JP4662060B2 - Vehicle driving force distribution control device - Google Patents

Vehicle driving force distribution control device Download PDF

Info

Publication number
JP4662060B2
JP4662060B2 JP2006091064A JP2006091064A JP4662060B2 JP 4662060 B2 JP4662060 B2 JP 4662060B2 JP 2006091064 A JP2006091064 A JP 2006091064A JP 2006091064 A JP2006091064 A JP 2006091064A JP 4662060 B2 JP4662060 B2 JP 4662060B2
Authority
JP
Japan
Prior art keywords
driving force
wheel
vehicle
force distribution
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006091064A
Other languages
Japanese (ja)
Other versions
JP2007261484A (en
Inventor
祐一 後田
祐介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006091064A priority Critical patent/JP4662060B2/en
Publication of JP2007261484A publication Critical patent/JP2007261484A/en
Application granted granted Critical
Publication of JP4662060B2 publication Critical patent/JP4662060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

本発明は車両の前後輪間の駆動力分配を制御する駆動力分配制御装置に関するものである。   The present invention relates to a driving force distribution control device that controls driving force distribution between front and rear wheels of a vehicle.

エンジンの駆動力を常時4輪に分配するフルタイム4輪駆動車、或いはエンジンの駆動力を常時前輪または後輪の一方に伝達すると共に、駆動力の一部を必要に応じて前輪または後輪の他方に分配するオンディマンド4輪駆動車などでは、前後輪間に設けた電子制御式の駆動力分配装置により車両の走行状態などに応じて前後輪間に駆動力分配を作用させ、これにより適切な車両の走行特性を実現している(例えば、特許文献1参照)。   A full-time four-wheel drive vehicle that always distributes the engine driving force to the four wheels, or the engine driving force is always transmitted to one of the front wheels or the rear wheels, and a part of the driving force is front wheels or rear wheels as required. In an on-demand four-wheel drive vehicle that distributes to the other side, an electronically controlled drive force distribution device provided between the front and rear wheels causes the drive force distribution to act between the front and rear wheels according to the running state of the vehicle. The driving characteristics of the vehicle are realized (for example, see Patent Document 1).

当該特許文献1に開示された技術は車両旋回時のアンダステアやオーバステアの抑制を目的としたものであり、FR車ベースの4輪駆動車に適用されている。車両の前後輪間には後輪の駆動力の一部を前輪側に分配する駆動力分配装置としてトランスファが設けられ、後輪の左右輪間には差動制限力を発生する差動制限装置が設けられ、旋回外輪の車輪速が旋回内輪の車輪速より高くて内輪がグリップしていると推測されるときには、トランスファによる前後輪間の駆動力分配を低めることで前輪に分配される駆動力を低下させると共に、差動制限装置による左右輪間の差動制限力を低下させ、これによりアンダステアの抑制を図っている。
特許第2527204号明細書
The technique disclosed in Patent Document 1 is intended to suppress understeer and oversteer during turning of the vehicle, and is applied to an FR vehicle-based four-wheel drive vehicle. A transfer limiting device is provided between the front and rear wheels of the vehicle as a driving force distribution device that distributes a part of the driving force of the rear wheel to the front wheel side, and generates a differential limiting force between the left and right wheels of the rear wheel. When the wheel speed of the outer turning wheel is higher than the wheel speed of the inner turning wheel and the inner wheel is estimated to be gripping, the driving force distributed to the front wheels is reduced by reducing the driving force distribution between the front and rear wheels by the transfer. And the differential limiting force between the left and right wheels by the differential limiting device is reduced, thereby suppressing understeer.
Japanese Patent No. 2527204

上記特許文献1の技術は左右輪間の差回転に着目してトランスファによる駆動力分配及び差動制限装置による差動制限力を制御しているが、左右輪間の差回転や前後輪間の差回転は車両の旋回状態を表す指標の一つに過ぎず、駆動力分配や差動制限力を適切に制御するには不十分であった。例えば左右輪間或いは前後輪間の差回転が同一条件であっても車両のステア特性がアンダステアであるかオーバステアであるかによって最適な駆動力分配や差動制限力が相違することから、結果として車両の旋回状態によってはトランスファの駆動力分配や差動制限装置の差動制限力が不適切に制御されて良好なステア特性を実現できないという問題が生じた。   The technique of Patent Document 1 focuses on the differential rotation between the left and right wheels, and controls the driving force distribution by the transfer and the differential limiting force by the differential limiting device. The differential rotation is only one of the indices indicating the turning state of the vehicle, and is insufficient for appropriately controlling the driving force distribution and the differential limiting force. For example, even if the differential rotation between the left and right wheels or the front and rear wheels is the same, the optimal driving force distribution and differential limiting force differ depending on whether the vehicle's steering characteristics are understeer or oversteer. Depending on the turning state of the vehicle, the driving force distribution of the transfer and the differential limiting force of the differential limiting device are improperly controlled, resulting in a problem that good steering characteristics cannot be realized.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、車両の旋回状態を端的に表す指標に基づいて前後輪間の駆動力分配を適切に制御でき、もって車両の旋回状態に関わらず良好なステア特性を実現することができる車両の駆動力分配制御装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to appropriately control the driving force distribution between the front and rear wheels based on an index that represents the turning state of the vehicle. Accordingly, it is an object of the present invention to provide a driving force distribution control device for a vehicle that can realize a good steering characteristic regardless of the turning state of the vehicle.

上記目的を達成するため、請求項1の発明は、車両の前後輪間に設けられ、前後輪に駆動源からの駆動力を常時分配すると共に駆動力分配を可変可能な駆動力分配手段と、車両の旋回状態に基づいて前後輪間の駆動力分配に対する補正量として旋回対応制御量を算出する制御量算出手段と、車両の現在のステア特性を判定するステア特性判定手段と、前後輪の車輪速をそれぞれ検出する車輪速検出手段と、ステア特性判定手段により判定されたステア特性と車輪速検出手段により検出された前後輪の車輪速の大小関係との組合せに応じて、旋回対応制御量を増加補正側または減少補正側に作用させ、補正後の駆動力分配に基づいて駆動力分配手段を制御する駆動力分配制御手段とを備えたものである。   In order to achieve the above object, the invention according to claim 1 is provided between the front and rear wheels of the vehicle, and constantly distributes the driving force from the driving source to the front and rear wheels and can vary the driving force distribution, Control amount calculation means for calculating a control amount corresponding to turning as a correction amount for driving force distribution between the front and rear wheels based on the turning state of the vehicle, steer characteristic determination means for determining the current steering characteristic of the vehicle, and wheels of the front and rear wheels The turning correspondence control amount is determined according to the combination of the wheel speed detecting means for detecting each speed, the steer characteristic determined by the steer characteristic determining means and the magnitude relationship between the wheel speeds of the front and rear wheels detected by the wheel speed detecting means. And a driving force distribution control unit that operates on the increase correction side or the decrease correction side and controls the driving force distribution unit based on the corrected driving force distribution.

従って、車両の旋回状態に基づいて制御量算出手段により前後輪間の駆動力分配に対する補正量として旋回対応制御量が算出されると共に、ステア特性判定手段により現在の車両のステア特性、例えばアンダステアであるかオーバステアであるかが判定される。一方、前後輪の車輪速が車輪速検出手段により検出され、ステア特性と前後輪の車輪速の大小関係との組合せに応じて、駆動力分配制御手段により旋回対応制御量が増加補正側または減少補正側に作用し、補正後の駆動力分配が駆動力分配手段に対する制御に適用される。   Accordingly, the control amount calculation means calculates a turning correspondence control amount as a correction amount for the driving force distribution between the front and rear wheels based on the turning state of the vehicle, and the steering characteristic determination means calculates the current vehicle steering characteristic, for example, understeer. Whether there is oversteer or not is determined. On the other hand, the wheel speeds of the front and rear wheels are detected by the wheel speed detection means, and the turning correspondence control amount is increased or decreased by the driving force distribution control means according to the combination of the steering characteristic and the wheel speed relationship of the front and rear wheels. Acting on the correction side, the corrected driving force distribution is applied to the control of the driving force distribution means.

車両旋回中には前後輪の車輪速の大小関係に応じて駆動力分配手段を介して前後輪間でトルクが移動し、そのトルク移動量に応じて前後輪の発生する駆動力が増減して車両のヨーモーメントが変化する。このような前後輪の車輪速の大小関係に基づく前後輪間のトルク移動方向を前提とし、車両のヨーモーメントが適切な方向、例えばアンダステアやオーバステアの抑制方向に変化するように前後輪間の駆動力分配が増加補正または減少補正される。これにより前後輪の車輪速のみならず車両のステア特性も反映して統合的に前後輪間の駆動力分配が制御され、車両の旋回状態に関わらず良好なステア特性が実現される。   While the vehicle is turning, the torque moves between the front and rear wheels via the driving force distribution means according to the relationship between the front and rear wheel speeds, and the driving force generated by the front and rear wheels increases and decreases according to the amount of torque movement. The yaw moment of the vehicle changes. Assuming the direction of torque movement between the front and rear wheels based on the magnitude relationship between the front and rear wheels, the driving between the front and rear wheels so that the yaw moment of the vehicle changes to an appropriate direction, for example, the direction of suppressing understeer or oversteer. Force distribution is increased or decreased. As a result, not only the wheel speeds of the front and rear wheels but also the steering characteristics of the vehicle are reflected and the driving force distribution between the front and rear wheels is controlled in an integrated manner, and a good steering characteristic is realized regardless of the turning state of the vehicle.

好ましい態様として、制御量算出手段を、旋回対応制御量に加えて、前後輪の車輪速の差に基づく差回転対応制御量、アクセル操作に伴う車両の加速状態に基づく加速対応制御量、及びブレーキ操作に伴う車両の減速状態に基づく減速対応制御量などの内の少なくとも一つを駆動力分配のベース制御量として算出するように構成し、駆動力分配制御手段を、ベース制御量を旋回対応制御量に基づいて増加補正または減少補正するように構成することが望ましい。   As a preferred embodiment, the control amount calculation means includes a control amount for differential rotation based on a difference in wheel speed between the front and rear wheels, an acceleration corresponding control amount based on an acceleration state of the vehicle accompanying an accelerator operation, and a brake It is configured to calculate at least one of the deceleration control amount based on the deceleration state of the vehicle accompanying the operation as the base control amount of the driving force distribution, and the driving force distribution control means controls the base control amount to turn. It is desirable to configure to increase or decrease based on the amount.

従って、駆動力分配のベース制御量として差回転対応制御量、加速対応制御量、減速対応制御量の内の少なくとも一つが算出され、このベース制御量が旋回対応制御量に基づいて増加補正または減少補正される。即ち、ベース制御量に対して旋回対応制御量に基づく補正が行われるため、増加補正のみならず減少補正も常に可能となり、旋回対応制御量を確実に前後輪間の駆動力分配に反映させることができる。   Accordingly, at least one of the control amount corresponding to the differential rotation, the control amount corresponding to the acceleration, and the control amount corresponding to the deceleration is calculated as the base control amount of the driving force distribution, and this base control amount is corrected to increase or decrease based on the turning control amount. It is corrected. In other words, since the base control amount is corrected based on the turning control amount, not only the increase correction but also the reduction correction is always possible, and the turning control amount is reliably reflected in the driving force distribution between the front and rear wheels. Can do.

請求項2の発明は、請求項1において、上記ステア特性判定手段が、車両の走行状態に基づいて目標旋回状態指標を決定する目標旋回状態指標決定手段と、車両の実際の旋回状態指標を検出する実旋回状態指標検出手段とを備え、目標旋回状態指標と実旋回状態指標とに基づき現在の車両のステア特性を判定すると共に、制御量算出手段が、ステア特性判定手段によりステア特性として判定されたアンダステア及びオーバステアに基づき前後輪のスリップ輪を特定し、スリップ輪の駆動力及び横力からグリップ限界と相関するグリップ限界指標を推定するグリップ限界指標推定手段と、車両の旋回状態に基づいてアンダステアまたはオーバステアを抑制するための要求ヨーモーメントを算出し、要求ヨーモーメントを達成可能なスリップ輪の要求横力を算出する要求横力算出手段と、グリップ限界指標算出手段により算出されたグリップ限界指標を前提として、要求横力算出手段により算出された要求横力を達成するために必要なスリップ輪の駆動力低下量を算出する駆動力低下量算出手段とを備え、前後輪間に作用させるべき駆動力分配に対する補正量として、駆動力低下量算出手段により算出されたスリップ輪の駆動力低下量に応じて旋回対応制御量を算出するものである。   According to a second aspect of the present invention, in the first aspect, the steering characteristic determining unit detects a target turning state index determining unit that determines a target turning state index based on a running state of the vehicle, and detects an actual turning state index of the vehicle. An actual turning state index detecting means for determining the current vehicle steer characteristic based on the target turning state index and the actual turning state index, and the control amount calculating means is determined as the steer characteristic by the steer characteristic determining means. Grip limit index estimating means for identifying the slip wheel of the front and rear wheels based on the understeer and oversteer and estimating the grip limit index correlating with the grip limit from the driving force and lateral force of the slip wheel, and understeer based on the turning state of the vehicle Or, calculate the required yaw moment to suppress oversteer and the slip wheel that can achieve the required yaw moment. The slip wheel required to achieve the required lateral force calculated by the required lateral force calculating means on the premise of the required lateral force calculating means for calculating the lateral force and the grip limit index calculated by the grip limit index calculating means. Driving force reduction amount calculating means for calculating the driving force reduction amount of the slip wheel, and the slip wheel driving force reduction amount calculated by the driving force reduction amount calculating means as a correction amount for the driving force distribution to be applied between the front and rear wheels. The turn control amount is calculated according to the above.

従って、目標旋回状態指標決定手段により決定された目標旋回状態指標と、実旋回状態指標検出手段により検出された実際の旋回状態指標とに基づき車両のステア特性が判定される。車両旋回中のアンダステアの発生は前輪の横力不足によるスリップに起因し、オーバステアの発生は後輪の横力不足によるスリップに起因するため、ステア特性としてアンダステアが判定されたときには前輪がスリップ輪として特定され、オーバステアのときには後輪がスリップ輪として特定される。   Therefore, the steering characteristic of the vehicle is determined based on the target turning state index determined by the target turning state index determination unit and the actual turning state index detected by the actual turning state index detection unit. The occurrence of understeer during turning of the vehicle is caused by slip due to insufficient lateral force of the front wheel, and occurrence of oversteer is caused by slip due to insufficient lateral force of the rear wheel, so when the understeer is determined as the steer characteristic, the front wheel becomes a slip wheel. When the vehicle is oversteered, the rear wheel is specified as a slip wheel.

そして、スリップ輪の駆動力及び横力からグリップ限界と相関するグリップ限界指標、例えば駆動力及び横力に対するグリップ限界を規定する摩擦円がグリップ限界指標推定手段により推定される。さらに車両の旋回状態に基づいて要求横力算出手段によりアンダステアまたはオーバステアを抑制するための要求ヨーモーメントが算出された上で、要求ヨーモーメントを達成可能なスリップ輪の要求横力が算出され、グリップ限界指標を前提として要求横力を達成するためのスリップ輪の駆動力低下量が駆動力低下量算出手段により算出され、この駆動力低下量に応じて制御量算出手段により旋回対応制御量が算出される。   Then, a grip limit index correlating with the grip limit from the driving force and lateral force of the slip wheel, for example, a friction circle defining a grip limit for the driving force and the lateral force is estimated by the grip limit index estimating means. Further, after calculating the required yaw moment for suppressing understeer or oversteer by the required lateral force calculation means based on the turning state of the vehicle, the required lateral force of the slip wheel that can achieve the required yaw moment is calculated, and the grip The driving force decrease amount of the slip wheel for achieving the required lateral force on the assumption of the limit index is calculated by the driving force decrease amount calculating means, and the turning control amount is calculated by the control amount calculating means according to the driving force decrease amount. Is done.

即ち、具体的な目標旋回状態指標と実旋回状態指標に基づいて車両のステア特性が判定される一方、スリップ輪のグリップ限界と相関するグリップ限界指標を前提とし、ステア特性として判定されたアンダステアやオーバステアを抑制するための要求ヨーモーメント、要求ヨーモーメントを達成可能なスリップ輪の要求横力、要求横力を達成するためのスリップ輪の駆動力低下量などの具体的な算出値に基づいて旋回対応制御量が算出されるため、例えば過去の経験則や実験結果に基づいて旋回対応制御量を設定する場合などに比較して、より現実に即した旋回対応制御量を算出可能となる。   That is, the vehicle steer characteristic is determined based on the specific target turning state index and the actual turning state index, and on the premise of the grip limit index that correlates with the grip limit of the slip wheel, Turning based on specific calculated values such as the required yaw moment to suppress oversteer, the required lateral force of the slip wheel that can achieve the required yaw moment, and the amount of decrease in the driving force of the slip wheel to achieve the required lateral force Since the corresponding control amount is calculated, it is possible to calculate the turn corresponding control amount that is more realistic compared to, for example, the case where the turn corresponding control amount is set based on past empirical rules and experimental results.

好ましい態様として、上記要求横力算出手段を、車両の旋回状態から決定した目標ヨーレイトと実際のヨーレイトとの偏差に基づき、アンダステアまたはオーバステアを抑制するための要求ヨーモーメントを算出し、該要求ヨーモーメントからスリップ輪の要求横力を算出するように構成することが望ましい。
このように構成すれば、車両の旋回状態を端的に表すヨーレイトに基づいて適切な要求ヨーモーメント、ひいては一層適切な旋回対応制御量を算出することができる。
As a preferred aspect, the required lateral force calculating means calculates a required yaw moment for suppressing understeer or oversteer based on a deviation between the target yaw rate determined from the turning state of the vehicle and the actual yaw rate, and the required yaw moment It is desirable that the required lateral force of the slip wheel is calculated from the above.
With such a configuration, it is possible to calculate an appropriate required yaw moment and thus a more appropriate turning correspondence control amount based on a yaw rate that directly represents the turning state of the vehicle.

請求項3の発明は、請求項2において、駆動力分配制御手段が、前輪の車輪速が後輪の車輪速より高いと判定した場合、ステア特性判定手段により判定されたステア特性がアンダステアのときには前後輪間の駆動力分配を旋回対応制御量に基づき増加補正する一方、ステア特性がオーバステアのときには前後輪間の駆動力分配を旋回対応制御量に基づき減少補正し、前輪の車輪速が後輪の車輪速より低いと判定した場合、ステア特性判定手段により判定されたステア特性がアンダステアのときには前後輪間の駆動力分配を旋回対応制御量に基づき減少補正する一方、ステア特性がオーバステアのときには前後輪間の駆動力分配を旋回対応制御量に基づき増加補正するものである。   According to a third aspect of the present invention, in the second aspect, when the driving force distribution control means determines that the front wheel speed is higher than the rear wheel speed, the steer characteristic determined by the steer characteristic determination means is understeer. While the driving force distribution between the front and rear wheels is increased and corrected based on the turning control amount, when the steering characteristic is oversteer, the driving force distribution between the front and rear wheels is reduced and corrected based on the turning control amount, and the front wheel speed is adjusted to the rear wheel. If the steering speed is determined to be lower than the vehicle wheel speed, the steering force distribution between the front and rear wheels is reduced and corrected based on the turning control amount when the steering characteristic determined by the steering characteristic determination means is understeer, while when the steering characteristic is oversteer The driving force distribution between the wheels is corrected to increase based on the turning control amount.

従って、前後輪間の駆動力分配によるトルク移動は車輪速の高い側から低い側へと行われるため、前輪の車輪速が後輪の車輪速より高い場合には駆動力分配手段を介して前輪から後輪へとトルクが移動しており、アンダステアであるとして旋回対応制御量に基づき駆動力分配が増加補正されると、前輪の駆動力低下に伴って横力が増加してヨーモーメントの増加によりアンダステアが抑制され、オーバステアであるとして駆動力分配が減少補正されると、後輪の駆動力低下に伴って横力が増加してヨーモーメントの低下によりオーバステアが抑制される。   Therefore, the torque movement by the driving force distribution between the front and rear wheels is performed from the high wheel speed side to the low wheel speed side. Therefore, when the front wheel speed is higher than the rear wheel speed, the front wheel is connected via the driving force distributing means. If the torque is moving from the rear wheel to the rear wheel, and the driving force distribution is corrected to be increased based on the turning control amount, assuming that the steering is understeer, the lateral force increases and the yaw moment increases as the driving force of the front wheel decreases. If understeer is suppressed by this and the driving force distribution is corrected to be reduced because it is oversteering, the lateral force increases as the rear wheel driving force decreases, and the oversteer is suppressed due to the decrease in yaw moment.

また、前輪の車輪速が後輪の車輪速より低い場合には駆動力分配手段を介して後輪から前輪へとトルクが移動しており、アンダステアであるとして旋回対応制御量に基づき駆動力分配が減少補正されると、前輪の駆動力低下に伴って横力が増加してヨーモーメントの増加によりアンダステアが抑制され、オーバステアであるとして駆動力分配が増加補正されると、後輪の駆動力低下に伴って横力が増加してヨーモーメントの低下によりオーバステアが抑制される。   Further, when the front wheel speed is lower than the rear wheel speed, the torque is moved from the rear wheel to the front wheel via the driving force distributing means, and the driving force is distributed based on the turn corresponding control amount as being understeer. Is corrected to decrease, the lateral force increases with a decrease in the driving force of the front wheels, and understeer is suppressed due to an increase in the yaw moment, and if the driving force distribution is corrected to increase due to oversteering, the driving force of the rear wheels With the decrease, the lateral force increases and the oversteer is suppressed by the decrease of the yaw moment.

以上説明したように請求項1の発明の車両の駆動力分配制御装置によれば、車両の旋回状態を端的に表す現在のステア特性と前後輪の車輪速の大小関係との組合せに応じて前後輪間の駆動力分配を増加補正または減少補正するため、前後輪間の駆動力分配を適切に制御でき、もって車両の旋回状態に関わらず良好なステア特性を実現することができる。
請求項2,3の発明の車両の駆動力分配制御装置によれば、請求項1に加えて、具体的な目標旋回状態指標と実旋回状態指標に基づいて車両のステア特性を判定した上で、スリップ輪のグリップ限界と相関するグリップ限界指標を前提とし、ステア特性として判定されたアンダステアやオーバステアを抑制するための要求ヨーモーメント、スリップ輪の要求横力や駆動力低下量などの具体的な算出値に基づいて駆動力分配手段に適用する旋回対応制御量を算出するため、より現実に即した旋回対応制御量に基づいて前後輪間の駆動力分配を適切に制御でき、車両のアンダステアやオーバステアを確実に抑制することができる。
As described above, according to the vehicle driving force distribution control device of the first aspect of the present invention, the front and rear according to the combination of the current steering characteristic that directly represents the turning state of the vehicle and the magnitude relationship between the wheel speeds of the front and rear wheels. Since the driving force distribution between the wheels is corrected to increase or decrease, the driving force distribution between the front and rear wheels can be appropriately controlled, and a good steering characteristic can be realized regardless of the turning state of the vehicle.
According to the vehicle driving force distribution control device of the second and third aspects of the invention, in addition to the first aspect, the vehicle steering force index is determined based on the specific target turning state index and the actual turning state index. Based on the grip limit index that correlates with the grip limit of the slip wheel, the specific yaw moment to suppress the understeer and oversteer determined as the steer characteristics, the required lateral force of the slip wheel, the amount of decrease in driving force, etc. Since the turning control amount applied to the driving force distribution means is calculated based on the calculated value, the driving force distribution between the front and rear wheels can be appropriately controlled based on the turning correspondence control amount that is more realistic, and the vehicle understeer and Oversteer can be reliably suppressed.

以下、本発明を具体化した車両の駆動力分配制御装置の一実施形態を説明する。
図1は本実施形態の車両の駆動力分配制御装置を示す全体構成図、図2はセンタデフ及びフロントデフの詳細を示す部分拡大図である。これらの図に示すように、車両の前部にはセンタディファレンシャル1(駆動力分配手段)及びフロントディファレンシャル2(以下、センタデフ1及びフロントデフ2と称する)が設けられ、センタデフ1の外周のリングギア1aに図示しないエンジン(駆動源)の駆動力が変速機を介して入力される。センタデフ1はピニオンギア3に一対のサイドギア4a,4bを噛合させた一般的な構成であり、エンジンによりリングギア1aと共にピニオンギア3が回転すると、その駆動力は左右のサイドギア4a,4bの回転差を許容しながら50:50の比率で分配される。
Hereinafter, an embodiment of a vehicle driving force distribution control apparatus embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing a vehicle driving force distribution control device of this embodiment, and FIG. 2 is a partially enlarged view showing details of a center differential and a front differential. As shown in these drawings, a center differential 1 (driving force distribution means) and a front differential 2 (hereinafter referred to as a center differential 1 and a front differential 2) are provided at the front portion of the vehicle, and ring gears on the outer periphery of the center differential 1 are provided. The driving force of an engine (drive source) (not shown) is input to 1a through the transmission. The center differential 1 has a general configuration in which a pair of side gears 4a and 4b are engaged with a pinion gear 3. When the pinion gear 3 is rotated together with the ring gear 1a by the engine, the driving force is a rotational difference between the left and right side gears 4a and 4b. Is distributed at a ratio of 50:50.

センタデフ1の一方のサイドギア4aはフロントデフ2のインナケーシング5に接続され、このインナケーシング5内に設けられた一対のプラネタリギア6は、左右のドライブシャフト7の内端に形成されたサンギア8にそれぞれ噛合している。一方のサイドギア4aと共にインナケーシング5が回転すると、その回転はプラネタリギア6、サンギア8を経てドライブシャフト7に伝達され、プラネタリギア6の自転により回転差を許容しながら左右の前輪9が回転駆動される。   One side gear 4 a of the center differential 1 is connected to the inner casing 5 of the front differential 2, and a pair of planetary gears 6 provided in the inner casing 5 is connected to a sun gear 8 formed at the inner ends of the left and right drive shafts 7. Each is engaged. When the inner casing 5 rotates together with the one side gear 4a, the rotation is transmitted to the drive shaft 7 via the planetary gear 6 and the sun gear 8, and the left and right front wheels 9 are rotationally driven while allowing a rotation difference by the rotation of the planetary gear 6. The

センタデフ1の他方のサイドギア4bはフロントデフ2のアウタケーシング10に接続され、アウタケーシング10の外周のリングギア10aがプロペラシャフト11の前端に固定されたピニオンギア12と噛合している。プロペラシャフト11の後端に固定されたピニオンギア13はリアディファレンシャル(以下、リアデフという)14のリングギア14aと噛合し、一方のサイドギア4bと共にアウタケーシング10が回転すると、その回転はプロペラシャフト11を経てリアデフ14に伝達され、リアデフ14により回転差を許容しながらドライブシャフト15を介して左右の後輪16が回転駆動される。   The other side gear 4 b of the center differential 1 is connected to the outer casing 10 of the front differential 2, and a ring gear 10 a on the outer periphery of the outer casing 10 meshes with a pinion gear 12 fixed to the front end of the propeller shaft 11. The pinion gear 13 fixed to the rear end of the propeller shaft 11 meshes with a ring gear 14a of a rear differential (hereinafter referred to as rear differential) 14, and when the outer casing 10 rotates together with one side gear 4b, the rotation causes the propeller shaft 11 to rotate. Then, it is transmitted to the rear differential 14, and the left and right rear wheels 16 are rotationally driven through the drive shaft 15 while allowing a rotational difference by the rear differential 14.

フロントデフ2のインナケーシング5とアウタケーシング10との間には電磁クラッチ17(駆動力分配手段)が設けられ、電磁クラッチ17の係合状態に応じてインナケーシング5とアウタケーシング10との間、即ち前輪9と後輪16との間の駆動力分配が上記50:50から変化する。なお、駆動力分配を調整する原理はこれに限ることはなく、ポンプやモータなどの制御デバイスを利用して駆動力分配を調整可能なものであれば任意に変更可能であり、例えば油圧ポンプから供給した作動油により油圧ピストンを作動させてクラッチの係合状態を調整してもよい。   An electromagnetic clutch 17 (driving force distribution means) is provided between the inner casing 5 and the outer casing 10 of the front differential 2, and depending on the engagement state of the electromagnetic clutch 17, between the inner casing 5 and the outer casing 10, That is, the driving force distribution between the front wheel 9 and the rear wheel 16 changes from the above 50:50. The principle of adjusting the driving force distribution is not limited to this, and can be arbitrarily changed as long as the driving force distribution can be adjusted using a control device such as a pump or a motor. The engagement state of the clutch may be adjusted by operating the hydraulic piston with the supplied hydraulic oil.

一方、車両の室内には4WD用ECU21が設置され、この4WD用ECU21は図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えている。4WD用ECU21の入力側には、ステアリングの操舵角θstrを検出する操舵角センサ22、車速Vを検出する車速センサ23、車両のヨーレイトYRを検出するヨーレイトセンサ24、車両の各輪4,14の車輪速NFR,NFL,NRR,NRLを検出する車輪速センサ25、車両旋回時に発生する横加速度GYを検出する横加速度センサ26などの各種センサ類が接続され、4WD用ECU21の出力側には、上記電磁クラッチ17などの各種デバイス類が接続されている。   On the other hand, a 4WD ECU 21 is installed in the interior of the vehicle. The 4WD ECU 21 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs and control maps, and a central processing unit ( CPU), a timer counter, and the like. On the input side of the 4WD ECU 21 are a steering angle sensor 22 that detects the steering angle θstr of the steering, a vehicle speed sensor 23 that detects the vehicle speed V, a yaw rate sensor 24 that detects the yaw rate YR of the vehicle, and the wheels 4 and 14 of the vehicle. Various sensors such as a wheel speed sensor 25 for detecting wheel speeds NFR, NFL, NRR, NRL and a lateral acceleration sensor 26 for detecting a lateral acceleration GY generated when the vehicle turns are connected, and on the output side of the ECU for 4WD, Various devices such as the electromagnetic clutch 17 are connected.

4WD用ECU21は上記各種センサからの検出情報に基づいて電磁クラッチ17の係合状態を制御する。本実施形態では車両旋回時のアンダステアやオーバステアの抑制を目的として、前後輪9,16のグリップ限界と相関する摩擦円(グリップ限界指標)に基づき電磁クラッチ17による前後輪9,16間の駆動力分配の制御を実行しており、以下、当該電磁クラッチ17の制御量の設定手順を説明する。   The 4WD ECU 21 controls the engagement state of the electromagnetic clutch 17 based on the detection information from the various sensors. In the present embodiment, the driving force between the front and rear wheels 9 and 16 by the electromagnetic clutch 17 is based on a friction circle (grip limit index) that correlates with the grip limit of the front and rear wheels 9 and 16 for the purpose of suppressing understeer and oversteer during vehicle turning. The distribution control is executed, and the procedure for setting the control amount of the electromagnetic clutch 17 will be described below.

電磁クラッチ17の制御量の設定は、車両のステア特性がアンダステアであるかオーバステアであるかに応じて異なる手順で実行されるため、ステア特性毎に場合分けして説明する。本実施形態ではECU21はヨーレイトセンサ24(実旋回状態指標検出手段)により検出された実ヨーレイトYR(実旋回状態指標)と後述する目標ヨーレイトYT(目標旋回状態指標)との比較結果に基づいて現在車両に発生しているステア特性を判定した上で(ステア特性判定手段)、ステア特性に応じた制御量の設定を実行している。但し、ステア特性の判定手法はこれに限るものではなく任意に変更可能である。   The setting of the control amount of the electromagnetic clutch 17 is executed according to a different procedure depending on whether the vehicle steer characteristic is understeer or oversteer, and will be described separately for each steer characteristic. In the present embodiment, the ECU 21 is currently based on a comparison result between an actual yaw rate YR (actual turning state index) detected by the yaw rate sensor 24 (actual turning state index detecting means) and a target yaw rate YT (target turning state index) described later. After determining the steering characteristic occurring in the vehicle (steer characteristic determination means), the control amount is set according to the steering characteristic. However, the steer characteristic determination method is not limited to this, and can be arbitrarily changed.

図3はアンダステア発生時にECU21により実行される電磁クラッチ17の制御量の設定手順を示すブロック図、図4,5は設定された制御量に基づく駆動力分配の制御状況を示す模式図であり、まず、これらの図に従ってアンダステアが発生した場合について述べる。なお、図4,5は左右前輪9の車輪速NFR,NFL及び左右後輪16の車輪速NRR,NRLを平均化して2輪モデルとして模式的に表しており、図4は前輪平均車輪速NFaveが後輪平均車輪速NRaveより高い場合を示し、図5は前輪平均車輪速NFaveが後輪平均車輪速NRaveより低い場合を示している。   FIG. 3 is a block diagram showing the procedure for setting the control amount of the electromagnetic clutch 17 executed by the ECU 21 when understeer occurs, and FIGS. 4 and 5 are schematic views showing the control status of the driving force distribution based on the set control amount. First, the case where understeer occurs according to these figures will be described. 4 and 5 schematically show a two-wheel model by averaging the wheel speeds NFR and NFL of the left and right front wheels 9 and the wheel speeds NRR and NRL of the left and right rear wheels 16, and FIG. 4 shows the front wheel average wheel speed NFave. FIG. 5 shows a case where the rear wheel average wheel speed N Rave is lower than the rear wheel average wheel speed N Rave.

また、図4,5において、前後輪9,16に付した上下方向の黒塗り直線矢印Adrvの長さ及び方向は駆動力の大きさ及び方向を表し、前後輪9,16に付した左方向の黒塗り直線矢印Acorneringの長さは横力の大きさを表し、これに対して白抜き直線矢印Adrv,Acorneringはステア特性に応じた制御量(ヨーレイト対応制御量Ty)に基づく駆動力および横力に対する補正状況を表している。また、前後輪9,16に付した白抜き回転矢印Arevの長さは前輪平均車輪速NFave及び後輪平均車輪速NRaveを表し、前後輪9,16間の黒塗り直線矢印Atrqの長さ及び方向は電磁クラッチ17の最終制御量Tに応じた駆動力分配によるトルク移動量及び移動方向を表している。   4 and 5, the length and direction of the solid black and white arrows Adrv in the vertical direction attached to the front and rear wheels 9 and 16 represent the magnitude and direction of the driving force, and the left direction attached to the front and rear wheels 9 and 16. The length of the black painted straight arrow Acornering represents the magnitude of the lateral force, while the white straight arrows Adrv and Acornering represent the driving force and the lateral force based on the control amount (yaw rate corresponding control amount Ty) corresponding to the steering characteristic. It shows the correction status for force. The lengths of the white rotating arrows Arev attached to the front and rear wheels 9 and 16 represent the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave. The direction represents the torque movement amount and the movement direction by the driving force distribution according to the final control amount T of the electromagnetic clutch 17.

車両のアンダステアは前輪9の横力不足によるスリップに起因する現象であり、このときの前輪9は自己の摩擦円により規定される駆動力及び横力に対するグリップを限界まで使用しているものと推測でき、換言すれば、前輪9の駆動力の低下により横力を増加させてアンダステアを抑制できる余地があると解釈できる。一方、前輪9の駆動力は、電磁クラッチ17を介して前輪9から後輪16に分配されるトルク、或いは後輪16から前輪9に伝達されるトルクに応じて変化するため、前後輪9,16間の駆動力分配に応じて調整可能である。   Understeer of the vehicle is a phenomenon caused by slip due to insufficient lateral force of the front wheel 9, and it is assumed that the front wheel 9 at this time uses the driving force and the grip against the lateral force defined by its own friction circle to the limit. In other words, it can be interpreted that there is room for increasing the lateral force due to a decrease in the driving force of the front wheels 9 to suppress understeer. On the other hand, the driving force of the front wheel 9 changes according to the torque distributed from the front wheel 9 to the rear wheel 16 via the electromagnetic clutch 17 or the torque transmitted from the rear wheel 16 to the front wheel 9. It can be adjusted according to the driving force distribution among the sixteen.

以上の観点の下に図3に従ってアンダステア時の電磁クラッチ17の制御量が設定される。まず、前輪駆動力算出部31ではエンジントルク及び前後輪9,16間の駆動力分配に基づき前輪9が発生している駆動力FXが算出され、前輪横力算出部32では横加速度センサ26により検出された横加速度GYと予め判明している前輪分担質量MFとから次式(1)に従って前輪9が発生している横力FCFが算出される。   Under the above viewpoint, the control amount of the electromagnetic clutch 17 during understeering is set according to FIG. First, the front wheel driving force calculation unit 31 calculates the driving force FX generated by the front wheels 9 based on the engine torque and the driving force distribution between the front and rear wheels 9 and 16, and the front wheel lateral force calculation unit 32 calculates the driving force FX. A lateral force FCF generated by the front wheels 9 is calculated according to the following equation (1) from the detected lateral acceleration GY and the previously determined front wheel shared mass MF.

FCF=MF×|GY|………(1)
前輪駆動力算出部31からの前輪駆動力FXと前輪横力算出部32からの前輪横力FCFは前輪摩擦円算出部33に入力され、これらの情報に基づき前輪摩擦円算出部33では次式(2)に従って前輪摩擦円FFRが当該摩擦円FFRの半径として算出される(グリップ限界指標推定手段)。
FCF = MF × | GY | ... (1)
The front wheel driving force FX from the front wheel driving force calculation unit 31 and the front wheel lateral force FCF from the front wheel lateral force calculation unit 32 are input to the front wheel friction circle calculation unit 33. Based on these information, the front wheel friction circle calculation unit 33 calculates the following equation: According to (2), the front wheel friction circle FFR is calculated as the radius of the friction circle FFR (grip limit index estimation means).

FFR=√(FX+FCF)………(2)
前輪9が発揮するグリップ力は、タイヤの磨耗状態の相違、天候(晴天や降雪)や路面形態(舗装路やダート)に応じた路面摩擦係数の相違などの種々の要因に影響されるが、前輪9がグリップ限界に達してアンダステアを生じたときの駆動力FX及び横力FCFから摩擦円FFRが推定されるため、推定された摩擦円FFRは前輪9のグリップ力と正確に相関する大きさとなる。
FFR = √ (FX 2 + FCF 2 ) (2)
The grip force exerted by the front wheels 9 is affected by various factors such as differences in tire wear, differences in road surface friction coefficient depending on weather (sunny weather and snowfall) and road surface form (paved road and dirt), Since the friction circle FFR is estimated from the driving force FX and lateral force FCF when the front wheel 9 reaches the grip limit and causes understeer, the estimated friction circle FFR has a magnitude that accurately correlates with the grip force of the front wheel 9. Become.

ヨーモーメント算出部34では、操舵角センサ22からの操舵角θstr及び車速センサ23からの車速Vに基づいて目標ヨーレイトYTが算出され(目標旋回状態指標決定手段)、目標ヨーレイトYTとヨーレイトセンサ24により検出された実ヨーレイトYRとの偏差ΔYに基づきアンダステアを抑制するために必要な要求ヨーモーメントYAWMが算出される。要求ヨーモーメントYAWMは前輪要求横力算出部35に入力され、前輪要求横力算出部35では次式(3)に従って要求ヨーモーメントYAWMを達成するために必要な前輪9の要求横力FCFTが算出される(要求横力算出手段)。   The yaw moment calculation unit 34 calculates a target yaw rate YT based on the steering angle θstr from the steering angle sensor 22 and the vehicle speed V from the vehicle speed sensor 23 (target turning state index determination means), and the target yaw rate YT and the yaw rate sensor 24 Based on the detected deviation ΔY from the actual yaw rate YR, a required yaw moment YAWM required to suppress understeer is calculated. The required yaw moment YAWM is input to the front wheel required lateral force calculation unit 35, and the front wheel required lateral force calculation unit 35 calculates the required lateral force FCFT of the front wheels 9 required to achieve the required yaw moment YAWM according to the following equation (3). (Required lateral force calculation means).

FCFT=YAWM/LF………(3)
ここに、LFは重心から前軸までの距離である。
前輪摩擦円算出部33からの前輪摩擦円FFR、前輪横力算出部32からの前輪横力FCF、前輪要求横力算出部35からの前輪要求横力FCFTは前輪駆動力低下量算出部36に入力され、当該前輪駆動力低下量算出部36では、前輪摩擦円FFRを前提として要求横力FCFT相当分だけ前輪9の横力FCFを増加させるために必要な前輪9の駆動力低下量FXTが次式(4)に従って算出される(駆動力低下量算出手段)。
FCFT = YAWM / LF (3)
Here, LF is the distance from the center of gravity to the front axis.
The front wheel friction circle FFR from the front wheel friction circle calculation unit 33, the front wheel lateral force FCF from the front wheel lateral force calculation unit 32, and the front wheel requested lateral force FCFT from the front wheel requested lateral force calculation unit 35 are supplied to the front wheel driving force decrease amount calculation unit 36. The front wheel driving force decrease amount calculation unit 36 receives the front wheel 9 driving force decrease amount FXT necessary to increase the lateral force FCF of the front wheel 9 by the amount corresponding to the required lateral force FCFT on the assumption of the front wheel friction circle FFR. It is calculated according to the following equation (4) (driving force reduction amount calculating means).

FXT=|FX|−√(FFR−(FCF+FCFT))………(4)
算出された前輪9の駆動力低下量FXTは制御量算出部37に入力され、制御量算出部37では駆動力低下量FXTに対応する駆動力分配としてヨーレイト対応制御量Tyが次式(5)に従って算出される(制御量算出手段)。
Ty=FXT×R/FHG………(5)
ここに、Rは前輪9のタイヤ半径、FHGはリングギヤ10aとピニオンギヤ12のギア比である。
FXT = | FX | −√ (FFR 2 − (FCF + FCFT) 2 ) (4)
The calculated driving force decrease amount FXT of the front wheel 9 is input to the control amount calculation unit 37, and the control amount calculation unit 37 calculates the yaw rate corresponding control amount Ty as the driving force distribution corresponding to the driving force decrease amount FXT by the following equation (5). (Control amount calculation means).
Ty = FXT × R / FHG ……… (5)
Here, R is the tire radius of the front wheel 9, and FHG is the gear ratio between the ring gear 10a and the pinion gear 12.

一方、ベース制御量算出部38では、ヨーレイト対応制御量Ty以外のベース制御量Tbaseが算出される。例えば車両旋回時には前輪平均車輪速NFaveと後輪平均車輪速NRaveとの差に基づいて差回転対応制御量が算出され、アクセル操作に伴う車両加速時にはアクセル操作量などに基づいて初期スリップを抑制するための加速対応制御量が算出され、ブレーキ操作に伴う車両減速時には車両減速度などに基づいて車両姿勢を安定化するための減速対応制御量が算出され、これらの制御量を加算した総和がベース制御量Tbaseとして設定される。また、車輪速判定部39では車輪速NFR,NFL,NRR,NRから前輪平均車輪速NFaveと後輪平均車輪速NRaveとが算出され、これらの前輪平均車輪速NFaveと後輪平均車輪速NRaveの大小関係が判定される。   On the other hand, the base control amount calculation unit 38 calculates a base control amount Tbase other than the yaw rate corresponding control amount Ty. For example, a differential rotation control amount is calculated based on the difference between the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave when the vehicle is turning, and the initial slip is suppressed based on the accelerator operation amount during acceleration of the vehicle accompanying the accelerator operation. The acceleration-related control amount is calculated, and when the vehicle decelerates due to the braking operation, the deceleration-related control amount for stabilizing the vehicle posture is calculated based on the vehicle deceleration, etc., and the sum total of these control amounts is the base Set as control amount Tbase. The wheel speed determination unit 39 calculates the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave from the wheel speeds NFR, NFL, NRR, and NR, and the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave are calculated. A magnitude relationship is determined.

以上の制御量算出部37からのヨーレイト対応制御量Ty、ベース制御量算出部38からのベース制御量Tbase、車輪速判定部39からの前輪平均車輪速NFaveと後輪平均車輪速NRaveとの大小関係は最終制御量算出部40に入力され、最終制御量算出部40ではこれらの情報に基づき図3中に示す条件に従って最終制御量Tが算出される。そして、このようにして設定された最終制御量Tに基づいて前後輪9,16間の実際の駆動力分配が制御される。即ち、最終制御量Tに対応するデューティ率が図示しないマップから設定され、そのデューティ率に基づく電磁クラッチ17の励磁により係合状態が調整され、その結果、前後輪9,16間の駆動力分配が上記最終制御量Tに対応する値に調整される(駆動力分配制御手段)。   The magnitude of the yaw rate corresponding control amount Ty from the control amount calculation unit 37, the base control amount Tbase from the base control amount calculation unit 38, and the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave from the wheel speed determination unit 39. The relationship is input to the final control amount calculation unit 40, and the final control amount calculation unit 40 calculates the final control amount T according to the conditions shown in FIG. The actual driving force distribution between the front and rear wheels 9 and 16 is controlled based on the final control amount T set in this way. That is, the duty ratio corresponding to the final control amount T is set from a map (not shown), and the engagement state is adjusted by the excitation of the electromagnetic clutch 17 based on the duty ratio. As a result, the driving force is distributed between the front and rear wheels 9 and 16. Is adjusted to a value corresponding to the final control amount T (driving force distribution control means).

電磁クラッチ17による駆動力配分に応じて前後輪9,16への駆動力の配分比率が変化する原理は、駆動力分配に応じて前後輪9,16の車輪速の高い側から低い側へと電磁クラッチ17を介してトルク移動が生じることに基づくものである。図4に示す前輪平均車輪速NFaveが後輪平均車輪速NRaveより高い走行状況(NFave>NRave)では電磁クラッチ17を介して前輪9から後輪16へとトルクが移動しており、上記のように前輪9がグリップ限界にある。図3に示すように最終制御量算出部40では最終制御量Tがヨーレイト対応制御量Tyだけ増加補正されるため、最終制御量Tの増加に応じて実際の前後輪9,16間の駆動力分配も増加する。結果として前輪9から後輪16へのトルク移動量が増加し、図4に白抜き矢印Adrv,Acorneringで示すように後輪16の駆動力が増加する一方、前輪9の駆動力が低下する。このときの前輪9の駆動力は上記前輪駆動力低下量算出部36で算出された駆動力低下量FXT相当分だけ低下し、それに応じて前輪要求横力算出部35で算出された要求横力FCFT相当分だけ前輪9の横力が増加し、前輪9の横力増加に伴ってヨーモーメント算出部34で算出された要求ヨーモーメントYAWM相当分だけ車両のヨーモーメントが増加し、車両に発生しているアンダステアが抑制される。   The principle that the distribution ratio of the driving force to the front and rear wheels 9 and 16 changes according to the distribution of the driving force by the electromagnetic clutch 17 is that the wheel speed of the front and rear wheels 9 and 16 changes from the higher side to the lower side according to the driving force distribution. This is based on the occurrence of torque movement via the electromagnetic clutch 17. In the traveling state (NFave> NRave) where the average front wheel speed NFave is higher than the average rear wheel speed NRave shown in FIG. 4, the torque is moved from the front wheel 9 to the rear wheel 16 via the electromagnetic clutch 17, as described above. The front wheel 9 is at the grip limit. As shown in FIG. 3, in the final control amount calculation unit 40, the final control amount T is corrected to increase by the yaw rate corresponding control amount Ty, so that the actual driving force between the front and rear wheels 9 and 16 in accordance with the increase in the final control amount T. Distribution also increases. As a result, the amount of torque movement from the front wheel 9 to the rear wheel 16 increases, and the driving force of the rear wheel 16 increases while the driving force of the front wheel 9 decreases as shown by the white arrows Adrv and Acornering in FIG. At this time, the driving force of the front wheels 9 is reduced by an amount corresponding to the driving force reduction amount FXT calculated by the front wheel driving force reduction amount calculating unit 36, and the required lateral force calculated by the front wheel required lateral force calculating unit 35 is accordingly reduced. The lateral force of the front wheel 9 increases by the amount corresponding to FCFT, and the yaw moment of the vehicle increases by the amount corresponding to the requested yaw moment YAWM calculated by the yaw moment calculation unit 34 with the increase of the lateral force of the front wheel 9 and is generated in the vehicle. Understeer is suppressed.

また、図5に示す前輪平均車輪速NFaveが後輪平均車輪速NRaveより低い走行状況(NFave<NRave)では電磁クラッチ17を介して後輪16から前輪9へとトルクが移動しており、前輪9がグリップ限界にある。図3に示すように最終制御量算出部40では最終制御量Tがヨーレイト対応制御量Tyだけ減少補正されるため、最終制御量Tの低下に応じて実際の前後輪9,16間の駆動力分配も低下する。結果として後輪16から前輪9へのトルク移動量が減少し、図4に白抜き矢印Adrv,Acorneringで示すように後輪16の駆動力が増加する一方、前輪9の駆動力が低下する。従って、上記と同様に前輪9の駆動力の低下に伴って横力が増加し、ヨーモーメントの増加に応じてアンダステアが抑制される。   Further, in the traveling situation (NFave <NRave) where the average front wheel speed NFave shown in FIG. 5 is lower than the average rear wheel speed NRave, the torque is moved from the rear wheel 16 to the front wheel 9 via the electromagnetic clutch 17. 9 is at the grip limit. As shown in FIG. 3, since the final control amount T is corrected to decrease by the yaw rate corresponding control amount Ty in the final control amount calculation unit 40, the actual driving force between the front and rear wheels 9 and 16 in accordance with the decrease in the final control amount T. Distribution also declines. As a result, the amount of torque movement from the rear wheel 16 to the front wheel 9 decreases, and the driving force of the rear wheel 16 increases while the driving force of the front wheel 9 decreases as shown by the white arrows Adrv and Acornering in FIG. Accordingly, as described above, the lateral force increases as the driving force of the front wheels 9 decreases, and understeer is suppressed as the yaw moment increases.

なお、図3では示されていないが、車両が旋回中でないとき及び旋回中であってもステア特性がニュートラルステアのときには最終制御量Tの算出にヨーレイト制御量Tyは反映されず、ベース制御量Tbaseがそのまま最終制御量Tとして設定されるため、上記のようなアンダステアの抑制のための駆動力分配の制御は実行されない。
一方、旋回中の車両にオーバステアが発生した場合について述べる。図6はオーバステア発生時にECU21により実行される電磁クラッチ17の制御量の設定手順を示すブロック図、図7,8は設定された制御量に基づく駆動力分配の制御状況を示す模式図であり、図7は前輪平均車輪速NFaveが後輪平均車輪速NRaveより高い場合を示し、図8は前輪平均車輪速NFaveが後輪平均車輪速NRaveより低い場合を示している。
Although not shown in FIG. 3, the yaw rate control amount Ty is not reflected in the calculation of the final control amount T when the steering characteristic is neutral steer even when the vehicle is not turning or is turning, and the base control amount is not reflected. Since Tbase is set as the final control amount T as it is, the driving force distribution control for suppressing the understeer as described above is not executed.
On the other hand, a case where oversteer occurs in a turning vehicle will be described. FIG. 6 is a block diagram showing a procedure for setting the control amount of the electromagnetic clutch 17 executed by the ECU 21 when oversteer occurs, and FIGS. 7 and 8 are schematic diagrams showing the control status of driving force distribution based on the set control amount. FIG. 7 shows a case where the front wheel average wheel speed NFave is higher than the rear wheel average wheel speed NRave, and FIG. 8 shows a case where the front wheel average wheel speed NFave is lower than the rear wheel average wheel speed NRave.

車両のオーバステアは後輪16の横力不足によるスリップに起因する現象であり、このときの後輪16は自己の摩擦円により規定される駆動力及び横力に対するグリップを限界まで使用しているものと推測でき、換言すれば、後輪16の駆動力の低下により横力を増加させてオーバステアを抑制できる余地があると解釈できる。一方、後輪16の駆動力は、電磁クラッチ17を介して前輪9から後輪16に分配されるトルク、或いは後輪16から前輪に伝達されるトルクに応じて変化するため、前後輪9,16間の駆動力分配に応じて調整可能である。   Oversteer of the vehicle is a phenomenon caused by slip due to insufficient lateral force of the rear wheel 16, and the rear wheel 16 at this time uses the driving force and the grip against the lateral force defined by its own friction circle to the limit. In other words, it can be interpreted that there is room for oversteer to be suppressed by increasing the lateral force due to a decrease in the driving force of the rear wheels 16. On the other hand, the driving force of the rear wheel 16 changes according to the torque distributed from the front wheel 9 to the rear wheel 16 via the electromagnetic clutch 17 or the torque transmitted from the rear wheel 16 to the front wheel. It can be adjusted according to the driving force distribution among the sixteen.

以上の観点の下に図6に従ってオーバステア時の電磁クラッチ17の制御量が設定される。まず、後輪駆動力算出部31'ではエンジントルク及び前後輪9,16間の駆動力分配に基づき後輪16が発生している駆動力RXが算出され、後輪横力算出部32'では横加速度センサ26により検出された横加速度GYと予め判明している後輪分担質量MRとから次式(6)に従って後輪16が発生している横力RCFが算出される。   Under the above viewpoint, the control amount of the electromagnetic clutch 17 during oversteering is set according to FIG. First, the rear wheel driving force calculating unit 31 ′ calculates the driving force RX generated by the rear wheel 16 based on the engine torque and the driving force distribution between the front and rear wheels 9 and 16, and the rear wheel lateral force calculating unit 32 ′. From the lateral acceleration GY detected by the lateral acceleration sensor 26 and the rear wheel shared mass MR that is known in advance, the lateral force RCF generated by the rear wheel 16 is calculated according to the following equation (6).

RCF=MR×|GY|………(6)
後輪駆動力算出部31'からの後輪駆動力RXと後輪横力算出部32'からの後輪横力RCFは後輪摩擦円算出部33'に入力され、これらの情報に基づき後輪摩擦円算出部33'では次式(7)に従って後輪摩擦円RFRが当該摩擦円RFRの半径として算出される(グリップ限界指標推定手段)。
RCF = MR × | GY |… (6)
The rear wheel driving force RX from the rear wheel driving force calculating unit 31 ′ and the rear wheel lateral force RCF from the rear wheel lateral force calculating unit 32 ′ are input to the rear wheel friction circle calculating unit 33 ′, and based on these information, the rear wheel driving force RX In the wheel friction circle calculation unit 33 ′, the rear wheel friction circle RFR is calculated as the radius of the friction circle RFR according to the following equation (7) (grip limit index estimation means).

RFR=√(RX+RCF)………(7)
前輪9と同じく後輪16についても、グリップ限界に達してオーバステアを生じたときの駆動力RX及び横力RCFから摩擦円RFRが推定されるため、推定された摩擦円RFRは後輪16のグリップ力と正確に相関する大きさとなる。
ヨーモーメント算出部34'では、上記アンダステア時と同様の手順に従ってオーバステアを抑制するために必要な要求ヨーモーメントYAWMが算出され、この要求ヨーモーメントYAWMに基づき後輪要求横力算出部35'では次式(8)に従って要求ヨーモーメントYAWMを達成するために必要な後輪16の要求横力RCFTが算出される(要求横力算出手段)。
RFR = √ (RX 2 + RCF 2 ) (7)
As with the front wheel 9, the friction circle RFR is also estimated for the rear wheel 16 from the driving force RX and lateral force RCF when the grip limit is reached and oversteer is generated. The magnitude correlates accurately with force.
The yaw moment calculation unit 34 ′ calculates a required yaw moment YAWM necessary for suppressing oversteer according to the same procedure as that for the understeer, and the rear wheel required lateral force calculation unit 35 ′ calculates the next required yaw moment YAWM. The required lateral force RCFT of the rear wheel 16 necessary for achieving the required yaw moment YAWM is calculated according to the equation (8) (required lateral force calculating means).

RCFT=YAWM/LR………(8)
ここに、LRは重心から後軸までの距離である。
後輪摩擦円算出部33'からの後輪摩擦円RFR、後輪横力算出部32'からの後輪横力RCF、後輪要求横力算出部35'からの後輪要求横力RCFTは後輪駆動力低下量算出部36'に入力され、当該後輪駆動力低下量算出部36'では、後輪摩擦円RFRを前提として要求横力RCFT相当分だけ後輪16の横力RCFを増加させるために必要な後輪16の駆動力低下量RXTが次式(9)に従って算出される(駆動力低下量算出手段)。
RCFT = YAWM / LR (8)
Here, LR is the distance from the center of gravity to the rear axis.
The rear wheel friction circle RFR from the rear wheel friction circle calculation unit 33 ′, the rear wheel lateral force RCF from the rear wheel lateral force calculation unit 32 ′, and the rear wheel requested lateral force RCFT from the rear wheel requested lateral force calculation unit 35 ′ are The rear wheel driving force decrease amount calculation unit 36 ′ inputs the rear wheel driving force decrease amount calculation unit 36 ′, which assumes the rear wheel friction force RFCF corresponding to the required lateral force RCFT on the premise of the rear wheel friction circle RFR. A driving force reduction amount RXT of the rear wheel 16 necessary for increasing the driving force is calculated according to the following equation (9) (driving force reduction amount calculating means).

RXT=|RX|−√(RFR−(RCF+RCFT))………(9)
算出された後輪16の駆動力低下量RXTは制御量算出部37'に入力され、制御量算出部37'では駆動力低下量RXTに対応する駆動力分配としてヨーレイト対応制御量Tyが次式(10)に従って算出される(制御量算出手段)。
Ty=RXT×R/RHG………(10)
ここに、RHGはリングギヤ14aとピニオンギヤ13のギア比である。
RXT = | RX | −√ (RFR 2 − (RCF + RCFT) 2 ) (9)
The calculated driving force decrease amount RXT of the rear wheel 16 is input to the control amount calculation unit 37 ′, and the control amount calculation unit 37 ′ calculates the yaw rate corresponding control amount Ty as the driving force distribution corresponding to the driving force decrease amount RXT by the following equation. Calculated according to (10) (control amount calculation means).
Ty = RXT × R / RHG (10)
Here, RHG is a gear ratio between the ring gear 14 a and the pinion gear 13.

一方、ベース制御量算出部38'及び車輪速判定部39'の処理は上記アンダステア時と同様であり、ベース制御量算出部38'ではベース制御量Tbaseが算出され、車輪速判定部39'では前輪平均車輪速NFaveと後輪平均車輪速NRaveとの大小関係が判定される。
以上の情報に基づき最終制御量算出部40'では図6中に示す条件に従って最終制御量Tが算出され、この最終制御量Tに基づいて電磁クラッチ17により前後輪9,16間の駆動力分配が調整される(駆動力分配制御手段)。
On the other hand, the processing of the base control amount calculation unit 38 ′ and the wheel speed determination unit 39 ′ is the same as that during the understeer, the base control amount calculation unit 38 ′ calculates the base control amount Tbase, and the wheel speed determination unit 39 ′ The magnitude relationship between the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave is determined.
Based on the above information, the final control amount calculation unit 40 ′ calculates the final control amount T according to the conditions shown in FIG. 6, and the electromagnetic clutch 17 distributes the driving force between the front and rear wheels 9, 16 based on the final control amount T. Is adjusted (driving force distribution control means).

図7に示す前輪平均車輪速NFaveが後輪平均車輪速NRaveより高い走行状況(NFave>NRave)では、図4と同じく電磁クラッチ17を介して前輪9から後輪16へとトルクが移動しており、この場合は後輪16がグリップ限界にある。図6に示すように最終制御量算出部40'では最終制御量Tがヨーレイト対応制御量Tyだけ減少補正されるため、最終制御量Tの低下に応じて実際の前後輪9,16間の駆動力分配も低下する。結果として前輪9から後輪16へのトルク移動量が低下し、図7に白抜き矢印Adrv,Acorneringで示すように前輪9の駆動力が増加する一方、後輪16の駆動力が低下する。このときの後輪16の駆動力は上記後輪駆動力低下量算出部36'で算出された駆動力低下量RXT相当分だけ低下し、それに応じて後輪要求横力算出部35'で算出された要求横力RCFT相当分だけ後輪16の横力が増加し、後輪16の横力増加に伴ってヨーモーメント算出部34'で算出された要求ヨーモーメントYAWM相当分だけ車両のヨーモーメントが低下し、車両に発生しているオーバステアが抑制される。   In the driving situation (NFave> NRave) where the average front wheel speed NFave is higher than the average rear wheel speed NRave shown in FIG. 7, the torque is moved from the front wheel 9 to the rear wheel 16 via the electromagnetic clutch 17 as in FIG. In this case, the rear wheel 16 is at the grip limit. As shown in FIG. 6, in the final control amount calculation unit 40 ′, the final control amount T is corrected to decrease by the yaw rate corresponding control amount Ty, so that the actual driving between the front and rear wheels 9 and 16 in accordance with the decrease in the final control amount T. Power distribution also decreases. As a result, the amount of torque movement from the front wheel 9 to the rear wheel 16 decreases, and the driving force of the front wheel 9 increases while the driving force of the rear wheel 16 decreases as indicated by the white arrows Adrv and Acornering in FIG. At this time, the driving force of the rear wheel 16 is reduced by an amount corresponding to the driving force reduction amount RXT calculated by the rear wheel driving force reduction amount calculation unit 36 ′, and is calculated by the rear wheel required lateral force calculation unit 35 ′ accordingly. The lateral force of the rear wheel 16 increases by the amount corresponding to the requested lateral force RCFT, and the yaw moment of the vehicle is increased by the amount corresponding to the requested yaw moment YAWM calculated by the yaw moment calculating unit 34 ′ with the increase in the lateral force of the rear wheel 16. And the oversteer occurring in the vehicle is suppressed.

また、図8に示す前輪平均車輪速NFaveが後輪平均車輪速NRaveより低い走行状況(NFave<NRave)では、図5と同じく電磁クラッチ17を介して後輪16から前輪9へとトルクが移動しており、この場合は後輪16がグリップ限界にある。図6に示すように最終制御量算出部40'では最終制御量Tがヨーレイト対応制御量Tyだけ増加補正されるため、最終制御量Tの増加に応じて実際の前後輪9,16間の駆動力分配も増加する。結果として後輪16から前輪9へのトルク移動量が増加し、図8に白抜き矢印Adrv,Acorneringで示すように前輪9の駆動力が増加する一方、後輪16の駆動力が低下する。従って、上記と同様に後輪16の駆動力の低下に伴って横力が増加し、ヨーモーメントの低下に応じてオーバステアが抑制される。   Further, when the average front wheel speed NFave shown in FIG. 8 is lower than the average rear wheel speed NRave (NFave <NRave), the torque moves from the rear wheel 16 to the front wheel 9 via the electromagnetic clutch 17 as in FIG. In this case, the rear wheel 16 is at the grip limit. As shown in FIG. 6, since the final control amount T is corrected to increase by the yaw rate corresponding control amount Ty in the final control amount calculation unit 40 ′, the actual driving between the front and rear wheels 9 and 16 according to the increase in the final control amount T. Power distribution also increases. As a result, the amount of torque movement from the rear wheel 16 to the front wheel 9 increases, and the driving force of the front wheel 9 increases while the driving force of the rear wheel 16 decreases as indicated by the white arrows Adrv and Acornering in FIG. Accordingly, as described above, the lateral force increases as the driving force of the rear wheel 16 decreases, and oversteer is suppressed as the yaw moment decreases.

以上のように本実施形態の車両の駆動力分配制御装置では、車両の旋回中において前輪平均車輪速NFaveと後輪平均車輪速NRaveとの大小関係のみならず車両のステア特性も反映して統合的に前後輪9,16間の駆動力分配を制御している。車両のステア特性は車両のヨーモーメントを何れの方向に修正すべきかを表し、前輪平均車輪速NFaveと後輪平均車輪速NRaveとの大小関係は前後輪9,16間のトルク移動方向、ひいては駆動力分配の増減によるヨーモーメントの変化方向を表すため、双方の条件の組み合わせに基づき車両の旋回状態に対して最適な前後輪9,16間の駆動力分配を設定できる。よって、前後輪9,16間の駆動力分配を適切に制御してアンダステアやオーバステアを確実に抑制でき、もって車両の旋回状態に関わらず常に良好なステア特性を実現することができる。   As described above, in the vehicle driving force distribution control apparatus according to the present embodiment, the vehicle steer characteristics are integrated in addition to the magnitude relationship between the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave during the turning of the vehicle. Therefore, the driving force distribution between the front and rear wheels 9 and 16 is controlled. The steer characteristic of the vehicle indicates in which direction the yaw moment of the vehicle should be corrected, and the magnitude relationship between the front wheel average wheel speed NFave and the rear wheel average wheel speed NRave is the direction of torque movement between the front and rear wheels 9 and 16, and hence the drive. Since the change direction of the yaw moment due to the increase / decrease of the force distribution is expressed, the optimum driving force distribution between the front and rear wheels 9, 16 can be set for the turning state of the vehicle based on the combination of both conditions. Therefore, understeering and oversteering can be reliably suppressed by appropriately controlling the driving force distribution between the front and rear wheels 9 and 16, so that a good steering characteristic can always be realized regardless of the turning state of the vehicle.

また、本実施形態では、具体的な目標ヨーレイトYTと実ヨーレイトYRに基づいて車両のステア特性を判定した上で、このステア特性に基づいてグリップ限界を越えたスリップ輪が前後輪9,16の何れであるかを特定し、スリップ輪の駆動力FX,RX及び横力FCF,RCFから推定した摩擦円FFR,RFRを前提とし、アンダステアやオーバステアを抑制するための要求ヨーモーメントYAWM、要求ヨーモーメントYAWMを達成可能なスリップ輪の要求横力FCFT,RCFT、要求横力FCFT,RCFTを達成するためのスリップ輪の駆動力低下量FXT,RXTなどの具体的な算出値に基づいてヨーレイト対応制御量Tyを算出している。従って、例えば過去の経験則や実験結果に基づいてヨーレイト対応制御量Tyを設定する場合などに比較して、より現実に即したヨーレイト対応制御量Tyを算出でき、もって、一層適切に前後輪9,16間の駆動力分配を制御することができる。   Further, in the present embodiment, after determining the vehicle steer characteristic based on the specific target yaw rate YT and the actual yaw rate YR, slip wheels that exceed the grip limit based on the steer characteristic are the front and rear wheels 9, 16. Based on the friction circles FFR and RFR estimated from the driving forces FX and RX and the lateral forces FCF and RCF of the slip wheel, the required yaw moment YAWM and the required yaw moment for suppressing understeer and oversteer Yaw rate control amount based on specific calculated values such as slip wheel driving force reduction amounts FXT, RXT for achieving the required lateral force FCFT, RCFT of the slip wheel that can achieve YAWM, and the required lateral force FCFT, RCFT Ty is calculated. Therefore, compared with the case where the yaw rate corresponding control amount Ty is set based on, for example, past empirical rules and experimental results, the yaw rate corresponding control amount Ty more realistic can be calculated, and thus the front and rear wheels 9 can be more appropriately calculated. , 16 can be controlled.

しかも、駆動力FX,RX及び横力FCF,RCFに基づいてスリップ輪のグリップ力と正確に相関する摩擦円FFR,RFRが推定されるため、例えばタイヤの磨耗状態の相違、天候(晴天や降雪)や路面形態(舗装路やダート)に応じた路面摩擦係数の相違などに影響されることなく適切なヨーレイト対応制御量Tyを算出できる。換言すれば、これらの外乱要因による影響を排除すべくタイヤ磨耗状態や路面摩擦係数をセンサにより検出して補償処理を実行する必要がなくなるという利点もある。   In addition, since the friction circles FFR and RFR that accurately correlate with the grip force of the slip wheel are estimated based on the driving forces FX and RX and the lateral forces FCF and RCF, for example, a difference in tire wear state, weather (clear weather or snowfall) ) And the road surface form (paved road or dirt), the appropriate yaw rate control amount Ty can be calculated without being affected by the difference in the road surface friction coefficient. In other words, there is an advantage that it is not necessary to detect the tire wear state and the road surface friction coefficient by the sensor and to perform the compensation process in order to eliminate the influence of these disturbance factors.

一方、車両のステア特性の判定処理やヨーモーメント算出部34,34'での要求ヨーモーメントYAWMの算出処理には実ヨーレイトYR及び目標ヨーレイトYTが適用されるが、これらのヨーレイトYR,YTは車両の旋回状態を端的に表す指標と見なせる。よって、これらのヨーレイトYR,YTに基づいてステア特性の判定や要求ヨーモーメントYAWMの算出を適確に実行でき、ひいては前後輪9,16間の駆動力分配を一層適切に制御することができる。   On the other hand, the actual yaw rate YR and the target yaw rate YT are applied to the determination process of the vehicle steering characteristic and the calculation process of the required yaw moment YAWM in the yaw moment calculation units 34 and 34 '. These yaw rates YR and YT are applied to the vehicle. It can be regarded as an index that directly represents the turning state of. Therefore, the determination of the steering characteristic and the calculation of the required yaw moment YAWM can be accurately executed based on these yaw rates YR and YT, and the driving force distribution between the front and rear wheels 9 and 16 can be further appropriately controlled.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、目標旋回状態指標としてヨーレイトYRを適用したが、車両の旋回状態と相関する指標であればこれに限ることはなく、例えばヨーレイトに代えて横加速度センサ26により検出された横加速度GYを適用してもよい。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the yaw rate YR is applied as the target turning state index. However, the present invention is not limited to this as long as the index correlates with the turning state of the vehicle. For example, the lateral acceleration detected by the lateral acceleration sensor 26 instead of the yaw rate is used. The acceleration GY may be applied.

実施形態の車両の駆動力分配制御装置を示す全体構成図である。1 is an overall configuration diagram illustrating a vehicle driving force distribution control device according to an embodiment. センタデフ及びフロントデフの詳細を示す部分拡大図である。It is the elements on larger scale which show the detail of a center differential and a front differential. アンダステア時にECUにより実行される電子制御カップリングの制御量の設定手順を示すブロック図である。It is a block diagram which shows the setting procedure of the control amount of the electronic control coupling performed by ECU at the time of understeer. アンダステアで前輪平均車輪速が後輪平均車輪速より高いときの駆動力分配の制御状況を示す模式図である。It is a schematic diagram which shows the control condition of driving force distribution when front wheel average wheel speed is higher than rear wheel average wheel speed in understeer. アンダステアで前輪平均車輪速が後輪平均車輪速より低いときの駆動力分配の制御状況を示す模式図である。It is a schematic diagram which shows the control condition of driving force distribution when a front-wheel average wheel speed is lower than a rear-wheel average wheel speed by understeer. オーバステア時にECUにより実行される電子制御カップリングの制御量の設定手順を示すブロック図である。It is a block diagram which shows the setting procedure of the control amount of the electronic control coupling performed by ECU at the time of oversteer. オーバステアで前輪平均車輪速が後輪平均車輪速より高いときの駆動力分配の制御状況を示す模式図である。It is a schematic diagram showing a control situation of driving force distribution when the front wheel average wheel speed is higher than the rear wheel average wheel speed in oversteer. オーバステアで前輪平均車輪速が後輪平均車輪速より低いときの駆動力分配の制御状況を示す模式図である。It is a schematic diagram showing a control situation of driving force distribution when the front wheel average wheel speed is lower than the rear wheel average wheel speed in oversteer.

符号の説明Explanation of symbols

1 センタデフ(駆動力分配手段)
9 前輪
16 後輪
17 電磁クラッチ(駆動力分配手段)
21 4WD用ECU(制御量算出手段、ステア特性判定手段、駆動力分配制御手段、
グリップ限界指標推定手段、要求横力算出手段、駆動力低下量算出手段)
24 ヨーレイトセンサ(実旋回状態指標検出手段)
25 車輪速センサ(車輪速検出手段)
1 Center differential (driving force distribution means)
9 Front wheel 16 Rear wheel 17 Electromagnetic clutch (driving force distribution means)
21 4WD ECU (control amount calculation means, steer characteristic determination means, driving force distribution control means,
(Grip limit index estimating means, required lateral force calculating means, driving force decrease calculating means)
24 Yaw rate sensor (actual turning state index detection means)
25 Wheel speed sensor (wheel speed detection means)

Claims (3)

車両の前後輪間に設けられ、該前後輪に駆動源からの駆動力を常時分配すると共に該駆動力分配を可変可能な駆動力分配手段と、
上記車両の旋回状態に基づいて上記前後輪間の駆動力分配に対する補正量として旋回対応制御量を算出する制御量算出手段と、
上記車両の現在のステア特性を判定するステア特性判定手段と、
上記前後輪の車輪速をそれぞれ検出する車輪速検出手段と、
上記ステア特性判定手段により判定されたステア特性と上記車輪速検出手段により検出された前後輪の車輪速の大小関係との組合せに応じて、上記旋回対応制御量を増加補正側または減少補正側に作用させ、該補正後の駆動力分配に基づいて上記駆動力分配手段を制御する駆動力分配制御手段と
を備えたことを特徴とする車両の駆動力分配制御装置。
A driving force distribution means provided between the front and rear wheels of the vehicle, which constantly distributes the driving force from the driving source to the front and rear wheels and can vary the driving force distribution;
A control amount calculating means for calculating a turn corresponding control amount as a correction amount for the driving force distribution between the front and rear wheels based on the turning state of the vehicle;
Steer characteristic determining means for determining the current steering characteristic of the vehicle;
Wheel speed detecting means for detecting the wheel speeds of the front and rear wheels,
Depending on the combination of the steering characteristic determined by the steering characteristic determination means and the magnitude relationship between the wheel speeds of the front and rear wheels detected by the wheel speed detection means, the turning control amount is increased or decreased. A driving force distribution control device for a vehicle, comprising: a driving force distribution control unit configured to act and control the driving force distribution unit based on the corrected driving force distribution.
上記ステア特性判定手段は、
上記車両の走行状態に基づいて目標旋回状態指標を決定する目標旋回状態指標決定手段と、
上記車両の実際の旋回状態指標を検出する実旋回状態指標検出手段とを備え、
上記目標旋回状態指標と上記実旋回状態指標とに基づき現在の車両のステア特性を判定すると共に、
上記制御量算出手段は、
上記ステア特性判定手段によりステア特性として判定されたアンダステア及びオーバステアに基づき上記前後輪のスリップ輪を特定し、該スリップ輪の駆動力及び横力からグリップ限界と相関するグリップ限界指標を推定するグリップ限界指標推定手段と、
上記車両の旋回状態に基づいて上記アンダステアまたはオーバステアを抑制するための要求ヨーモーメントを算出し、該要求ヨーモーメントを達成可能な上記スリップ輪の要求横力を算出する要求横力算出手段と、
上記グリップ限界指標算出手段により算出されたグリップ限界指標を前提として、上記要求横力算出手段により算出された要求横力を達成するために必要なスリップ輪の駆動力低下量を算出する駆動力低下量算出手段とを備え、
上記前後輪間に作用させるべき駆動力分配に対する補正量として、上記駆動力低下量算出手段により算出されたスリップ輪の駆動力低下量に応じて上記旋回対応制御量を算出することを特徴とする請求項1記載の車両の駆動力分配制御装置。
The steer characteristic determining means includes
Target turning state index determining means for determining a target turning state index based on the running state of the vehicle;
An actual turning state index detecting means for detecting an actual turning state index of the vehicle,
A steering characteristic of the current vehicle is determined based on the target turning state index and the actual turning state index,
The control amount calculation means is
The grip limit for identifying the slip wheel of the front and rear wheels based on the understeer and oversteer determined as the steer characteristic by the steer characteristic determination means, and estimating a grip limit index correlated with the grip limit from the driving force and lateral force of the slip wheel Index estimation means;
A requested lateral force calculating means for calculating a requested yaw moment for suppressing the understeer or oversteer based on the turning state of the vehicle, and calculating a requested lateral force of the slip wheel capable of achieving the requested yaw moment;
Based on the grip limit index calculated by the grip limit index calculating means, the driving force decrease that calculates the slip wheel driving force reduction amount required to achieve the required lateral force calculated by the required lateral force calculating means. A quantity calculating means,
As the correction amount for the driving force distribution to be applied between the front and rear wheels, the turning correspondence control amount is calculated according to the driving force decrease amount of the slip wheel calculated by the driving force decrease amount calculating means. The vehicle driving force distribution control device according to claim 1.
上記駆動力分配制御手段は、上記前輪の車輪速が後輪の車輪速より高いと判定した場合、上記ステア特性判定手段により判定されたステア特性がアンダステアのときには上記前後輪間の駆動力分配を上記旋回対応制御量に基づき増加補正する一方、該ステア特性がオーバステアのときには上記前後輪間の駆動力分配を上記旋回対応制御量に基づき減少補正し、上記前輪の車輪速が後輪の車輪速より低いと判定した場合、上記ステア特性判定手段により判定されたステア特性がアンダステアのときには上記前後輪間の駆動力分配を上記旋回対応制御量に基づき減少補正する一方、該ステア特性がオーバステアのときには上記前後輪間の駆動力分配を上記旋回対応制御量に基づき増加補正することを特徴とする請求項2記載の車両の駆動力分配制御装置。   When the driving force distribution control means determines that the wheel speed of the front wheel is higher than the wheel speed of the rear wheel, the driving force distribution control means distributes the driving force between the front and rear wheels when the steering characteristic determined by the steering characteristic determination means is understeer. On the other hand, when the steering characteristic is oversteer, the driving force distribution between the front and rear wheels is decreased and corrected based on the turning control amount, and the front wheel speed is adjusted to the rear wheel speed. When the steering characteristic is determined to be lower, when the steering characteristic determined by the steering characteristic determination means is understeer, the driving force distribution between the front and rear wheels is corrected to decrease based on the turning control amount, while when the steering characteristic is oversteer 3. The vehicle driving force distribution control according to claim 2, wherein the driving force distribution between the front and rear wheels is increased and corrected based on the turning control amount. Apparatus.
JP2006091064A 2006-03-29 2006-03-29 Vehicle driving force distribution control device Active JP4662060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091064A JP4662060B2 (en) 2006-03-29 2006-03-29 Vehicle driving force distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091064A JP4662060B2 (en) 2006-03-29 2006-03-29 Vehicle driving force distribution control device

Publications (2)

Publication Number Publication Date
JP2007261484A JP2007261484A (en) 2007-10-11
JP4662060B2 true JP4662060B2 (en) 2011-03-30

Family

ID=38634893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091064A Active JP4662060B2 (en) 2006-03-29 2006-03-29 Vehicle driving force distribution control device

Country Status (1)

Country Link
JP (1) JP4662060B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901701B2 (en) * 2007-11-21 2012-03-21 三菱電機株式会社 Power transmission device for four-wheel drive vehicles
JP5256130B2 (en) * 2009-06-19 2013-08-07 富士重工業株式会社 Tire force control device for four-wheel drive vehicles
JP6070156B2 (en) * 2012-12-18 2017-02-01 トヨタ自動車株式会社 Control device for four-wheel drive vehicle
JP7310703B2 (en) * 2020-05-18 2023-07-19 トヨタ自動車株式会社 Four-wheel drive power distribution device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672172A (en) * 1992-08-28 1994-03-15 Toyota Motor Corp Driving force distributing device for four-wheel drive vehicle with four-wheel steering system
JPH06107015A (en) * 1992-09-30 1994-04-19 Toyota Motor Corp Driving force distributor for four-wheel drive vehicle
JP2004106649A (en) * 2002-09-17 2004-04-08 Fuji Heavy Ind Ltd Power distribution controller of four-wheel drive vehicle
JP2005162097A (en) * 2003-12-04 2005-06-23 Mitsubishi Motors Corp Transmission system for four-wheel drive vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672172A (en) * 1992-08-28 1994-03-15 Toyota Motor Corp Driving force distributing device for four-wheel drive vehicle with four-wheel steering system
JPH06107015A (en) * 1992-09-30 1994-04-19 Toyota Motor Corp Driving force distributor for four-wheel drive vehicle
JP2004106649A (en) * 2002-09-17 2004-04-08 Fuji Heavy Ind Ltd Power distribution controller of four-wheel drive vehicle
JP2005162097A (en) * 2003-12-04 2005-06-23 Mitsubishi Motors Corp Transmission system for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP2007261484A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4386171B2 (en) Power transmission device for four-wheel drive vehicles
JP4844720B2 (en) Vehicle differential limiting control device
US7797094B2 (en) Turning control apparatus for vehicle
JP3272617B2 (en) Vehicle yaw moment control device
US20090018742A1 (en) Device operable to control turning of vehicle
JP4798012B2 (en) Control device for differential limiting device for vehicle
US8055420B2 (en) Vehicle control device
EP2611662A2 (en) Method of controlling a torque vectoring mechanism and torque vectoring system
JP4662060B2 (en) Vehicle driving force distribution control device
JP2009286159A (en) Vehicle control device
JP3827837B2 (en) Vehicle motion control device
JPH08121571A (en) Torque distribution control device of vehicle
JP3660027B2 (en) Yaw moment control method for vehicle
JP4730543B2 (en) Vehicle driving force distribution control device
JP3573382B2 (en) Method of controlling yaw moment in vehicle
JP6141751B2 (en) Driving force distribution control device
JP3272616B2 (en) Vehicle yaw moment control device
JP5640581B2 (en) Control device for differential limiting mechanism
JP2008144788A (en) Apparatus for controlling vehicle driving force
JP3730727B2 (en) Vehicle yaw moment control device
JP5090664B2 (en) Driving force control method for four-wheel drive vehicle
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP2679302B2 (en) Vehicle differential limiting control device
JP6521450B2 (en) Vehicle driving force control device
JP5083526B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

R151 Written notification of patent or utility model registration

Ref document number: 4662060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350