高い円板となっている。   The metal porous body 42 shown in FIG. 8A is a disk-shaped plate component 42a (diameter 40 mm), plate component 42b (diameter 70 mm), and plate component 42c (diameter 100 mm) having a porosity of 90% and a thickness of 1 mm. And as shown in FIG.8 (b), it laminated | stacked concentrically and compressed to thickness 1mm. FIG. 8C shows a cross section taken along line VIIIa-VIIIa in FIG. In the case of this metal porous body 42, three layers of plate parts are laminated in the central portion 42A, one layer in the outer peripheral portion 42B, and two layers in the portion 42C between the central portion 42A and the outer peripheral portion 42B. Therefore, the porosity after compression in each part differs according to the number of layers. In other words, the porosity of the central portion 42A obtained by compressing the three layers is 70%, the porosity of the outer peripheral portion 42B that is not compressed is 90%, and the porosity of the portion 42C that compresses the two layers is 80%. It is a high disk.

金属多孔質体43は、図9(a)および図9(b)に示すように、空隙率90%、厚さ0.5mmの正方形の板部品43a(各辺120mm)、板部品43b(各辺210mm)、板部品43c(各辺300mm)の各中心を一致させて積層し、厚さ0.5mmに圧縮したものである。図9(a)のIXa−IXa線に沿う断面を図9(c)に示す。この金属多孔質体43の場合、中心部43Aにおいては5層、外周部43Bにおいては2層、中心部43Aと外周部43Bとの間の部分43Cにおいては4層の板部品が積層されているため、各部分における圧縮後の空隙率が積層数に応じて異なっている。すなわち、5層を圧縮した中心部43Aの空隙率は50%、2層を圧縮した外周部43Bの空隙率は80%、4層を圧縮した部分43Cの空隙率は60%となり、中心ほど密度が高い矩形板となっている。   As shown in FIGS. 9 (a) and 9 (b), the metal porous body 43 includes a square plate part 43a (each side 120 mm) having a porosity of 90% and a thickness of 0.5 mm, and a plate part 43b (each Side 210 mm) and the plate component 43c (each side 300 mm) are laminated with their centers aligned and compressed to a thickness of 0.5 mm. FIG. 9C shows a cross section taken along the line IXa-IXa in FIG. In the case of this metal porous body 43, five layers are laminated in the central portion 43A, two layers in the outer peripheral portion 43B, and four layers in the portion 43C between the central portion 43A and the outer peripheral portion 43B. Therefore, the porosity after compression in each part differs according to the number of layers. That is, the porosity of the central portion 43A obtained by compressing the five layers is 50%, the porosity of the outer peripheral portion 43B obtained by compressing the two layers is 80%, and the porosity of the portion 43C obtained by compressing the four layers is 60%. Is a high rectangular plate.

つまり、図7〜図9に示すように、本発明の製造方法によれば、任意の空隙率を有する板部品を、任意の形状および枚数で積層し、任意の厚さに圧縮して接合することにより、任意の空隙率、形状および厚さを有する金属多孔質体を製造することができる。さらに、部分的に積層数を異ならせて板部品を積層することにより、面方向に空隙率の分布を有する金属多孔質体を形成することができる。   That is, as shown in FIGS. 7 to 9, according to the manufacturing method of the present invention, plate parts having an arbitrary porosity are stacked in an arbitrary shape and number, and compressed and bonded to an arbitrary thickness. Thus, a metal porous body having an arbitrary porosity, shape and thickness can be produced. Furthermore, a metal porous body having a distribution of porosity in the surface direction can be formed by partially laminating plate parts with different numbers of layers.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
たとえば、前記実施形態ではいずれも空隙率が同じ板部品を積層しているが、空隙率が異なる板部品を積層、圧縮して接合することもできる。空隙率が同じ板部品を積層して圧縮した場合、各板部品は同率で圧縮される。これに対し、空隙率が異なる板部品を積層して圧縮した場合、空隙率が大きい板部品から圧縮されはじめ、より空隙率の小さい他の板部品と同等の空隙率となるまでその板部品が圧縮されると、その後は各板部品が同率で圧縮される。このことを利用して、面方向に空隙率の分布を形成することも可能である。
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiments, plate components having the same porosity are laminated, but plate components having different porosity can be laminated, compressed, and joined. When plate components having the same porosity are stacked and compressed, each plate component is compressed at the same rate. On the other hand, when laminating and compressing plate components with different porosity, the plate component starts to be compressed from a plate component with a large porosity until the porosity becomes equivalent to that of other plate components with a smaller porosity. Once compressed, each plate part is then compressed at the same rate. By utilizing this fact, it is possible to form a distribution of porosity in the surface direction.

本発明の金属多孔質体の製造方法を示す上面図(a)および断面図(b)である。It is the top view (a) and sectional drawing (b) which show the manufacturing method of the metal porous body of this invention. 本発明の金属多孔質体の製造方法による金属多孔質体を示す断面図である。It is sectional drawing which shows the metal porous body by the manufacturing method of the metal porous body of this invention. 本発明の製造方法による金属多孔質体を形成する板部品の表面を示す拡大図である。It is an enlarged view which shows the surface of the board component which forms the metal porous body by the manufacturing method of this invention. 金属多孔質体における板部品の接合強度を確認する剥離試験を示す模式図である。It is a schematic diagram which shows the peeling test which confirms the joint strength of the board components in a metal porous body. 本発明の金属多孔質体を形成する板部品の成形装置を示す模式図である。It is a schematic diagram which shows the shaping | molding apparatus of the plate components which form the metal porous body of this invention. 本発明の製造方法による金属多孔質体の一例を示す斜視図である。It is a perspective view which shows an example of the metal porous body by the manufacturing method of this invention. 本発明の製造方法の他の例において、板部品の積層状態を示す斜視図(a)および断面図(b)、および圧縮接合後の金属多孔質体において(a)のVIIa−VIIa線に沿う断面図(c)である。In another example of the production method of the present invention, a perspective view (a) and a cross-sectional view (b) showing a laminated state of plate parts, and a metal porous body after compression joining along the line VIIa-VIIa in (a) It is sectional drawing (c). 本発明の製造方法の他の例において、板部品の積層状態を示す斜視図(a)および断面図(b)、および圧縮接合後の金属多孔質体において(a)のVIIIa−VIIIa線に沿う断面図(c)である。In another example of the production method of the present invention, a perspective view (a) and a cross-sectional view (b) showing a laminated state of plate parts, and a metal porous body after compression joining along the line VIIIa-VIIIa in (a) It is sectional drawing (c). 本発明の製造方法の他の例において、板部品の積層状態を示す斜視図(a)および断面図(b)、および圧縮接合後の金属多孔質体において(a)のIXa−IXa線に沿う断面図(c)である。In another example of the manufacturing method of the present invention, a perspective view (a) and a cross-sectional view (b) showing a laminated state of plate parts, and a metal porous body after compression joining along the line IXa-IXa of (a) It is sectional drawing (c).

符号の説明Explanation of symbols

10 金属多孔質体
11 板部品
11a 骨格
11b 空隙
11c 開口部
20 成形装置
21 ホッパ
22 キャリヤシート
23 ローラ
24 ブレード(ドクターブレード)
25 恒温・高湿度槽
26 乾燥槽
30 板部品
31 金属多孔質体
32 円筒
40 金属多孔質体
40A 下層
40B 上層
40a,40b,40c 板部品
41 金属多孔質体
41A 中心部
41B 外周部
41C 部分
42 金属多孔質体
42A 中心部
42B 外周部
42C 部分
42a,42b,42c 板部品
43 金属多孔質体
43A 中心部
43B 外周部
43C 部分
43a,43b,43c 板部品
P 支持プレート
S 発泡性スラリー
DESCRIPTION OF SYMBOLS 10 Metal porous body 11 Plate part 11a Frame | skeleton 11b Space | gap 11c Opening part 20 Molding apparatus 21 Hopper 22 Carrier sheet 23 Roller 24 Blade (doctor blade)
25 Constant temperature / high humidity tank 26 Drying tank 30 Plate part 31 Metal porous body 32 Cylinder 40 Metal porous body 40A Lower layer 40B Upper layer 40a, 40b, 40c Plate part 41 Metal porous body 41A Center part 41B Outer part 41C Part 42 Metal Porous body 42A Central part 42B Peripheral part 42C Parts 42a, 42b, 42c Plate component 43 Metal porous body 43A Central part 43B Peripheral part 43C Parts 43a, 43b, 43c Plate part P Support plate S Effervescent slurry

Claims (1)

金属焼結体の骨格により辺が構成されてなる複数の多面体状の空隙が相互に連続状態に形成されている金属多孔質体の製造方法であって、
金属粉末と発泡剤とを含有する発泡性スラリーを板状に成形し、発泡させた後に焼結してなり、前記骨格の間に形成される前記空隙による空隙率がそれぞれ65%以上99%以下、表裏面における前記空隙の開口面積の割合が15%以上85%以下、前記空隙の平均開口径が50μm以上600μm以下である金属多孔質材からなる板部品を複数枚用いて、
これら板部品を、部分的に積層し、この積層部分の空隙率が40%以上98%以下となるまでかつその厚さが圧縮前の80%以下となるまで厚さ方向に圧縮して、相互に接合することを特徴とする金属多孔質体の製造方法。
A method for producing a porous metal body in which a plurality of polyhedral voids whose sides are constituted by a skeleton of a sintered metal body is formed in a continuous state,
A foamable slurry containing a metal powder and a foaming agent is formed into a plate shape, foamed and then sintered, and the porosity due to the voids formed between the skeletons is 65% or more and 99% or less, respectively. The ratio of the opening area of the voids on the front and back surfaces is 15% or more and 85% or less, and a plurality of plate parts made of a metal porous material having an average opening diameter of the voids of 50 μm or more and 600 μm or less,
These plate parts are partially laminated, and compressed in the thickness direction until the porosity of the laminated part is 40% or more and 98% or less and the thickness is 80% or less before compression. A method for producing a porous metal body, characterized by bonding to a metal.
JP2008259390A 2008-10-06 2008-10-06 Method for producing metal porous body Expired - Fee Related JP5298750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259390A JP5298750B2 (en) 2008-10-06 2008-10-06 Method for producing metal porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259390A JP5298750B2 (en) 2008-10-06 2008-10-06 Method for producing metal porous body

Publications (2)

Publication Number Publication Date
JP2010090416A JP2010090416A (en) 2010-04-22
JP5298750B2 true JP5298750B2 (en) 2013-09-25

Family

ID=42253407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259390A Expired - Fee Related JP5298750B2 (en) 2008-10-06 2008-10-06 Method for producing metal porous body

Country Status (1)

Country Link
JP (1) JP5298750B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652127B2 (en) * 2010-10-28 2015-01-14 三菱マテリアル株式会社 Evaporation plate
CN102864321A (en) * 2012-09-04 2013-01-09 太原科技大学 Continuous foaming device of powder metallurgy method foamed aluminum alloy
US20180093318A1 (en) * 2015-04-24 2018-04-05 Sumitomo Electric Industries, Ltd. Composite material and method for producing composite material
JPWO2020044776A1 (en) * 2018-08-29 2021-08-10 富山住友電工株式会社 Metal porous body and method for manufacturing metal porous body
KR102436921B1 (en) * 2018-09-28 2022-08-26 주식회사 엘지화학 Composite Material
KR102378973B1 (en) * 2018-09-28 2022-03-25 주식회사 엘지화학 Metal foam
US11910584B2 (en) 2018-09-28 2024-02-20 Lg Chem, Ltd. Composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987707A (en) * 1995-09-27 1997-03-31 Mitsubishi Materials Corp Production of joined body of porous sintered metal
JP4103707B2 (en) * 2003-08-20 2008-06-18 三菱マテリアル株式会社 Method for producing composite porous body

Also Published As

Publication number Publication date
JP2010090416A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5298750B2 (en) Method for producing metal porous body
JP5720189B2 (en) Porous implant material
JP5648432B2 (en) Porous implant material
US9707320B2 (en) Porous implant material
US20070202001A1 (en) Method Of Manufacturing Of A Sintered Metal Fiber Medium
JP2004518815A (en) Co-formed metal foam articles
JPH11350006A (en) High strength spongy fired metal composite plate and its production
US20080145500A1 (en) Sintered Metal Fiber Medium
JP5169591B2 (en) Metal porous electrode substrate and manufacturing method thereof
JP2015505909A (en) Method for producing porous body by powder metallurgy and metallurgical composition of particulate material
WO2013100147A1 (en) Porous sintered body and process for producing porous sintered body
JP5463639B2 (en) Method for producing metal porous plate
JP2012162756A (en) Light weight structure
JP2006299405A (en) Method for producing porous metal or porous ceramics
JP5713058B2 (en) Method for producing metal porous body
JP2011106023A (en) Porous metal laminated body and method for producing the same
JP5439791B2 (en) Method for producing metal porous body
JP5652127B2 (en) Evaporation plate
WO2012063905A1 (en) Porous implant material
WO2014136849A1 (en) Porous sintered material, and method for producing porous sintered material
JP2010065276A (en) Porous metal body and production method therefor
KR102378973B1 (en) Metal foam
JP2012110851A (en) Dielectric filter
JP5181973B2 (en) Method for producing metal porous body
JPH0987705A (en) Production of porous metal laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees