JP3661460B2 - Method for producing martensitic and ferritic stainless steel slabs - Google Patents

Method for producing martensitic and ferritic stainless steel slabs Download PDF

Info

Publication number
JP3661460B2
JP3661460B2 JP35082998A JP35082998A JP3661460B2 JP 3661460 B2 JP3661460 B2 JP 3661460B2 JP 35082998 A JP35082998 A JP 35082998A JP 35082998 A JP35082998 A JP 35082998A JP 3661460 B2 JP3661460 B2 JP 3661460B2
Authority
JP
Japan
Prior art keywords
slab
stainless steel
temperature
cooling
round billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35082998A
Other languages
Japanese (ja)
Other versions
JP2000178649A (en
Inventor
浩史 前田
裕則 山本
伸一 沖本
俊朗 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP35082998A priority Critical patent/JP3661460B2/en
Publication of JP2000178649A publication Critical patent/JP2000178649A/en
Application granted granted Critical
Publication of JP3661460B2 publication Critical patent/JP3661460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マルテンサイト系及びフェライト系ステンレス鋼の丸ビレット鋳片を連続鋳造機にて製造する方法に関し、詳しくは、鋳造後、鋳片冷却時の熱応力や変態応力による鋳片表面割れを効率良く防止することのできる製造方法に関するものである。
【0002】
【従来の技術】
マルテンサイト系ステンレス鋼及びフェライト系ステンレス鋼のスラブ鋳片を連続鋳造機にて製造する場合、鋳造された鋳片を大気中で冷却すると、その冷却条件に起因してスラブ鋳片に表面割れが発生する。これは、凝固時の鋳片温度分布により生じる鋳片表面の引張り熱応力や、更に、マルテンサイト系ステンレス鋼では、マルテンサイト変態に伴う変態応力に起因して発生するものである。従来、鋳片歩留りの向上や連続鋳造機での適用鋼種の拡大等のために、この表面割れを防止する方法が多数提案されている。
【0003】
例えば特開昭55−164029号公報には、マルテンサイト系ステンレス鋼鋳片の表面温度を、鋳造後、650℃以下まで冷却することなく、断熱材を用いて被包し、鋳片の保有熱で保温しながら徐冷して、マルテンサイト変態に伴う表面割れを防止する方法が開示されている。又、特開昭55−33801号公報には、フェライト系ステンレス鋼の連続鋳造鋳片の表面温度を、鋳造後、150℃以下まで冷却することなく直ちに加熱し、次いで熱間圧延して鋳片の材料強度を向上させた後、常温まで冷却する方法が開示されている。
【0004】
従来、マルテンサイト系ステンレス鋼及びフェライト系ステンレス鋼の小断面丸ビレット鋳片の場合も、表面割れの発生を防止するため、上記に従い、連続鋳造の鋳造後、丸ビレット鋳片を常温まで冷却せず、直ちに加熱炉に装入して熱間圧延を行うか、又は、徐冷炉や保温設備を用いて徐冷していた。
【0005】
【発明が解決しようとする課題】
しかしながら、鋳造後、直ちに加熱炉に装入して熱間圧延を行う方法や徐冷炉等で徐冷する方法には以下の問題点がある。即ち、高温状態の鋳片を圧延工程に搬送し、加熱して圧延する場合には、鋳造から圧延までの一貫したスケジュール管理が必要で、連続鋳造工程及び圧延工程の操業の柔軟性がなくなり、又、徐冷する場合には、連続鋳造設備の近傍に専用の徐冷炉や保温設備を設置する必要がある。更に、高温の鋳片を吊り上げて移動させる場合、小断面の丸ビレット鋳片の搬送に最適である、磁力を利用した搬送装置(以下、「リフマグ」と記す)は使用できず、掴み爪を有するトングを使用する必要があり、トングで掴むことによる搬送時間の延長化等の問題がある。
【0006】
本発明は上記事情に鑑みなされたもので、その目的とするところは、マルテンサイト系及びフェライト系ステンレス鋼の小断面丸ビレット鋳片を連続鋳造機にて製造する際に、操業の柔軟性を損なうことなく且つ専用の徐冷炉等を必要とせずに、鋳片冷却時の変態応力や熱応力による鋳片表面割れを効率良く防止することのできる製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決するための第1の発明によるマルテンサイト系及びフェライト系ステンレス鋼鋳片の製造方法は、マルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼を連続鋳造機にて断面サイズが直径350mm以下の丸ビレット鋳片に鋳造し、鋳造後、丸ビレット鋳片を大気中で鋳片表面温度が100℃以下になるまで放冷し、次いで、10〜200℃/Hrの昇温速度で、AC1点より200℃低い温度からAC1点より100℃高い温度の範囲まで丸ビレット鋳片を加熱し、加熱後、鋳片表面温度が100℃以下になるまで大気中又は炉内で冷却することを特徴とするものである。
【0008】
第2の発明によるマルテンサイト系及びフェライト系ステンレス鋼鋳片の製造方法は、第1の発明において、前記丸ビレット鋳片の加熱後、丸ビレット鋳片の表面温度が少なくとも500℃となるまでは30℃/Hr以下の冷却速度で徐冷し、その後、大気中又は炉内で鋳片表面温度が100℃以下になるまで冷却することを特徴とするものである。
【0009】
本発明では、マルテンサイト系ステンレス鋼及びフェライト系ステンレス鋼の断面サイズが直径350mm以下の丸ビレット鋳片を連続鋳造機にて鋳造した後、少なくとも表面温度が100℃以下の常温となるまで大気中で冷却する。従来、大気中で常温まで冷却すると、丸ビレット鋳片の表面に割れが発生するとして、大気中で冷却せずに、鋳造直後、鋳片表面温度が常温になる前に、鋳片の加熱又は徐冷を行っていたが、本発明者等は、直径が350mm以下の丸ビレット鋳片に限り、大気中で冷却しても鋳片に割れが発生しないことを見出した。
【0010】
これは、鋳片が直径350mm以下の小断面であるために、凝固時の鋳片温度分布に起因する熱応力が小さくなること、同様にマルテンサイト変態等の相変態に伴う応力が小さくなることと、鋳片が丸形状であるために鋳片に応力の集中する箇所がないこととによるもの、即ち、割れの原因である応力が小さいうえに、割れ易い箇所がないためと思われる。
【0011】
しかし、このように冷却したままでは鋳片は硬度が高いため、鋳片切断時の負荷が大きく作業能率が低下する。更に、冷却したままで放置すると、残留する熱応力や変態応力により、時間の経過に比例して鋳片に割れが発生する。そのため、鋳片硬度の低下と残留応力の除去とを目的として鋳片の熱処理を施す。
【0012】
熱処理の昇温速度は10〜200℃/Hrとする。これ以上遅くすることは能率を低下させ、又、これ以上速くすると鋳片の内部と表面との温度差が顕著になり好ましくない。加熱温度は、その鋳片のAC1点より200℃低い温度からAC1点より100℃高い温度の範囲とする。この範囲に加熱すれば残留応力が除去されると共に鋳片の硬度が低下する。
【0013】
加熱後は、鋳片表面温度が100℃以下になるまで大気中又は炉内で冷却することで、新たに熱応力や変態応力を発生させることがない。但し、冷却の際に丸ビレット鋳片の表面温度が少なくとも500℃となるまでは、30℃/Hr以下の冷却速度で炉内で徐冷することが好ましい。30℃/Hr以下の冷却速度で500℃まで徐冷することで、熱応力や変態応力の発生を防止すると共に、丸ビレットの反りの発生をも防止することができるからである。
【0014】
尚、本発明に示すマルテンサイト系ステンレス鋼及びフェライト系ステンレス鋼とはJISによる区分に従うものであり、例えば、マルテンサイト系ステンレス鋼はSUS410、SUS416等であり、フェライト系ステンレス鋼はSUS405、SUS430等である。
【0015】
【発明の実施の形態】
製鋼工場で溶製されたマルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼を、丸ビレット連続鋳造機にて、断面サイズが直径350mm以下の丸ビレット鋳片に鋳造する。そして、連続的に製造される鋳片を丸ビレット連続鋳造機の同調カッターにて所定の長さに切断し、切断された鋳片を、搬送ローラーテーブル等で同調カッターと連結された鋳片冷却場に搬送して大気中で冷却し、少なくとも鋳片の表面温度が100℃以下になるまで冷却を継続する。尚、本発明では同調カッターで切断された時を鋳造終了と定義する。
【0016】
大気中での冷却の際に、鋳片を積み重ねて冷却しても、鋳片を横に並べて冷却してもどちらでも良いが、カバー等で鋳片を覆う必要は無い。但し、鋳片冷却場では鋳片に、雨水を含め水がかからないようにする必要がある。尚、同調カッターと連結された鋳片冷却場が無い場合には、トングや台車等を用いて大気中で冷却可能な場所に鋳片を搬送し、そこで冷却する。
【0017】
鋳片の表面温度が100℃以下に降下してから、加熱炉や均熱炉等の鋳片の熱処理が可能な設備に鋳片を搬送し、鋳片の熱処理を行う。熱処理の時期は、残留応力による鋳片の割れを防止するために、鋳造終了から10日以内とすることが好ましい。
【0018】
熱処理は、鋳片の昇温速度を10〜200℃/Hrのうちの任意の値として鋳片を昇温し、鋳片の表面温度が、その鋳片のAC1点より200℃低い温度からAC1点より100℃高い温度の範囲まで昇温し、その温度で保持する。保持時間は昇温速度に依存し、昇温速度が上記範囲の遅い場合には数分間で良く、又、速い場合には4〜5時間として鋳片の内部まで昇温する。但し、鋳片の内部と表面との温度が均等になるまで保持する必要はない。
【0019】
所定時間保持した後は、そのまま炉内で冷却しても、又は炉から取り出し大気中で冷却してもどちらでも良く、鋳片表面温度が100℃以下となるまで冷却する。炉内で冷却する際に、冷却速度を制御しつつ冷却しても、又は、加熱を停止して冷却してもどちらでも良い。但し、鋳片の表面温度が少なくとも500℃となるまでは、30℃/Hr以下の冷却速度に制御して炉内で徐冷することが好ましい。このように常温まで冷却して熱処理を終了する。
【0020】
図1は、上述した本発明により製造した鋳片の鋳造終了から熱処理終了までの表面温度の推移の例を示す概略図であり、図中、曲線Aは鋳造後の鋳片冷却曲線、曲線Bは熱処理における昇温曲線、曲線C及び曲線Dは熱処理における冷却曲線を示すものである。
【0021】
鋳片をこのように処理することで、熱応力や変態応力による鋳片の表面割れを防止することができると共に、鋳片の硬度を低下させ、コールドソーにより所望の長さに鋳片を切断して使用することができるので、鋳片歩留りが向上する。又、熱処理を行う加熱炉等と連続鋳造機との操業を合わせる必要がないので、両者の操業スケジュールに柔軟性を持たせることができることや、熱処理を行う専用の炉を必要とせず、加熱炉等の空いた時を利用して熱処理することができること、及び、リフマグの使用が可能となり、鋳片を迅速に搬送することができる。
【0022】
【実施例】
[実施例1]
直径が300mmで、Cを0.2wt%、Mnを0.5wt%含有するマルテンサイト系ステンレス鋼の丸ビレット鋳片における本発明の実施例を説明する。
【0023】
丸ビレット連続鋳造機で鋳造した鋳片を鋳片冷却場で冷却した。鋳片表面温度は鋳造終了から15時間経過時に常温の25℃になった。この間の冷却速度を算出すると約60℃/Hrであった。そして、鋳造終了から約72時間経過した時点で、均熱炉の空き時間を利用して熱処理を実施した。熱処理では、昇温速度を70℃/Hrとし、鋳片表面温度を820℃まで上昇させ、その後、鋳片表面温度を820℃に制御して2時間保持した。尚、この昇温速度では、上記マルテンサイト系ステンレス鋼のAC1点は約805℃である。その後、25℃/Hrの冷却速度に制御して500℃まで冷却し、次いで、加熱を停止して均熱炉内で冷却し、鋳片表面温度が150℃になった時点で均熱炉から鋳片を取り出した。均熱炉内の冷却での冷却速度は約40℃/Hrであった。
【0024】
常温になった鋳片を、浸透探傷試験により検査して表面割れを調査したが、熱応力及び変態応力による表面割れは皆無であった。
【0025】
又、別の2つの鋳造チャンスの上記マルテンサイト系ステンレス鋼を、鋳造後、鋳片冷却場に放置して、放置している間の残留応力による割れの発生を調査した。表面割れは浸透探傷試験により検査した。調査結果を図2に示す。調査した2ロットとも鋳造終了からの経過日数が10日間までは割れの発生が認められなかったが、13日間以上となると割れの発生が認められた。この結果から、鋳造終了から10日間以内に熱処理を施すことで、割れの発生を防止できることが分かった。尚、図2に示す割れ発生率は、割れの発生した丸ビレット鋳片の本数比率で示したものである。
【0026】
[実施例2]
直径が300mmで、Cを0.01wt%、Mnを0.3wt%含有するフェライト系ステンレス鋼の丸ビレット鋳片における本発明の実施例を説明する。
【0027】
丸ビレット連続鋳造機で鋳造した鋳片を鋳片冷却場で冷却した。鋳片表面温度は鋳造終了から15時間経過時に常温の25℃になった。この間の冷却速度を算出すると約60℃/Hrであった。そして、鋳造終了から約144時間経過した時点で、均熱炉の空き時間を利用して熱処理を実施した。熱処理では、昇温速度を70℃/Hrとし、鋳片表面温度を600℃まで上昇させ、その後、鋳片表面温度を600℃に制御して1.5時間保持した。尚、この昇温速度では、上記フェライト系ステンレス鋼のAC1点は約630℃である。その後、25℃/Hrの冷却速度に制御して500℃まで冷却し、次いで、加熱を停止して均熱炉内で冷却し、鋳片表面温度が150℃になった時点で均熱炉から鋳片を取り出した。均熱炉内の冷却での冷却速度は約40℃/Hrであった。
【0028】
常温になった鋳片を、浸透探傷試験により検査して表面割れを調査したが、熱応力及び変態応力による表面割れは皆無であった。
【0029】
【発明の効果】
本発明によれば、熱応力や変態応力による鋳片表面割れを防止することができると共に、鋳片の硬度を低下させ、コールドソーにて所望の長さに切断して使用することができるので、鋳片歩留りが向上する。更に、熱処理を行う加熱炉等と連続鋳造機との操業を合わせる必要がないので、両者の操業スケジュールに柔軟性を持たせることができることや、熱処理を行う専用の炉を必要とせず、加熱炉等の空いた時を利用して熱処理することができること、及び、リフマグの使用が可能となって鋳片を迅速に搬送することができ、工業的な効果は格別である。
【図面の簡単な説明】
【図1】本発明により製造した鋳片の表面温度の推移の例を示す概略図である。
【図2】本発明の実施例において、大気中での冷却時間と表面割れとの関係を調査した結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing martensitic and ferritic stainless steel round billet slabs on a continuous casting machine, and more specifically, after casting, slab surface cracks due to thermal stress or transformation stress during slab cooling. The present invention relates to a production method that can be efficiently prevented.
[0002]
[Prior art]
When manufacturing slab slabs of martensitic stainless steel and ferritic stainless steel with a continuous casting machine, if the cast slab is cooled in the air, surface cracks will occur in the slab slab due to the cooling conditions. Occur. This occurs due to the tensile thermal stress on the slab surface caused by the slab temperature distribution during solidification and, further, in martensitic stainless steel, transformation stress associated with martensitic transformation. Conventionally, many methods for preventing this surface crack have been proposed in order to improve the yield of cast slabs and expand the applicable steel types in continuous casting machines.
[0003]
For example, in Japanese Patent Application Laid-Open No. 55-164029, the surface temperature of a martensitic stainless steel slab is encapsulated with a heat insulating material without being cooled to 650 ° C. or less after casting, and the retained heat of the slab is retained. A method for preventing surface cracks associated with martensitic transformation by slowly cooling while keeping the temperature is disclosed. In JP-A-55-33801, the surface temperature of a continuous cast slab of ferritic stainless steel is immediately heated without cooling to 150 ° C. or lower after casting, and then hot-rolled to obtain a slab. A method of cooling to room temperature after improving the material strength is disclosed.
[0004]
Conventionally, in the case of martensitic stainless steel and ferritic stainless steel small-section round billet casts, in order to prevent surface cracking, the round billet cast is cooled to room temperature after continuous casting as described above. Instead, it was immediately charged in a heating furnace and hot-rolled, or slowly cooled using a slow cooling furnace or heat insulation equipment.
[0005]
[Problems to be solved by the invention]
However, there are the following problems in the method of immediately inserting into a heating furnace after casting and performing hot rolling or the method of slow cooling in a slow cooling furnace or the like. That is, when the slab in a high temperature state is conveyed to a rolling process and heated and rolled, a consistent schedule management from casting to rolling is necessary, and the flexibility of operation of the continuous casting process and the rolling process is lost. In the case of slow cooling, it is necessary to install a dedicated slow cooling furnace and heat insulation equipment in the vicinity of the continuous casting equipment. Furthermore, when a hot slab is lifted and moved, a transfer device using magnetic force (hereinafter referred to as “the riff mug”) that is optimal for transporting round billet slabs with a small cross section cannot be used. It is necessary to use the tongs that are present, and there are problems such as extending the conveyance time by gripping with the tongs.
[0006]
The present invention has been made in view of the above circumstances, and its purpose is to provide flexibility in operation when manufacturing a small-section round billet slab of martensitic and ferritic stainless steel in a continuous casting machine. It is an object of the present invention to provide a manufacturing method capable of efficiently preventing slab surface cracking due to transformation stress or thermal stress during slab cooling without damaging and without requiring a dedicated annealing furnace or the like.
[0007]
[Means for Solving the Problems]
A method for producing a martensitic and ferritic stainless steel slab according to the first invention for solving the above-mentioned problems is that a martensitic stainless steel or a ferritic stainless steel has a sectional size of 350 mm or less in diameter in a continuous casting machine. After casting into a round billet slab, the round billet slab is allowed to cool in the atmosphere until the surface temperature of the slab becomes 100 ° C. or lower, and then A C1 at a temperature rising rate of 10 to 200 ° C./Hr. The round billet slab is heated from a temperature 200 ° C. lower than the point to a temperature 100 ° C. higher than the AC 1 point. After heating, the round billet slab is cooled in the atmosphere or in a furnace until the slab surface temperature becomes 100 ° C. or lower. It is a feature.
[0008]
The method for producing martensitic and ferritic stainless steel slabs according to the second invention is the method according to the first invention, wherein after the round billet slab is heated, the surface temperature of the round billet slab becomes at least 500 ° C. Slow cooling is performed at a cooling rate of 30 ° C./Hr or less , and then cooling is performed in the air or in a furnace until the slab surface temperature becomes 100 ° C. or less.
[0009]
In the present invention, after round billet cast pieces having a cross-sectional size of 350 mm or less in diameter of martensitic stainless steel and ferritic stainless steel are cast in a continuous casting machine, at least until the surface temperature reaches room temperature of 100 ° C. or less in the atmosphere. Cool with. Conventionally, if the surface of a round billet slab is cracked when cooled to room temperature in the atmosphere, the slab is heated immediately after casting and before the surface temperature of the slab reaches room temperature, without cooling in the air. Although slow cooling was performed, the present inventors found that cracks were not generated in the cast slab even when cooled in the atmosphere only for round billet slabs having a diameter of 350 mm or less.
[0010]
This is because the slab has a small cross section with a diameter of 350 mm or less, so that the thermal stress caused by the slab temperature distribution during solidification is reduced, and similarly the stress associated with phase transformation such as martensitic transformation is reduced. This is because the slab has a round shape and there is no portion where stress concentrates on the slab, that is, the stress that causes cracking is small and there is no portion that easily breaks.
[0011]
However, since the slab is high in hardness while being cooled in this way, the load at the time of cutting the slab is large and the work efficiency is lowered. Furthermore, when left as it is cooled, cracks occur in the slab in proportion to the passage of time due to residual thermal stress and transformation stress. Therefore, the slab is heat-treated for the purpose of reducing the slab hardness and removing the residual stress.
[0012]
The heating rate of the heat treatment is 10 to 200 ° C./Hr. It is not preferable to make it slower than this, and the efficiency is lowered, and if it is made faster than this, the temperature difference between the inside and the surface of the slab becomes remarkable. The heating temperature is in a range from a temperature 200 ° C. lower than the A C1 point of the slab to a temperature 100 ° C. higher than the A C1 point. Heating within this range removes residual stress and lowers the hardness of the slab.
[0013]
After heating, no new thermal or transformation stress is generated by cooling in the air or in the furnace until the slab surface temperature becomes 100 ° C. or lower. However, it is preferable to cool slowly in the furnace at a cooling rate of 30 ° C./Hr or less until the surface temperature of the round billet slab reaches at least 500 ° C. during cooling. This is because by gradually cooling to 500 ° C. at a cooling rate of 30 ° C./Hr or less, generation of thermal stress and transformation stress can be prevented, and occurrence of warping of the round billet can be prevented.
[0014]
In addition, the martensitic stainless steel and the ferritic stainless steel shown in the present invention conform to the classification according to JIS. For example, martensitic stainless steel is SUS410, SUS416, etc., and ferritic stainless steel is SUS405, SUS430, etc. It is.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A martensitic stainless steel or a ferritic stainless steel melted in a steelmaking factory is cast into a round billet cast piece having a diameter of 350 mm or less in a round billet continuous casting machine. Then, the slab that is continuously manufactured is cut into a predetermined length by a synchronous cutter of a round billet continuous casting machine, and the slab cooled by connecting the cut slab to the synchronous cutter by a conveying roller table or the like. It is transported to the field and cooled in the atmosphere, and the cooling is continued until at least the surface temperature of the slab becomes 100 ° C. or lower. In the present invention, the time when it is cut with a synchronous cutter is defined as the end of casting.
[0016]
When cooling in the atmosphere, the slabs may be stacked and cooled, or the slabs may be arranged side by side and cooled, but it is not necessary to cover the slab with a cover or the like. However, in the slab cooling station, it is necessary to prevent the slab from being exposed to water including rain water. In addition, when there is no slab cooling place connected with a synchronous cutter, a slab is conveyed to the place which can be cooled in air | atmosphere using a tongue, a trolley | bogie, etc., and it cools there.
[0017]
After the surface temperature of the slab drops to 100 ° C. or lower, the slab is transported to a facility capable of heat-treating the slab, such as a heating furnace or a soaking furnace, and the slab is heat-treated. The heat treatment is preferably performed within 10 days from the end of casting in order to prevent cracking of the slab due to residual stress.
[0018]
In the heat treatment, the temperature of the slab is raised at an arbitrary value of 10 to 200 ° C./Hr, and the surface temperature of the slab is 200 ° C. lower than the AC 1 point of the slab. The temperature is raised to a temperature range 100 ° C. higher than the A C1 point, and the temperature is maintained. The holding time depends on the rate of temperature rise, and may be several minutes when the rate of temperature rise is slow in the above range, and if it is fast, the temperature is raised to the inside of the slab as 4 to 5 hours. However, it is not necessary to hold until the temperature of the inside and the surface of the slab becomes equal.
[0019]
After holding for a predetermined time, it may be cooled in the furnace as it is, or may be taken out from the furnace and cooled in the air, and cooled until the slab surface temperature becomes 100 ° C. or less. When cooling in the furnace, the cooling may be performed while controlling the cooling rate, or the heating may be stopped and the cooling may be performed. However, until the surface temperature of the slab reaches at least 500 ° C., it is preferable to control the cooling rate at 30 ° C./Hr or less and gradually cool in the furnace. Thus, it cools to normal temperature and complete | finishes heat processing.
[0020]
FIG. 1 is a schematic diagram showing an example of the transition of the surface temperature from the end of casting to the end of heat treatment of a slab produced according to the present invention described above, in which curve A is a slab cooling curve after casting, curve B Indicates a temperature rise curve in heat treatment, and curve C and curve D indicate cooling curves in heat treatment.
[0021]
By treating the slab in this way, it is possible to prevent surface cracking of the slab due to thermal stress and transformation stress, reduce the hardness of the slab, and cut the slab to a desired length with a cold saw Slab yield is improved. In addition, since it is not necessary to match the operation of a heating furnace or the like for performing heat treatment with a continuous casting machine, both operation schedules can be made flexible, and a dedicated furnace for performing heat treatment is not required. It is possible to perform a heat treatment using a free time and the like, and it is possible to use a riff mug, and the slab can be conveyed quickly.
[0022]
【Example】
[Example 1]
An embodiment of the present invention in a round billet slab of martensitic stainless steel having a diameter of 300 mm, containing 0.2 wt% C and 0.5 wt% Mn will be described.
[0023]
The slab cast by the round billet continuous casting machine was cooled in the slab cooling field. The surface temperature of the slab became 25 ° C. at room temperature when 15 hours had elapsed from the end of casting. The cooling rate during this period was calculated to be about 60 ° C./Hr. Then, when about 72 hours passed from the end of casting, heat treatment was performed using the free time of the soaking furnace. In the heat treatment, the temperature rising rate was 70 ° C./Hr, the slab surface temperature was increased to 820 ° C., and then the slab surface temperature was controlled at 820 ° C. and held for 2 hours. At this rate of temperature increase, the A C1 point of the martensitic stainless steel is about 805 ° C. Thereafter, the temperature is controlled to a cooling rate of 25 ° C./Hr and cooled to 500 ° C. Then, the heating is stopped and cooled in a soaking furnace, and when the slab surface temperature reaches 150 ° C., The slab was taken out. The cooling rate in cooling in the soaking furnace was about 40 ° C./Hr.
[0024]
The slab at room temperature was inspected by a penetrant flaw test to investigate surface cracks, but there were no surface cracks due to thermal stress and transformation stress.
[0025]
Further, the above-described martensitic stainless steel having two other casting opportunities was left in the slab cooling field after casting, and the occurrence of cracks due to residual stress during the time left was examined. Surface cracks were inspected by penetrant testing. The survey results are shown in FIG. In the two lots examined, no cracks were observed until 10 days after the end of casting, but cracks were observed after 13 days or more. From this result, it was found that the occurrence of cracks can be prevented by performing a heat treatment within 10 days from the end of casting. In addition, the crack incidence shown in FIG. 2 is shown by the number ratio of the round billet cast pieces in which cracks occurred.
[0026]
[Example 2]
An embodiment of the present invention in a ferritic stainless steel round billet slab having a diameter of 300 mm, containing 0.01 wt% C and 0.3 wt% Mn will be described.
[0027]
The slab cast by the round billet continuous casting machine was cooled in the slab cooling field. The surface temperature of the slab became 25 ° C. at room temperature when 15 hours had elapsed from the end of casting. The cooling rate during this period was calculated to be about 60 ° C./Hr. Then, when about 144 hours passed from the end of casting, heat treatment was performed using the free time of the soaking furnace. In the heat treatment, the temperature rising rate was 70 ° C./Hr, the slab surface temperature was raised to 600 ° C., and then the slab surface temperature was controlled at 600 ° C. and held for 1.5 hours. At this rate of temperature increase, the A C1 point of the ferritic stainless steel is about 630 ° C. Thereafter, the cooling rate is controlled to 25 ° C./Hr to cool to 500 ° C., then the heating is stopped and cooled in a soaking furnace, and when the slab surface temperature reaches 150 ° C., The slab was taken out. The cooling rate in cooling in the soaking furnace was about 40 ° C./Hr.
[0028]
The slab at room temperature was inspected by a penetrant flaw test to investigate surface cracks, but there were no surface cracks due to thermal stress and transformation stress.
[0029]
【The invention's effect】
According to the present invention, it is possible to prevent slab surface cracking due to thermal stress and transformation stress, reduce the hardness of the slab, and use it by cutting it to a desired length with a cold saw. The slab yield is improved. Furthermore, since it is not necessary to match the operation of a heating furnace or the like that performs heat treatment with the continuous casting machine, both operation schedules can be made flexible, and a dedicated furnace for performing heat treatment is not required, and the heating furnace It is possible to perform a heat treatment using a free time and the like, and it is possible to use a riff mug, so that a slab can be conveyed quickly, and the industrial effect is exceptional.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of the transition of the surface temperature of a slab manufactured according to the present invention.
FIG. 2 is a diagram showing the results of investigating the relationship between the cooling time in the atmosphere and surface cracks in an example of the present invention.

Claims (2)

マルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼を連続鋳造機にて断面サイズが直径350mm以下の丸ビレット鋳片に鋳造し、鋳造後、丸ビレット鋳片を大気中で鋳片表面温度が100℃以下になるまで放冷し、次いで、10〜200℃/Hrの昇温速度で、AC1点より200℃低い温度からAC1点より100℃高い温度の範囲まで丸ビレット鋳片を加熱し、加熱後、鋳片表面温度が100℃以下になるまで大気中又は炉内で冷却することを特徴とするマルテンサイト系及びフェライト系ステンレス鋼鋳片の製造方法。Martensitic stainless steel or ferritic stainless steel is cast into a round billet slab having a cross-sectional size of 350 mm or less in a continuous casting machine. allowed to cool to, then, at a heating rate of 10 to 200 ° C. / Hr, heating the round billet cast strip from 200 ° C. lower temperature than the C1 point a to 100 ° C. temperature range higher than point C1 a, heating Then, it cools in air | atmosphere or in a furnace until slab surface temperature becomes 100 degrees C or less, The manufacturing method of the martensitic type and ferritic stainless steel slab characterized by the above-mentioned. 前記丸ビレット鋳片の加熱後、丸ビレット鋳片の表面温度が少なくとも500℃となるまでは30℃/Hr以下の冷却速度で徐冷し、その後、大気中又は炉内で鋳片表面温度が100℃以下になるまで冷却することを特徴とする請求項1に記載のマルテンサイト系及びフェライト系ステンレス鋼鋳片の製造方法。After the round billet slab is heated, it is gradually cooled at a cooling rate of 30 ° C./Hr or less until the surface temperature of the round billet slab reaches at least 500 ° C., and then the slab surface temperature in the air or in a furnace It cools until it becomes 100 degrees C or less, The manufacturing method of the martensitic and ferritic stainless steel slab of Claim 1 characterized by the above-mentioned.
JP35082998A 1998-12-10 1998-12-10 Method for producing martensitic and ferritic stainless steel slabs Expired - Fee Related JP3661460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35082998A JP3661460B2 (en) 1998-12-10 1998-12-10 Method for producing martensitic and ferritic stainless steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35082998A JP3661460B2 (en) 1998-12-10 1998-12-10 Method for producing martensitic and ferritic stainless steel slabs

Publications (2)

Publication Number Publication Date
JP2000178649A JP2000178649A (en) 2000-06-27
JP3661460B2 true JP3661460B2 (en) 2005-06-15

Family

ID=18413175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35082998A Expired - Fee Related JP3661460B2 (en) 1998-12-10 1998-12-10 Method for producing martensitic and ferritic stainless steel slabs

Country Status (1)

Country Link
JP (1) JP3661460B2 (en)

Also Published As

Publication number Publication date
JP2000178649A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
KR102292306B1 (en) Hot-rolled sheet annealing facility for Si-containing hot-rolled steel sheet, hot-rolled sheet annealing method and descaling method
TWI283613B (en) Procedure and plant for the production of hot-rolled strip from austenitic stainless steel
CN113042532B (en) Bi-containing high magnetic induction oriented silicon steel hot-rolled strip steel edge quality control method
KR940008781A (en) Method and equipment for manufacturing hot rolled steel strip from continuous precast material
JP3661460B2 (en) Method for producing martensitic and ferritic stainless steel slabs
JP5271512B2 (en) Hot rolling equipment
JP3945238B2 (en) Steel plate manufacturing method
JPH1024317A (en) Method for cooling shape heated by rolling
JP5015386B2 (en) Heat treatment method for thick steel plate
JPH10128425A (en) Descaling method
JP3383102B2 (en) Slow cooling method for hot rolled steel
JPH07251265A (en) Method for scarfing cast steel slab
JP4810732B2 (en) Steel plate thermomechanical processing equipment
EP2708609A1 (en) System and method for induction treatment of metals
US3042556A (en) Process for treating steel
JP4085975B2 (en) Hot rolling method
JP2006206949A (en) METHOD FOR MANUFACTURING Ni ALLOY
JP4333283B2 (en) Manufacturing method of high-strength steel sheet
JPH06198304A (en) Method for rolling steel containing cu or sn
JP2005146307A (en) Method for structualucing structual steel
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JPH05140642A (en) Method for dehydrogenizing hot rolled steel material
KR810000841B1 (en) Method for heating a silicon-containing steel slab in a walking-beam type heating furnace
JP6177159B2 (en) Method for cooling hot-rolled coil material and method for producing hot-rolled coil material
JPS5852441B2 (en) Method for preventing surface cracking of steel slabs during hot rolling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees