JP3660027B2 - Yaw moment control method for vehicle - Google Patents

Yaw moment control method for vehicle Download PDF

Info

Publication number
JP3660027B2
JP3660027B2 JP24733695A JP24733695A JP3660027B2 JP 3660027 B2 JP3660027 B2 JP 3660027B2 JP 24733695 A JP24733695 A JP 24733695A JP 24733695 A JP24733695 A JP 24733695A JP 3660027 B2 JP3660027 B2 JP 3660027B2
Authority
JP
Japan
Prior art keywords
turning
vehicle
wheel
wheels
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24733695A
Other languages
Japanese (ja)
Other versions
JPH0986203A (en
Inventor
哲郎 浜田
善博 金丸
充弘 岩田
直樹 林部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24733695A priority Critical patent/JP3660027B2/en
Priority to TW085110100A priority patent/TW330182B/en
Priority to DE19637193A priority patent/DE19637193B4/en
Priority to US08/710,303 priority patent/US6076033A/en
Priority to KR1019960040782A priority patent/KR100227600B1/en
Priority to CA002186444A priority patent/CA2186444C/en
Priority to CN96113365A priority patent/CN1059395C/en
Publication of JPH0986203A publication Critical patent/JPH0986203A/en
Application granted granted Critical
Publication of JP3660027B2 publication Critical patent/JP3660027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure turning performance and high-speed stability by avoiding the generation of undesirable yawing moment at the time of accelerating or decelerating a turning vehicle. SOLUTION: When a turning vehicle is accelerated, grounding load of rear wheels WRL, WRR is increased so as to generate yawing moment in a reverse direction to a turning direction, but hydraulic clutches 3L, 3R on one side are engaged with torque proportional to the product of longituidnal acceleration and lateral acceleration to generate braking force and driving force respectively to turning inner wheels and turning outer wheels. Yawing moment is thereby nullified to improve turning performance. When the turning vehicle is decelerated, the grounding load of front wheels WFL, WFR is increased so as to generate yawing moment in the same direction as the turning direction, but the hydraulic clutches 3L, 3R on one side are engaged with torque proportional to the product of longitudinal acceleration and lateral acceleration to generate driving force and braking force respectively to the turning inner wheels and turning outer wheels. Yawing moment is thereby nullified to improve high-speed stability.

Description

【0001】
【発明の属する技術分野】
本発明は、左右の車輪の一方に制動力を発生させ、他方に駆動力を発生させることによりヨーモーメントを制御する車両におけるヨーモーメント制御方法に関する。
【0002】
【従来の技術】
車両の左右の車輪を変速機及びトルク伝達クラッチで相互に連結し、前記トルク伝達クラッチのトルク伝達容量を制御するトルク分配制御装置が、特開平5−131855号公報により公知である。
【0003】
かかるトルク分配制御装置において、旋回内輪から旋回外輪にトルクを伝達すれば、旋回外輪に駆動力を発生させるとともに旋回内輪に制動力を発生させて旋回性能を向上させることができ、また旋回外輪から旋回内輪にトルクを伝達すれば、旋回外輪に制動力を発生させるとともに旋回内輪に駆動力を発生させて高速安定性能を向上させることができる。
【0004】
【発明が解決しようとする課題】
ところで、旋回中の車両が加速或いは減速を行うと、車両の重心位置に作用する前後方向の慣性力によって前輪及び後輪の接地荷重が変化するため、ヨー軸回りの回転モーメント(ヨーモーメント)が発生して車両の旋回性能や高速安定性能に影響を及ぼす問題がある。
【0005】
本発明は前述の事情に鑑みてなされたもので、旋回中の車両が加減速を行う際に、望ましくないヨーモーメントが発生するのを回避して旋回性能や高速安定性能を確保することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、左右の車輪の一方に制動力を発生させ、他方に駆動力を発生させることによりヨーモーメントを制御する車両において、前記駆動力及び制動力の値を車両の前後加速度及び横加速度の積の関数として設定し、車両が旋回中に加速するときには旋回内輪に制動力を発生させるとともに旋回外輪に駆動力を発生させ、車両が旋回中に減速するときには旋回内輪に駆動力を発生させるとともに旋回外輪に制動力を発生させることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0008】
図1〜図3は本発明の一実施例を示すもので、図1はトルク分配制御装置を備えたフロントエンジン・フロントドライブ車の全体構成図、図2は旋回中の車両に発生するヨーモーメントを説明する図、図3は油圧クラッチの係合に基づいて発生するヨーモーメントを説明する図である。
【0009】
図1に示すように、車体前部に横置きに搭載したエンジンEの右端にトランスミッションMが接続されており、これらエンジンE及びトランスミッションMにより駆動輪である左前輪WFL及び右前輪WFRが駆動される。
【0010】
従動輪である左後輪WRL及び右後輪RRの車軸1L ,1R 間に、左右の後輪WRL,後輪RRをそれらが相互に異なる回転数で回転するように接続する変速機2が設けられる。変速機2には第1油圧クラッチ3L 及び第2油圧クラッチ3R が設けられており、第1油圧クラッチ3L を係合させると、左後輪WRLの回転数が減速されて右後輪RRの回転数が増速され、第2油圧クラッチ3R を係合させると、右後輪RRの回転数が減速されて左後輪WRL回転数が増速される。
【0011】
即ち、変速機2は左右の車軸1L ,1R と同軸上に配置された第1軸4と、左右の車軸1L ,1R と平行であり且つ相互に同軸上に配置された第2軸5及び第3軸6を備えており、第2軸5と第3軸6との間に前記第1油圧クラッチ3L が配置されとともに、右車軸1R と第1軸4との間に前記第2油圧クラッチ3R が配置される。右車軸1R に設けた小径の第1ギヤ7が第2軸5に設けた大径の第2ギヤ8に噛合するともに、第3軸6に設けた小径の第3ギヤ9が第1軸4に設けた大径の第4ギヤ10に噛合する。左車軸1L に設けた第5ギヤ11が第3軸6に設けた第6ギヤ12に噛合する。
【0012】
第1ギヤ7及び第3ギヤ9の歯数は互いに同一であり、また第2ギヤ8及び第4ギヤ10の歯数は互いに同一であって前記第1ギヤ7及び第3ギヤ9の歯数よりも多くなるように設定される。また第5ギヤ11及び第6ギヤ12の歯数は互いに同一になるように設定される。
【0013】
従って、第1油圧クラッチ3L を係合させると、右後輪RRは右車軸1R 、第1ギヤ7、第2ギヤ8、第2軸5、第1油圧クラッチ3L 、第3軸6、第6ギヤ12、第5ギヤ11及び左車軸1L を介して左後輪WRLに連結される。このとき、第1ギヤ7及び第2ギヤ8の歯数比に応じて、右後輪RRの回転数に対して左後輪WRLの回転数が減速される。即ち、左右後輪WRL,WRRが同速度で回転している状態から第1油圧クラッチ3L を係合させると、右後輪RRの回転数が増速されて左後輪WRLの回転数が減速される。
【0014】
また、第2油圧クラッチ3R を係合させると、右後輪RRは右車軸1R 、第2油圧クラッチ3R 、第1軸4、第4ギヤ10、第3ギヤ9、第3軸6、第6ギヤ12、第5ギヤ11及び左車軸1L を介して左後輪WRLに連結される。このとき、第4ギヤ10及び第3ギヤ9に歯数比に応じて、右後輪RRの回転数に対して左後輪WRLの回転数が増速される。即ち、左右後輪WRL,WRRが同速度で回転している状態から第2油圧クラッチ3R を係合させると、右後輪RRの回転数が減速されて左後輪WRLの回転数が増速される。
【0015】
第1油圧クラッチ3L 及び第2油圧クラッチ3R の係合力は、それらに加えられる油圧をの大きさを調整することにより無段階に制御することが可能であり、従って左右後輪WRL,WRRの回転数比も、前記第1〜第4ギヤ7,8,9,10の歯数比によって決まる範囲内で無段階に制御することが可能である。
【0016】
第1油圧クラッチ3L 及び第2油圧クラッチ3R が接続された電子制御ユニットUには、車体の横加速度を検出する横加速度センサS1 、ステアリングホイール13の回転角を検出する舵角センサS2 、エンジンEの吸気管内絶対圧を検出する吸気管内絶対圧センサS3 、エンジンEの回転数を検出するエンジン回転数センサS4 及び車速を演算すべく4輪の回転数をそれぞれ検出する車輪速センサS5 〜S8 からの信号が入力される。
【0017】
電子制御ユニットUは、横加速度センサS1 で検出した車体の実横加速度を、舵角センサS2 で検出したステアリングホイール13の回転角及び車輪速センサS5 〜S8 で検出した車輪速から演算した推定横加速度に基づいて補正し、時間遅れの無い車両の横加速度Ygを演算する。また電子制御ユニットUは、吸気管内絶対圧センサS3 及びエンジン回転数センサS4 の出力から演算したエンジントルクにトランスミッションギヤ比を乗算して駆動輪トルクを演算し、この駆動輪トルクに基づいて車両の前後加速度Xgを演算する。そして、電子制御ユニットUは、前記横加速度Yg及び前後加速度Xgに基づいて第1油圧クラッチ3L 及び第2油圧クラッチ3R の係合力を制御する。
【0018】
次に、前述の構成を備えた本発明の実施例の作用について説明する。
【0019】
図2は重量Wの車両が横加速度Ygで左旋回している状態を示すもので、車両の重心位置には遠心力W×Ygが作用しており、この遠心力W×Ygは前輪と路面との間に作用するコーナリングフォースCFf及び後輪と路面との間に作用するコーナリングフォースCFrの和に釣り合っている。
【0020】
W×Yg=CFf+CFr …(1)
車両の重心位置と前輪との距離をaとし、重心位置と後輪との距離をbとすると、前記コーナリングフォースCFf,CFrによるヨー軸回りのモーメントM1 は、
1 =a×CFf−b×CFr …(2)
で与えられる。
【0021】
ところで、車両が直進走行しているときに左右両輪の接地荷重は同一であるが、車両が旋回すると旋回内輪と旋回外輪とで接地荷重が変化する。即ち、旋回時には車体の重心に旋回方向外側に向かう遠心力が作用するため、車体が旋回方向外側に倒れようとする。その結果、旋回内輪に路面から浮き上がる傾向が生じて該旋回内輪の接地荷重が減少するとともに、旋回外輪に路面に押し付けられる傾向が生じて該旋回外輪の接地荷重が増加する。
【0022】
また、車両が定速走行しているときに前後輪の接地荷重は一定であるが、車両が加速又は減速すると前後輪の接地荷重が変化する。即ち、加速時には車体の重心に車体後方に向かう慣性力が作用するため、車体がテールダイブしようとして後輪の接地荷重が増加し、その結果後輪のコーナリングフォースが増加して旋回方向と逆方向のモーメントM1 が作用し、また減速時には車体の重心に車体前方に向かう慣性力が作用するため、車体がノーズダイブしようとして前輪の接地荷重が増加し、その結果前輪のコーナリングフォースが増加して旋回方向と同方向のモーメントM1 が作用する(図2の実線矢印及び破線矢印参照)。
【0023】
車両が定速直線走行しているとき、左右の前輪の接地荷重の和をWfとすると各前輪の接地荷重はそれぞれWf/2であるが、車両が横加速度Ygで旋回しながら前後加速度Xgで加減速しているとき、旋回内側の前輪の接地荷重WFI及び旋回外側の前輪の接地荷重WFOは、
FI=Wf/2−Kf×Yg−Kh×Xg …(3)
FO=Wf/2+Kf×Yg−Kh×Xg …(4)
で与えられ、また左右の後輪の接地荷重の和をWrとすると旋回内側の後輪の接地荷重WRI及び旋回外側の後輪の接地荷重WROは、
RI=Wr/2−Kr×Yg+Kh×Xg …(5)
RO=Wr/2+Kr×Yg+Kh×Xg …(6)
で与えられる。(3)式〜(6)式において、係数Kf,Kr,Khは次式で与えられる。
【0024】
Kf=(Gf′×hg′×W+hf×Wf)/tf …(7)
Kr=(Gr′×hg′×W+hr×Wr)/tr …(8)
Kh=hg×W/(2×L) …(9)
ここで使用されている記号は以下の通りである。
【0025】

Figure 0003660027
タイヤのコーナリングフォースが該タイヤの接地荷重に比例すると仮定すると、前輪のコーナリングフォースCFfは、(3)式で与えられる旋回内側の前輪の接地荷重WFIと、(4)式で与えられる旋回外側の前輪の接地荷重WFOと、横加速度Ygとにより、次式で与えられる。
【0026】
Figure 0003660027
また、後輪のコーナリングフォースCFrは、(5)式で与えられる旋回内側の後輪の接地荷重WRIと、(6)式で与えられる旋回外側の後輪の接地荷重WROと、横加速度Ygとにより、次式で与えられる。
【0027】
Figure 0003660027
(10)式及び(11)式を(2)式に代入すると、
Figure 0003660027
ここで、a×Wf−b×Wr=0であり、また(9)式からKh=hg×W/(2×L)であるから、前記(12)式は、
1 =−hg×W×Xg×Yg …(13)
となり、ヨー軸回りのモーメントM1 は前後加速度Xgと横加速度Ygとの積に比例することが分かる。従って、(13)式で与えられるヨー軸回りのモーメントM1 を打ち消すように旋回内輪及び旋回外輪に駆動力及び制動力を分配すれば、旋回中における加速時或いは減速時の旋回安定性及び高速安定性の向上を図ることができる。
【0028】
一方、図3に示すように、例えば旋回内輪に制動力Fを発生させたとき、変速機2のギヤ比をiとすると旋回外輪には駆動力はF/iが発生する。これら制動力F及び駆動力F/iにより車両に発生するヨー軸回りのモーメントM2 は、
Figure 0003660027
で与えられる。ここでκ=1+(1/i)、T;クラッチトルク、R;タイヤ半径である。
【0029】
従って、モーメントM2 でモーメントM1 を打ち消すために必要なクラッチトルクTは、M1 =M2 と置くことにより、
T={2R/(tr×κ)}×hg×W×Xg×Yg …(15)
で与えられる。(15)式から明らかなように、クラッチトルクTは前後加速度Xg及び横加速度Ygの積に比例した値となる。尚、以上の説明ではタイヤのコーナリングフォースが該タイヤの接地荷重に比例すると仮定したので、クラッチトルクTが前後加速度Xg及び横加速度Ygの積Xg×Ygに比例した値となるが、厳密にはコーナリングフォースは接地荷重に比例しないため、実際にはクラッチトルクTを前後加速度Xg及び横加速度Ygの積Xg×Ygの関数として取り扱うと良い。
【0030】
而して、表1に示すように、車両が左旋回中に加速するとき、第1油圧クラッチ3L を(15)式で与えられるクラッチトルクTで係合させると、旋回内輪の回転数が減速されて制動力Fが発生するとともに、旋回外輪の回転数が増速されて駆動力F/iが発生することにより、コーナリングフォースに基づく旋回方向と逆方向のモーメントM1 が打ち消されて旋回性能が向上する。同様に、車両が右旋回中に加速するときに第2油圧クラッチ3R を前記クラッチトルクTで係合させれば、前述と同様にコーナリングフォースに基づくモーメントM1 が打ち消されて旋回性能が向上する。
【0031】
また、車両が左旋回中に減速するとき、第2油圧クラッチ3R を(15)式で与えられるクラッチトルクTで係合させると、旋回内輪の回転数が増速されて駆動力Fが発生するとともに、旋回外輪の回転数が減速されて制動力F/iが発生することにより、コーナリングフォースに基づく旋回方向と同方向のモーメントM1 が打ち消されて高速安定性能が向上する。同様に、車両が右旋回中に減速するときに第1油圧クラッチ3L を前記クラッチトルクTで係合させれば、前述と同様にコーナリングフォースに基づくモーメントM1 が打ち消されて高速安定性能が向上する。
【0032】
【表1】
Figure 0003660027
【0033】
尚、車両の直進走行中に加速或いは減速を行っても、車両のヨーモーメントは変化しないため、第1油圧クラッチ3L 及び第2油圧クラッチ3R は非係合状態に保たれる。
【0034】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0035】
例えば、実施例では従動輪である左右後輪WRL,WRR間のトルク分配について説明したが、本発明は駆動輪間のトルク分配に対しても適用することができるばかりか、従動輪に電気モータ等の補助駆動源を接続し、駆動輪のスリップ時等に前記補助駆動源を作動させて四輪駆動状態とする車両において、前記従動輪間のトルク分配についても適用することができる。更に、第1油圧クラッチ3L 及び第2油圧クラッチ3R に代えて、電磁クラッチや流体カップリング等の他のクラッチを用いることができる。
【0036】
【発明の効果】
以上のように、本発明によれば、左右の車輪の一方に発生させる駆動力及び他方に発生させる制動力の値を、車両の前後加速度及び横加速度の積の関数として設定することにより、車両が旋回中に加速するときには旋回内輪を減速して制動力を発生させるとともに、旋回外輪の回転数を増速して駆動力を発生させ、コーナリングフォースに基づいて発生する旋回方向と逆方向のモーメントを打ち消して旋回性能を向上させることができる。また車両が旋回中に減速するときには旋回内輪の回転数を増速して駆動力を発生させるとともに、旋回外輪の回転数を減速して制動力を発生させ、コーナリングフォースに基づいて発生する旋回方向と同方向のモーメントを打ち消して高速安定性能を向上させることができる。
【図面の簡単な説明】
【図1】トルク分配制御装置を備えたフロントエンジン・フロントドライブ車の全体構成図
【図2】旋回中の車両に発生するヨーモーメントを説明する図
【図3】油圧クラッチの係合に基づいて発生するヨーモーメントを説明する図
【符号の説明】
2 変速機
L 第1油圧クラッチ
R 第2油圧クラッチ
RL 左後輪(車輪)
RR 右後輪(車輪)
Xg 前後加速度
Yg 横加速度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yaw moment control method in a vehicle that controls a yaw moment by generating a braking force on one of left and right wheels and generating a driving force on the other wheel.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 5-131855 discloses a torque distribution control device for connecting left and right wheels of a vehicle with a transmission and a torque transmission clutch to control the torque transmission capacity of the torque transmission clutch.
[0003]
In such a torque distribution control device, if torque is transmitted from the turning inner wheel to the turning outer wheel, a driving force can be generated in the turning outer wheel and a braking force can be generated in the turning inner wheel to improve turning performance. If torque is transmitted to the turning inner wheel, a braking force can be generated on the turning outer wheel and a driving force can be generated on the turning inner wheel to improve the high-speed stability performance.
[0004]
[Problems to be solved by the invention]
By the way, when the turning vehicle accelerates or decelerates, the ground load on the front and rear wheels changes due to the inertial force in the front-rear direction acting on the center of gravity position of the vehicle, so that the rotational moment (yaw moment) around the yaw axis is There is a problem that occurs and affects the turning performance and high-speed stability performance of the vehicle.
[0005]
The present invention has been made in view of the above-described circumstances, and it is an object of the present invention to prevent turning of an undesirable yaw moment when a turning vehicle performs acceleration / deceleration and to ensure turning performance and high-speed stability performance. And
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a driving force and a braking force value in a vehicle that controls a yaw moment by generating a braking force on one of the left and right wheels and generating a driving force on the other wheel. It is set as a function of the product of longitudinal acceleration and lateral acceleration of the vehicle. When the vehicle accelerates during turning, it generates braking force on the inner turning wheel and driving force on the outer turning wheel, and turns when the vehicle decelerates during turning. to generate a braking force to the turning outer wheel with generating a driving force to the inner ring, characterized in Rukoto.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0008]
1 to 3 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a front engine / front drive vehicle equipped with a torque distribution control device, and FIG. 2 is a yaw moment generated in a turning vehicle. FIG. 3 is a diagram for explaining the yaw moment generated based on the engagement of the hydraulic clutch.
[0009]
As shown in FIG. 1, a transmission M is connected to the right end of an engine E mounted horizontally at the front of the vehicle body. The engine E and the transmission M allow a left front wheel W FL and a right front wheel W FR as drive wheels to be driven. Driven.
[0010]
Between axles 1 L, 1 R after left is a driven wheel wheels W RL and the right rear wheel RR, left and right rear wheels W RL, shifting the rear wheels RR them connected to rotate at a rotational speed different from each other Machine 2 is provided. The transmission 2 is provided with a first hydraulic clutch 3 L and a second hydraulic clutch 3 R. When the first hydraulic clutch 3 L is engaged, the rotational speed of the left rear wheel W RL is decelerated and the right rear When the rotation speed of the wheel RR is increased and the second hydraulic clutch 3 R is engaged, the rotation speed of the right rear wheel RR is reduced and the rotation speed of the left rear wheel W RL is increased.
[0011]
That is, the transmission 2 axles 1 right of L, 1 R and first shaft 4 disposed coaxially, left and right axles 1 L, 1 is in parallel with R and the second, which is arranged coaxially to each other The first hydraulic clutch 3 L is disposed between the second shaft 5 and the third shaft 6, and the right axle 1 R and the first shaft 4 are disposed between the second shaft 5 and the third shaft 6. The second hydraulic clutch 3 R is arranged. A first gear 7 having a small diameter provided on the right axle 1 R meshes with a second gear 8 having a large diameter provided on the second shaft 5, and a third gear 9 having a small diameter provided on the third shaft 6 is connected to the first shaft. 4 is meshed with a large-diameter fourth gear 10 provided on 4. The fifth gear 11 provided on the left axle 1 L meshes with the sixth gear 12 provided on the third shaft 6.
[0012]
The first gear 7 and the third gear 9 have the same number of teeth, and the second gear 8 and the fourth gear 10 have the same number of teeth, and the first gear 7 and the third gear 9 have the same number of teeth. It is set to be more than that. The number of teeth of the fifth gear 11 and the sixth gear 12 is set to be the same.
[0013]
Accordingly, when the first hydraulic clutch 3 L is engaged, the right rear wheel RR is the right axle 1 R , the first gear 7, the second gear 8, the second shaft 5, the first hydraulic clutch 3 L , and the third shaft 6. , sixth gear 12 is connected to the left rear wheels W RL via the fifth gear 11 and the left axle 1 L. At this time, the rotational speed of the left rear wheel WRL is decelerated with respect to the rotational speed of the right rear wheel RR according to the gear ratio of the first gear 7 and the second gear 8. That is, when the first hydraulic clutch 3 L is engaged from the state where the left and right rear wheels W RL and W RR are rotating at the same speed, the rotational speed of the right rear wheel RR is increased and the left rear wheel W RL The rotational speed is reduced.
[0014]
When the second hydraulic clutch 3 R is engaged, the right rear wheel RR is the right axle 1 R , the second hydraulic clutch 3 R , the first shaft 4, the fourth gear 10, the third gear 9, and the third shaft 6. , sixth gear 12 is connected to the left rear wheels W RL via the fifth gear 11 and the left axle 1 L. At this time, the rotation speed of the left rear wheel WRL is increased with respect to the rotation speed of the right rear wheel RR according to the gear ratio of the fourth gear 10 and the third gear 9. That is, when the second hydraulic clutch 3 R is engaged from the state where the left and right rear wheels W RL , W RR are rotating at the same speed, the rotational speed of the right rear wheel RR is reduced and the left rear wheel W RL rotates. The number is increased.
[0015]
The engagement forces of the first hydraulic clutch 3 L and the second hydraulic clutch 3 R can be controlled steplessly by adjusting the magnitude of the hydraulic pressure applied to them, and therefore the left and right rear wheels W RL , rotational speed ratio of W RR is also possible to control the first to steplessly within the range determined by the gear ratio of the fourth gear 7, 8, 9 and 10.
[0016]
The electronic control unit U to which the first hydraulic clutch 3 L and the second hydraulic clutch 3 R are connected includes a lateral acceleration sensor S 1 that detects the lateral acceleration of the vehicle body and a steering angle sensor S that detects the rotation angle of the steering wheel 13. 2 , an intake pipe absolute pressure sensor S 3 that detects the absolute pressure in the intake pipe of the engine E, an engine speed sensor S 4 that detects the speed of the engine E, and a wheel that detects the rotational speeds of the four wheels to calculate the vehicle speed. signal from the fast sensor S 5 to S 8 are inputted.
[0017]
The electronic control unit U calculates the actual lateral acceleration of the vehicle body detected by the lateral acceleration sensor S 1 from the rotation angle of the steering wheel 13 detected by the steering angle sensor S 2 and the wheel speed detected by the wheel speed sensors S 5 to S 8. Correction is performed based on the calculated estimated lateral acceleration, and the lateral acceleration Yg of the vehicle without time delay is calculated. The electronic control unit U calculates drive wheel torque by multiplying the engine torque calculated from the outputs of the intake pipe absolute pressure sensor S 3 and the engine speed sensor S 4 by the transmission gear ratio, and based on the drive wheel torque. A longitudinal acceleration Xg of the vehicle is calculated. The electronic control unit U controls the engagement force of the first hydraulic clutch 3 L and the second hydraulic clutch 3 R based on the lateral acceleration Yg and the longitudinal acceleration Xg.
[0018]
Next, the operation of the embodiment of the present invention having the above-described configuration will be described.
[0019]
FIG. 2 shows a state in which a vehicle having a weight W is turning left at a lateral acceleration Yg. Centrifugal force W × Yg acts on the center of gravity of the vehicle, and this centrifugal force W × Yg is applied to the front wheels, the road surface, and the road surface. The cornering force CFf acting between the corners and the cornering force CFr acting between the rear wheel and the road surface are balanced.
[0020]
W × Yg = CFf + CFr (1)
If the distance between the center of gravity of the vehicle and the front wheel is a, and the distance between the center of gravity and the rear wheel is b, the moment M 1 around the yaw axis by the cornering forces CFf and CFr is
M 1 = a × CFf−b × CFr (2)
Given in.
[0021]
By the way, when the vehicle is traveling straight ahead, the ground contact loads of the left and right wheels are the same, but when the vehicle turns, the ground load changes between the turning inner wheel and the turning outer wheel. That is, when the vehicle turns, a centrifugal force directed outward in the turning direction acts on the center of gravity of the vehicle body, so that the vehicle body tends to fall outward in the turning direction. As a result, the turning inner wheel tends to lift from the road surface, the grounding load of the turning inner wheel decreases, and the tendency of the turning outer wheel to be pressed against the road surface increases, so that the grounding load of the turning outer ring increases.
[0022]
Further, although the ground contact load of the front and rear wheels is constant when the vehicle is traveling at a constant speed, the ground load of the front and rear wheels changes when the vehicle is accelerated or decelerated. In other words, an inertial force acting toward the rear of the vehicle acts on the center of gravity of the vehicle body during acceleration, so that the grounding load of the rear wheel increases as the vehicle body tries to tail dive, resulting in an increase in the cornering force of the rear wheel and a reverse direction to the turning direction. Moment M 1 acts, and when the vehicle decelerates, inertial force acting forward of the vehicle body acts on the center of gravity of the vehicle body. As a result, the vehicle's nose dive increases the ground contact load of the front wheel, resulting in an increase in the cornering force of the front wheel. A moment M 1 in the same direction as the turning direction is applied (see solid line arrows and broken line arrows in FIG. 2).
[0023]
When the vehicle is traveling straight at a constant speed, if the sum of the ground contact loads of the left and right front wheels is Wf, the ground load of each front wheel is Wf / 2, but the vehicle is turning at a lateral acceleration Yg and a longitudinal acceleration Xg. When accelerating / decelerating, the ground contact load W FI of the front wheel inside the turn and the ground load W FO of the front wheel outside the turn are
W FI = Wf / 2−Kf × Yg−Kh × Xg (3)
W FO = Wf / 2 + Kf × Yg−Kh × Xg (4)
If the sum of the ground contact loads of the left and right rear wheels is Wr, the ground load W RI of the rear wheel inside the turn and the ground load W RO of the rear wheel outside the turn are
W RI = Wr / 2−Kr × Yg + Kh × Xg (5)
W RO = Wr / 2 + Kr × Yg + Kh × Xg (6)
Given in. In the equations (3) to (6), the coefficients Kf, Kr, and Kh are given by the following equations.
[0024]
Kf = (Gf ′ × hg ′ × W + hf × Wf) / tf (7)
Kr = (Gr ′ × hg ′ × W + hr × Wr) / tr (8)
Kh = hg × W / (2 × L) (9)
The symbols used here are as follows.
[0025]
Figure 0003660027
Assuming that the cornering force of the tire is proportional to the ground contact load of the tire, the cornering force CFf of the front wheel is the ground contact load W FI of the front wheel inside the turning given by equation (3) and the outside of the turning given by equation (4). The following formula is given by the ground contact load WFO of the front wheel and the lateral acceleration Yg.
[0026]
Figure 0003660027
Further, the cornering force CFr of the rear wheel is determined by the ground load W RI of the rear wheel inside the turning given by the equation (5), the ground load W RO of the rear wheel outside the corner given by the equation (6), and the lateral acceleration. Yg is given by the following equation.
[0027]
Figure 0003660027
Substituting equations (10) and (11) into equation (2),
Figure 0003660027
Here, since a × Wf−b × Wr = 0 and Kh = hg × W / (2 × L) from the equation (9), the equation (12) is
M 1 = −hg × W × Xg × Yg (13)
Thus, it can be seen that the moment M 1 about the yaw axis is proportional to the product of the longitudinal acceleration Xg and the lateral acceleration Yg. Therefore, if the driving force and the braking force are distributed to the turning inner wheel and the turning outer wheel so as to cancel the moment M 1 about the yaw axis given by the equation (13), the turning stability and the high speed during acceleration or deceleration during turning. Stability can be improved.
[0028]
On the other hand, as shown in FIG. 3, for example, when the braking force F is generated in the turning inner wheel, if the gear ratio of the transmission 2 is i, the driving force F / i is generated in the turning outer wheel. The moment M 2 about the yaw axis generated in the vehicle by the braking force F and the driving force F / i is
Figure 0003660027
Given in. Here, κ = 1 + (1 / i), T: clutch torque, R: tire radius.
[0029]
Therefore, the clutch torque T required to cancel the moment M 1 with the moment M 2 is set by M 1 = M 2 .
T = {2R / (tr × κ)} × hg × W × Xg × Yg (15)
Given in. As apparent from the equation (15), the clutch torque T is a value proportional to the product of the longitudinal acceleration Xg and the lateral acceleration Yg. In the above description, since the cornering force of the tire is assumed to be proportional to the contact load of the tire, the clutch torque T is a value proportional to the product Xg × Yg of the longitudinal acceleration Xg and the lateral acceleration Yg. Since the cornering force is not proportional to the ground contact load, the clutch torque T is actually preferably handled as a function of the product Xg × Yg of the longitudinal acceleration Xg and the lateral acceleration Yg.
[0030]
Thus, as shown in Table 1, when the vehicle accelerates during a left turn, if the first hydraulic clutch 3 L is engaged with the clutch torque T given by equation (15), the rotational speed of the turning inner wheel is The braking force F is reduced to generate the braking force F, and the rotational speed of the turning outer wheel is increased to generate the driving force F / i, thereby canceling the moment M 1 in the direction opposite to the turning direction based on the cornering force. Performance is improved. Similarly, if the second hydraulic clutch 3 R is engaged with the clutch torque T when the vehicle accelerates during a right turn, the moment M 1 based on the cornering force is canceled and the turning performance is improved as described above. improves.
[0031]
Further, when the vehicle decelerates while turning left, if the second hydraulic clutch 3 R is engaged with the clutch torque T given by the equation (15), the rotational speed of the turning inner wheel is increased and the driving force F is generated. At the same time, the rotational speed of the outer turning wheel is reduced and the braking force F / i is generated, so that the moment M 1 in the same direction as the turning direction based on the cornering force is canceled and the high-speed stability performance is improved. Similarly, if the first hydraulic clutch 3 L is engaged with the clutch torque T when the vehicle decelerates during a right turn, the moment M 1 based on the cornering force is canceled as described above, and high-speed stable performance is achieved. Will improve.
[0032]
[Table 1]
Figure 0003660027
[0033]
Note that even if acceleration or deceleration is performed while the vehicle is running straight, the yaw moment of the vehicle does not change, so the first hydraulic clutch 3 L and the second hydraulic clutch 3 R are kept in a disengaged state.
[0034]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0035]
For example, in the embodiment, torque distribution between the left and right rear wheels W RL and W RR which are driven wheels has been described. However, the present invention can be applied not only to torque distribution between drive wheels, but also to driven wheels. In a vehicle in which an auxiliary drive source such as an electric motor is connected and the auxiliary drive source is operated in a four-wheel drive state when the drive wheel slips, the torque distribution between the driven wheels can be applied. Furthermore, instead of the first hydraulic clutch 3 L and the second hydraulic clutch 3 R , other clutches such as an electromagnetic clutch and a fluid coupling can be used.
[0036]
【The invention's effect】
As described above, according to the present invention, by setting the value of the driving force generated on one of the left and right wheels and the value of the braking force generated on the other as a function of the product of the longitudinal acceleration and lateral acceleration of the vehicle, When the vehicle accelerates during turning, it decelerates the inner turning wheel to generate braking force, and also increases the rotation speed of the outer turning wheel to generate driving force, resulting in a moment in the direction opposite to the turning direction generated based on the cornering force. Can be canceled to improve the turning performance. Also, when the vehicle decelerates during turning, the rotational speed of the inner turning wheel is increased to generate driving force, and the rotational speed of the outer turning wheel is reduced to generate braking force, which is generated based on the cornering force. The high-speed stability performance can be improved by canceling the moment in the same direction.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a front engine / front drive vehicle equipped with a torque distribution control device. FIG. 2 is a diagram illustrating a yaw moment generated in a turning vehicle. FIG. 3 is based on engagement of a hydraulic clutch. Diagram explaining the generated yaw moment 【Explanation of symbols】
2 Transmission 3 L 1st hydraulic clutch 3 R 2nd hydraulic clutch W RL Left rear wheel (wheel)
W RR right rear wheel (wheel)
Xg Longitudinal acceleration Yg Lateral acceleration

Claims (1)

左右の車輪(WRL,WRR)の一方に制動力を発生させ、他方に駆動力を発生させることによりヨーモーメントを制御する車両において、前記駆動力及び制動力の値を車両の前後加速度(Xg)及び横加速度(Yg)の積の関数として設定し、車両が旋回中に加速するときには旋回内輪に制動力を発生させるとともに旋回外輪に駆動力を発生させ、車両が旋回中に減速するときには旋回内輪に駆動力を発生させるとともに旋回外輪に制動力を発生させることを特徴とする車両におけるヨーモーメント制御方法。In a vehicle that controls a yaw moment by generating a braking force on one of the left and right wheels (W RL , W RR ) and generating a driving force on the other wheel, the values of the driving force and the braking force are determined based on the longitudinal acceleration of the vehicle ( Xg) and lateral acceleration (Yg) as a function of the product. When the vehicle accelerates while turning, it generates braking force on the turning inner wheel and driving force on the turning outer wheel, and when the vehicle decelerates while turning. yaw moment control method in a vehicle according to claim Rukoto to generate a braking force to the turning outer wheel with generating a driving force to the turning inner wheel.
JP24733695A 1995-09-26 1995-09-26 Yaw moment control method for vehicle Expired - Fee Related JP3660027B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP24733695A JP3660027B2 (en) 1995-09-26 1995-09-26 Yaw moment control method for vehicle
TW085110100A TW330182B (en) 1995-09-26 1996-08-19 Process for controlling yaw moment in a vehicle
DE19637193A DE19637193B4 (en) 1995-09-26 1996-09-12 Method for influencing the yaw behavior of a vehicle
US08/710,303 US6076033A (en) 1995-09-26 1996-09-17 Process for controlling yaw moment in vehicle
KR1019960040782A KR100227600B1 (en) 1995-09-26 1996-09-19 Yawing moment control method in vehicle
CA002186444A CA2186444C (en) 1995-09-26 1996-09-25 Process for controlling yaw moment in vehicle
CN96113365A CN1059395C (en) 1995-09-26 1996-09-25 Process for controlling yaw moment in vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24733695A JP3660027B2 (en) 1995-09-26 1995-09-26 Yaw moment control method for vehicle

Publications (2)

Publication Number Publication Date
JPH0986203A JPH0986203A (en) 1997-03-31
JP3660027B2 true JP3660027B2 (en) 2005-06-15

Family

ID=17161898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24733695A Expired - Fee Related JP3660027B2 (en) 1995-09-26 1995-09-26 Yaw moment control method for vehicle

Country Status (1)

Country Link
JP (1) JP3660027B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844129B1 (en) * 1996-11-13 2003-08-27 Honda Giken Kogyo Kabushiki Kaisha Yaw moment control system in vehicle
JP3272617B2 (en) * 1996-11-13 2002-04-08 本田技研工業株式会社 Vehicle yaw moment control device
KR100845910B1 (en) * 2007-07-31 2008-07-11 주식회사 만도 Method for recovering torque after reduction of engine torque for improvement of stability in turning of vehicle
JP5053139B2 (en) * 2008-03-21 2012-10-17 本田技研工業株式会社 Vehicle behavior control device
CN105473419B (en) 2012-11-07 2018-12-18 日产自动车株式会社 Steering controller
JP5918303B2 (en) * 2014-06-06 2016-05-18 株式会社日立製作所 Vehicle whose motion is controlled using jerk information
JP6577448B2 (en) 2016-12-20 2019-09-18 トヨタ自動車株式会社 Vehicle stability control device
JP6970043B2 (en) * 2018-03-19 2021-11-24 トヨタ自動車株式会社 Vehicle stability control device
JP7218608B2 (en) * 2019-02-25 2023-02-07 日産自動車株式会社 VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE

Also Published As

Publication number Publication date
JPH0986203A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
US6076033A (en) Process for controlling yaw moment in vehicle
JP3272617B2 (en) Vehicle yaw moment control device
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
US7797094B2 (en) Turning control apparatus for vehicle
US7761215B2 (en) Device operable to control turning of vehicle using driving and braking force for understeering and oversteering
EP0844129B1 (en) Yaw moment control system in vehicle
US20090018742A1 (en) Device operable to control turning of vehicle
JP4082549B2 (en) Driving force control device for four-wheel drive vehicle
JPH0550940A (en) Steering control method of vehicle provided with differential limiting device
CN109987084B (en) Control device for four-wheel drive vehicle
JP2009184575A (en) Vehicle control device
EP1522475A2 (en) Vehicle-behavior detecting apparatus and vehicle-behavior controlling apparatus
JP3660027B2 (en) Yaw moment control method for vehicle
US8055420B2 (en) Vehicle control device
JP3008250B2 (en) Torque distribution control device for left and right non-main driving wheels of vehicle
JP3827837B2 (en) Vehicle motion control device
JP3892551B2 (en) Vehicle motion control device
JP3573382B2 (en) Method of controlling yaw moment in vehicle
JP4662060B2 (en) Vehicle driving force distribution control device
JP2000339596A (en) Vehicle motion controller
JP3272616B2 (en) Vehicle yaw moment control device
JP3730727B2 (en) Vehicle yaw moment control device
JPH08282320A (en) Transfer for wheel
JP4781665B2 (en) Vehicle left / right driving force distribution control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees