JP3659922B2 - Optical recording material - Google Patents

Optical recording material Download PDF

Info

Publication number
JP3659922B2
JP3659922B2 JP2002033599A JP2002033599A JP3659922B2 JP 3659922 B2 JP3659922 B2 JP 3659922B2 JP 2002033599 A JP2002033599 A JP 2002033599A JP 2002033599 A JP2002033599 A JP 2002033599A JP 3659922 B2 JP3659922 B2 JP 3659922B2
Authority
JP
Japan
Prior art keywords
optical recording
compound
crystals
water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002033599A
Other languages
Japanese (ja)
Other versions
JP2003231359A (en
JP2003231359A5 (en
Inventor
亨 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP2002033599A priority Critical patent/JP3659922B2/en
Priority to TW099116889A priority patent/TW201035080A/en
Priority to TW092100236A priority patent/TW200306334A/en
Priority to KR1020030008182A priority patent/KR100814215B1/en
Priority to CNB031043860A priority patent/CN1266693C/en
Publication of JP2003231359A publication Critical patent/JP2003231359A/en
Application granted granted Critical
Publication of JP3659922B2 publication Critical patent/JP3659922B2/en
Publication of JP2003231359A5 publication Critical patent/JP2003231359A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Indole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、情報をレーザ等による熱的情報パターンとして付与することにより記録する光学記録媒体に使用される光学記録材料に関し、詳しくは、可視及び近赤外領域の波長を有し、かつ低エネルギーのレーザ等により高密度の光学記録及び再生が可能な光学記録媒体に使用される光学記録材料に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
光学記録媒体は、一般に記憶容量が大きく、記録又は再生が非接触で行われる等の優れた特徴を有することから広く普及している。WORM、CD−R、DVD−R等の追記型の光ディスクでは光学記録層の微少面積にレーザを集光させ、光学記録層の性状を変えて記録し、未記録部分との反射光量の違いによって再生を行っている。
【0003】
光ディスクに代表される光学記録媒体の光学記録層には、光学記録層を形成するのが容易なので、有機系の色素が使用されており、特にシアニン系の化合物が感度が高く、高速化に対応できることから検討されている。
【0004】
現在、上記の光ディスクにおいては、記録及び再生に用いる半導体レーザの波長は、CD−Rは750〜830nmであり、DVD−Rは620〜690nmであり、また、更に高密度の600nm以下の光ディスクも開発されている。これらの光ディスクに対応したシアニン系の化合物は、例えば、特開昭59−55795号公報、特開平5−173282号公報、特開平10−278426号公報、特開平11−53761号公報、特開平11−170695号公報、特開特開平11−227331号公報、特開平11−277904号公報、平11−34499号公報、特開2000−108510号公報、特開平2000−289335号公報、特表2001−506933号公報等で報告されている。
【0005】
しかし、上記のシアニン系化合物は、熱分解特性に問題がある。高速記録には熱干渉が小さいことが必要であり、光学記録材料としては、分解温度が低いもの及び熱分解が急峻であるものが適合するが、上記報告の各シアニン系化合物は、この点で充分な特性を有しているものではなかった。
【0006】
従って、本発明の目的は、高速記録に対応できる光学記録媒体に合致したシアニン系化合物を含有してなる光学記録材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、高速記録に対応できる感度を実現するには熱分解挙動の適正化及び吸収波長の適正化が有効と考え、検討を重ねた結果、特定の分子構造を有するシアニン系化合物が、上記課題を解決し得ることを知見し、本発明に到達した。
【0008】
本発明は、上記知見に基づいてなされたものであり、下記の一般式(I)又は(II)で表される化合物を含有してなることを特徴とする光学記録材料、及び基体上に該光学記録材料からなる薄膜を形成したことを特徴とする光学記録媒体を提供するものである。
【化2】

Figure 0003659922
【0009】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0010】
本発明に係る上記一般式(I)又は(II)で表されるシアニン系化合物は、特定の部位にベンジル基を有し、光学記録材料に用いられる他のシアニン系化合物よりも分解温度が低い、吸収波長が適正であるという特徴を有するものである。
【0011】
なお、特開平5−173282号公報、特開平10−278426号公報、特開平11−227331号公報、特開平11−277904号公報には、本発明に係る上記一般式(I)及び/又は(II)で表される化合物を一部含む概念であるシアニン系化合物の一般式が記載されている。これらの報告には、インドール骨格の3位に結合する置換基としてアラルキル基が記載されているが、具体的にベンジル基は例示されておらず、シアニン系化合物にベンジル基、アラルキル基を導入する方法、ベンジル基の効果についても記載されていない。
【0012】
上記一般式(I)又は(II)において、環A及び環Bで表される置換基を有してもよいベンゼン環又はナフタレン環の置換基としては、フッ素、塩素、臭素、ヨウ素等のハロゲン基;メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、アミル、イソアミル、第三アミル、ヘキシル、シクロヘキシル、ヘプチル、イソヘプチル、第三ヘプチル、n−オクチル、イソオクチル、第三オクチル、2−エチルヘキシル等のアルキル基;フェニル、ナフチル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、4−ビニルフェニル、3−イソプロピルフェニル等のアリール基;メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、第二ブトキシ、第三ブトキシ等のアルコキシ基;メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、第二ブチルチオ、第三ブチルチオ等のアルキルチオ基;ニトロ基、シアノ基等が挙げられる。R1で表される炭素数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル等が挙げられる。R2及びR3で表される炭素数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル等が挙げられ、R2とR3が連結して形成される3〜6員環の基としては、シクロプロパン−1,1−ジイル、シクロブタン−1,1−ジイル、2,4−ジメチルシクロブタン−1,1−ジイル、3−ジメチルシクロブタン−1,1−ジイル、シクロペンタン−1,1−ジイル、シクロヘキサン−1,1−ジイル、テトラヒドロピラン−4,4−ジイル、チアン−4,4−ジイル、ピペリジン−4,4−ジイル、N−置換ピペリジン−4,4−ジイル、モルホリン−2,2−ジイル、モルホリン−3,3−ジイル、N−置換モルホリン−2,2−ジイル、N−置換モルホリン−3,3−ジイル等が挙げられ、そのN−置換基としては、環Aで例示のものが挙げられる。
【0013】
また、Xで表されるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、炭素数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチルが挙げられ、フェニル基、ベンジル基の置換基としては、環Aで挙げた置換基が挙げられる。Y1又はY2で表される有機基としては特に制限を受けず、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、アミル、イソアミル、第三アミル、ヘキシル、シクロヘキシル、シクロヘキシルメチル、2−シクロヘキシルエチル、ヘプチル、イソヘプチル、第三ヘプチル、n−オクチル、イソオクチル、第三オクチル、2−エチルヘキシル、ノニル、イソノニル、デシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ペプタデシル、オクタデシル等のアルキル基;ビニル、1−メチルエテニル、2−メチルエテニル、プロペニル、ブテニル、イソブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、デセニル、ぺンタデセニル、1−フェニルプロペン−3−イル等のアルケニル基;フェニル、ナフチル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、4−ビニルフェニル、3−イソプロピルフェニル、4−イソプロピルフェニル、4−ブチルフェニル、4−イソブチルフェニル、4−第三ブチルフェニル、4−ヘキシルフェニル、4−シクロヘキシルフェニル、4−オクチルフェニル、4−(2−エチルヘキシル)フェニル、4−ステアリルフェニル、2,3−ジメチルフェニル、2,4−ジメチルフェニル、2,5−ジメチルフェニル、2,6−ジメチルフェニル、3,4−ジメチルフェニル、3,5−ジメチルフェニル、2,4−ジ第三ブチルフェニル、シクロヘキシルフェニル等のアルキルアリール基;ベンジル、フェネチル、2−フェニルプロパン−2−イル、ジフェニルメチル、トリフェニルメチル、スチリル、シンナミル等のアリールアルキル基及びこれらの炭化水素基がエーテル結合、チオエーテル結合で中断されたもの、例えば、2−メトキシエチル、3−メトキシプロピル、4−メトキシブチル、2−ブトキシエチル、メトキシエトキシエチル、メトキシエトキシエトキシエチル、3−メトキシブチル、2−フェノキシエチル、2−メチルチオエチル、2−フェニルチオエチルが挙げられ、更にこれらの基は、アルコキシ基、アルケニル基、ニトロ基、シアノ基、ハロゲン原子等で置換されていてもよい。
【0014】
また、Anm-で表されるアニオンとしては、例えば、一価のものとして、塩素アニオン、臭素アニオン、ヨウ素アニオン、フッ素アニオン等のハロゲンアニオン;過塩素酸アニオン、塩素酸アニオン、チオシアン酸アニオン、六フッ化リンアニオン、六フッ化アンチモンアニオン、四フッ化ホウ素アニオン等の無機系アニオン;ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン等の有機スルホン酸アニオン;オクチルリン酸アニオン、ドデシルリン酸アニオン、オクタデシルリン酸アニオン、フェニルリン酸アニオン、ノニルフェニルリン酸アニオン、2,2’−メチレンビス(4,6−ジ第三ブチルフェニル)ホスホン酸アニオン等の有機リン酸系アニオン等が挙げられ、二価のものとしては、例えば、ベンゼンジスルホン酸アニオン、ナフタレンジスルホン酸アニオン等が挙げられる。また、励起状態にある活性分子を脱励起させる(クエンチングさせる)機能を有するクエンチャーアニオンやシクロペンタジエニル環にカルボキシル基やホスホン酸基、スルホン酸基等のアニオン性基を有するフェロセン、ルテオセン等のメタロセン化合物アニオン等も必要に応じて用いることができる。
【0015】
上記のクエンチャーアニオンとしては、例えば、下記一般式(A)又は(B)で表されるもの、特開昭60−234892号公報、特開平5−43814号公報、特開平6−239028号公報、特開平9−309886号公報、特開平10−45767号公報等に記載されたようなアニオンが挙げられる。
【0016】
【化3】
Figure 0003659922
【0017】
上記の一般式(I)又は(II)において、Xについては、水素原子が熱分解特性、特に熱分解温度が高速記録に適しているので好ましく、また、Y1については、R1と同様の基が製造工程が少ないので低コストであり好ましい。また、R2、R3については、これらが連結して3〜6員環を形成する基であるものがUV吸収が記録に用いられるレーザ光に特に適合しているので好ましい。
【0018】
本発明に係る上記の一般式(I)で表される化合物の具体例としては、下記化合物No.1〜51が挙げられる。なお、以下の例示では、アニオンを省いたシアニンカチオンで示している。
【0019】
【化4】
Figure 0003659922
【0020】
【化5】
Figure 0003659922
【0021】
【化6】
Figure 0003659922
【0022】
【化7】
Figure 0003659922
【0023】
【化8】
Figure 0003659922
【0024】
また、上記一般式(II)で表される化合物の具体例としては、上記例示の化合物No.1〜51のポリメチン鎖の炭素数が5である化合物が挙げられる。
【0025】
上記の本発明に係る上記一般式(I)又は(II)で表されるシアニン系化合物は、その製造法によって制限を受けるものではない。これらシアニン系化合物の製造方法としては、例えば、R1とY1が同じ場合は、以下のルートが挙げられる。また、R1とY1が異なる場合は、予めヒドラジン化合物にY1基を導入したものを合成し、それを原料として下記と同様に製造するルートが挙げられる。
【0026】
【化9】
Figure 0003659922
【0027】
上記のDで表されるハロゲンとしては、塩素、臭素、ヨウ素が挙げられ、置換スルホニルオキシとしては、フェニルスルホニルオキシ、4−メチルフェニルスルホニルオキシ、4−クロロフェニルスルホニルオキシ等が挙げられる。
【0028】
本発明の光学記録材料としての上記のシアニン系化合物は、光学記録媒体の光学記録層として適用され、該光学記録層の形成にあたっては特に制限を受けない。一般には、メタノール、エタノール等の低級アルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ブチルジグリコール等のエーテルアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等のケトン類、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等のエステル類;アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステル類、2,2,3,3−テトラフルオロプロパノール等のフッ化アルコール類;ベンゼン、トルエン、キシレン等の炭化水素類;メチレンジクロライド、ジクロロエタン、クロロホルム等の塩素化炭化水素類等の有機溶媒に溶解した溶液を基体上にスピンコート、スプレー、ディッピング等で塗布する湿式塗布法が用いられる。その他の方法としては蒸着法、スパッタリング法等が挙げられる。
【0029】
上記光学記録層の厚さは、通常、0.001〜10μmであり、好ましくは0.01〜5μmの範囲が適当である。また、本発明の光学記録材料を光学記録媒体の光学記録層に含有させる際の該光学記録層に対する使用量は、好ましくは50〜100重量%である。
【0030】
また、上記光学記録層は、本発明の光学記録材料の他に必要に応じてシアニン系化合物、アゾ系化合物、フタロシアニン系化合物等の光学記録層に用いられる化合物;ポリエチレン、ポリエステル、ポリスチレン、ポリカーボネート等の樹脂類を含有してもよく、界面活性剤;帯電防止剤;滑剤;難燃剤;ヒンダードアミン等のラジカル捕捉剤;フェロセン誘導体等のピット形成促進剤;分散剤;酸化防止剤;架橋剤;耐光性付与剤等を含有してもよい。
【0031】
さらに、上記光学記録層は、一重項酸素等のクエンチャーとして芳香族ニトロソ化合物、アミニウム化合物、イミニウム化合物、ビスイミニウム化合物、遷移金属キレート化合物等を含有してもよい。これらは、光学記録層に対して好ましくは0〜50重量%の範囲で使用される。
【0032】
このような光学記録層を設層する基体の材質は、書き込み(記録)光及び読み出し(再生)光に対して実質的に透明なものであれば特に制限はなく、例えば、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート等の樹脂、ガラス等が用いられる。また、その形状は、用途に応じ、テープ、ドラム、ベルト、ディスク等の任意の形状のものが使用できる。
【0033】
また、上記光学記録層上に、金、銀、アルミニウム、銅等を用いて蒸着法あるいはスパッタリング法により反射膜を形成することもできるし、アクリル樹脂、紫外線硬化性樹脂等による保護層を形成することもできる。
【0034】
本発明の光学記録材料は、記録、再生に半導体レーザを用いる光学記録媒体に好適であり、特に高速記録タイプのCD−R、DVD−R等の光ディスクに好適である。
【0035】
【実施例】
以下、製造例、製造実施例、評価例及び実施例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。
【0036】
[製造例1](中間体化合物Aの製造)
窒素置換した反応フラスコに4−メチルフェニルヒドラジン塩酸塩39.7gとエタノール117.2gを仕込み、窒素気流下70℃で発熱に注意しながら4−フェニルブタン−2−オン40.8gを滴下した。更に35%塩酸水114.7gを滴下して、2時間還流した。冷却後にトルエン500gと水500gを加え、更に50%水酸化ナトリウム水溶液を加えて、pHを8以上にして油水分離を行った。油相を温水500gで3回洗浄し、脱水、脱溶媒を行った。得られた残渣をエタノール117.2gで晶析を行い、得られた結晶を濾取し、80℃での真空乾燥を行い、白色結晶を35.6g(収率60.8%)を得た。得られた白色結晶11.8g、ヨウ化メチル28.4g、メタノール19.6gを反応フラスコに仕込み、オートクレーブ中100℃で5時間反応させた。脱溶媒後、酢酸エチル40gを加えて30分還流させ、室温まで冷却後、結晶を濾取し、80℃で真空乾燥を行い、中間体Aの黄色結晶を11.4g(収率:58.3%)得た。
【0037】
[製造例2](中間体化合物Bの製造)
窒素置換した反応フラスコに4−メトキシフェニルヒドラジン塩酸塩34.9gとエタノール100gを仕込み、窒素気流下80℃で発熱に注意しながら4−フェニルブタン−2−オン35.6gを滴下した。1時間還流した後、硫酸5.9gを滴下して、更に2時間還流した。冷却後にトルエン200gと水200gを加え、更に50%水酸化ナトリウム水溶液を加えて、pHを8以上にして油水分離を行った。油相を温水200gで3回洗浄し、脱水、脱溶媒を行った。得られた残渣をトルエン100gで晶析を行い、得られた結晶を濾取し、80℃での真空乾燥を行い、白色結晶を25.4g(収率50.5%)を得た。得られた白色結晶10.1g、ヨウ化メチル28.4g、メタノール19.6gを反応フラスコに仕込み、オートクレーブ中100℃で5時間反応させた。脱溶媒後、酢酸エチル32.0gを加えて30分還流させ、室温まで冷却後、結晶を濾取し、80℃で真空乾燥を行い、中間体Bの黄色結晶を9.5g(収率:58.3%)得た。
【0038】
[製造例3](中間体化合物Cの製造)
窒素置換した反応フラスコに2−ナフチルヒドラジン79.1gとエタノール274.1gを仕込み、窒素気流下55℃で4−フェニルブタン−2−オン88.9gを滴下した。30分撹拌した後、発熱に注意しながら硫酸49gを滴下して、1時間還流した。冷却後にトルエン1000gと水1000gを加え、更に50%水酸化ナトリウム水溶液を加えて、pHを8以上にして油水分離を行った。油相を温水500gで3回洗浄し、脱水、脱溶媒を行った。得られた残渣をトルエン137gで晶析を行い、得られた結晶を濾取し、80℃での真空乾燥を行い、白色結晶を72.4g(収率53.4%)を得た。得られた白色結晶13.6g、ヨウ化メチル28.4g、メタノール21.4gを反応フラスコに仕込み、オートクレーブ中100℃で15時間反応させた。脱溶媒後、酢酸エチル100gとメタノール6.0gの混合溶媒で晶析した。結晶を濾取し、140℃で真空乾燥を行い、中間体Cの粗結晶(HPLC純度60%)を6.9g(収率:32.3%)得た。
【0039】
[製造例4](中間体化合物Dの製造)
窒素置換した反応フラスコにフェニルヒドラジン硫酸塩157gとエタノール221gを仕込み、窒素気流下70℃で発熱に注意しながら4−フェニルブタン−2−オン178gを滴下した。更に硫酸4.9gを滴下して、8時間還流した。冷却後にトルエン250gと温水300gを加え、更に50%水酸化ナトリウム水溶液を加えて、pHを8以上にして油水分離を行った。油相を温水300gで3回洗浄し、脱水、脱溶媒を行った。得られた残渣をエタノール300gで晶析を行い、得られた結晶を濾取し、80℃での真空乾燥を行い、白色結晶を116.1g(収率52.5%)を得た。得られた白色結晶22.1g、ヨウ化メチル56.8g、メタノール37.7gを反応フラスコに仕込み、オートクレーブ中100℃で16時間反応させた。脱溶媒後、メタノール3.80gを加え加熱溶解し、酢酸エチル38.0gを加えて室温まで冷却し晶析した。結晶を濾取し、80℃で真空乾燥を行い、中間体Dの白色結晶を17.5g(収率:46.4%)得た。
【0040】
[製造例5](中間体化合物Eの製造)
窒素置換した反応フラスコに4−イソプロピルフェニルヒドラジン塩酸塩19.0gとエタノール54.0gを仕込み、窒素気流下70℃で発熱に注意しながら4−フェニルブタン−2−オン18.1gを滴下した。1時間還流の後、硫酸2.0gを滴下して、更に1時間還流した。冷却後にトルエン120gと水120gを加え、更に50%水酸化ナトリウム水溶液を加えて、pHを8以上にして油水分離を行った。油相を温水60.0gで3回洗浄し、脱水、脱溶媒を行った。得られた残渣をトルエン100gで晶析を行い、得られた結晶を濾取し、80℃での真空乾燥を行い、薄茶色結晶を18.1g(収率67.4%)を得た。得られた薄茶色結晶10.5g、ヨウ化メチル28.4g、メタノール16.8gを反応フラスコに仕込み、オートクレーブ中100℃で5時間反応させた。脱溶媒後、酢酸エチル40.0gを加えて30分還流させ、室温まで冷却後、結晶を濾取し、80℃で真空乾燥を行い、中間体Eの黄色結晶を10.3g(収率:59.6%)得た。
【0041】
[製造実施例1](化合物No.4六フッ化リン塩の製造)
窒素置換した反応フラスコに、中間体A4.5g、下記式で表される中間体a3.9g、無水酢酸3.1g、ピリジン15.8gを仕込み、50℃で3時間反応させた。クロロホルム50.0g、水50g、六フッ化リンカリウム5.5gを加え、30分撹拌して塩交換を行った。水層を除去後、水50.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を50.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール30.0g を加えて晶析を行い、濾取した結晶を洗浄後、140℃真空乾燥して目的物である化合物No.4の六フッ化リン塩の緑色結晶2.5g(収率:38.9%)を得た。これについて下記分析を行い、構造等を確認した。
【0042】
【化10】
Figure 0003659922
【0043】
<分析結果>
▲1▼純度:HPLC測定;99.3%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.77;s;3)(1.79;s;3)(2.04;s;3)(3.34;s;3)(3.37〜3.41;d;1)(3.59〜3.63;d;1)(4.21;s;3)(6.45〜6.50;d;1)(6.63〜6.66;d;2)(6.99〜7.05;m;3)(7.07〜7.09;d;1)(7.17〜7.19;d;1)(7.55;s;1)(7.58〜7.65;m;2)(7.80〜7.83;d;1)(7.92〜7.95;d;1)(8.06〜8.09;d;1)(8.31〜8.54;t;1)(8.63〜8.66;d;1)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;593nm、ε;1.17×105
【0044】
[製造実施例2](化合物No.7六フッ化リン塩の製造)
窒素置換した反応フラスコに、中間体B4.1g、中間体a4.5g、無水酢酸3.1g、ピリジン15.8gを仕込み、50℃で3時間反応させた。クロロホルム50.0g、水50.0g、六フッ化リンカリウム5.5gを加え、30分撹拌し塩交換を行った。水層を除去後、水50.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を50.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール100g を加えて晶析を行い、濾取した結晶を洗浄後、140℃真空乾燥して目的物である化合物No.7の六フッ化リン塩の緑色結晶2.4g(収率:35.7%)を得た。これについて下記分析を行い、構造等を確認した。
【0045】
<分析結果>
▲1▼純度:HPLC測定;99.1%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.83;s;3)(2.00;s;3)(2.06;s;3)(3.49;s;3)(3.55〜3.58;d;1)(3.69〜3.72;d;1)(3.89;s;3)(4.34;s;3)(6.56〜6.60;d;1)(6.66〜6.69;d;1)(6.79〜6.80;d;2)(6.95〜6.97;d;1)(7.02〜7.09;m;3)(7.12〜7.15;d;1)(7.36;s;1)(7.58〜7.66;m;2)(7.75〜7.77;d;1)(7.91〜7.93;d;1)(8.06〜8.08;d;1)(8.68〜8.78;t+d;2)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;602nm、ε;1.09×105
【0046】
[製造実施例3](化合物No.34六フッ化リン塩の製造)
窒素置換した反応フラスコに中間体C6.0g、N,N’−ジフェニルアミジン1.4g、無水酢酸2.1g、ピリジン11.1gを仕込み、55℃で2時間反応させた。クロロホルム20.0g、水40.0g、六フッ化リンカリウム3.9gを加え、50℃で30分撹拌して塩交換を行った。水層を除去後、水50.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を40.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール40.0gを加えて晶析を行い、濾取した結晶にジメチルホルムアミド5.0gに加熱溶解させ、これにメタノールを加え再結晶を行った。結晶を洗浄後、80℃で真空乾燥して目的物である化合物No.34の六フッ化リン塩の緑色結晶0.6g(収率:10.6%)を得た。これについて下記分析を行い、構造等を確認した。
【0047】
<分析結果>
▲1▼純度:HPLC測定;98.0%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(2.19;s;6)(3.56;s;6)(3.68〜3.72;d;2)(4.20〜4.24;d;2)(6.49〜6.52;d;4)(6.64〜6.68;d;2)(6.85〜6.90;t;6)(6.94〜6.98;t;2)(7.54〜7.60;m;4)(7.75〜7.80;t;2)(8.02〜8.09;m;4)(8.51〜8.53;d;2)(8.82〜8.90;t;3)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;608nm、ε;1.23×105
【0048】
[製造実施例4](化合物No.36六フッ化リン塩の製造)
窒素置換した反応フラスコに中間体D7.5g、N,N’−ジフェニルアミジン2.0g、無水酢酸3.1g、ピリジン15.8gを仕込み、60℃で3時間反応させた。クロロホルム25.0g、水25.0g、六フッ化リンカリウム5.5gを加え、30分撹拌して塩交換を行った。水層を除去後、水25.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を25.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール60.0g を加えて晶析を行い、濾取した結晶を洗浄後、140℃で真空乾燥して目的物である化合物No.36の六フッ化リン塩の赤色結晶2.2g(収率:33.6%)を得た。これについて下記分析を行い、構造等を確認した。
【0049】
<分析結果>
▲1▼純度:HPLC測定;100%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.91;s;6)(3.40〜3.52;m+s;2+6)(3.59〜3.71;m;2)(6.52〜6.60;d;2)(6.64〜6.72;m;4)(6.98〜7.09;m;6)(7.19〜7.25;d;2)(7.28〜7.39;m;4)(7.73〜7.76;d;2)(8.60〜8.66;t;1)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;561nm、ε;1.42×105
【0050】
[製造実施例5](化合物No.41六フッ化リン塩の製造)
窒素置換した反応フラスコに、中間体D5.4g、下記式で表される中間体b3.8g、無水酢酸3.1g、ピリジン15.8gを仕込み、25℃で10時間反応させた。50℃に加温してからクロロホルム30.0g、水30.0g、六フッ化リンカリウム5.5gを加え、30分撹拌して塩交換を行った。水層を除去後、水30.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を30.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥、減圧脱溶媒して残渣を得た。この残渣にジメチルホルムアミド2.0gを加え加熱溶解した溶液にメタノール20.0gを加えて晶析を行い、濾取した結晶を再度ジメチルホルムアミド4.0gとメタノール20.0gを用いて再結晶した。これを濾取して得た結晶を洗浄後、140℃真空乾燥して目的物である化合物No.41の六フッ化リン塩の濃緑色結晶1.4g(収率:20.9%)を得た。これについて下記分析を行い、構造等を確認した。
【0051】
【化11】
Figure 0003659922
【0052】
<分析結果>
▲1▼純度:HPLC測定;99.0%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.66〜1.89;br;4)(1.80;s;3)(2.49〜2.62br+br;4)(2.49〜2.62;m;2)(3.38;s;3)(3.42〜3.47;m;2)(4.04;s;3)(6.56〜6.79;m;4)(6.98〜7.06;m;3)(7.14〜7.17;d;1)(7.21〜7.26;t;1)(7.31〜7.36;t;1)(7.54〜7.59;t;1)(7.62〜7.65;d;1)(7.69〜7.74;t;1)(7.81〜7.84;d;1)(7.86〜8.17;m;2)(8.30〜8.37;m;2)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;579nm、ε;1.00×105
【0053】
[製造実施例6](化合物No.43六フッ化リン塩の製造)
窒素置換した反応フラスコに、中間体A3.9g、下記式で表される中間体c4.9g、無水酢酸3.1g、ピリジン15.8gを仕込み、50℃で3時間反応させた。クロロホルム50.0g、水50.0g、六フッ化リンカリウム5.5gを加え、30分撹拌し塩交換を行った。水層を除去後、水50.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を50.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール30.0gを加えて晶析を行い、濾取した結晶を洗浄後、140℃真空乾燥して目的物である化合物No.43の六フッ化リン塩の緑色結晶4.3g(収率:62.9%)を得た。これについて下記分析を行い、構造等を確認した。
【0054】
【化12】
Figure 0003659922
【0055】
<分析結果>
▲1▼純度:HPLC測定;99.3%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.74〜1.96;br;7)(2.09〜2.19;br;6)(2.32;s;3)(3.36;s;3)(3.41〜3.45;d;1)(3.52〜3.56;d;1)(4.30;s;3)(6.44〜6.48;d;1)(6.52〜6.55;d;1)(6.64〜6.66;d;2)(6.88〜6.96;m;4)(7.09〜7.11;d;1)(7.42;s;1)(7.42〜7.57;m;2)(7.78〜7.80;d;1)(7.96〜7.99;d;2)(8.06〜8.08;d;1)(8.57〜8.59;d;1)(8.66〜8.73;t;1)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;596nm、ε;1.34×105
【0056】
[製造実施例7](化合物No.44六フッ化リン塩の製造)
窒素置換した反応フラスコに、中間体E4.2g、中間体c4.9g、無水酢酸3.1g、ピリジン15.8gを仕込み、50℃で3時間反応させた。クロロホルム50.0g、水50.0g、六フッ化リンカリウム5.5gを加え、30分撹拌し塩交換を行った。水層を除去後、水50.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を50.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール30.0gを加えて晶析を行い、濾取した結晶を洗浄後、140℃真空乾燥して目的物である化合物No.44の六フッ化リン塩の緑色結晶3.3g(収率:46.3%)を得た。これについて下記分析を行い、構造等を確認した。
【0057】
<分析結果>
▲1▼純度:HPLC測定;99.5%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.30〜1.35;t;6)(1.88〜2.08;br;7)(2.24〜2.34;br;6)(3.03〜3.07;m;1)(3.53〜3.58;s+d;4)(3.69〜3.73;d;1)(4.43;s;3)(6.63〜6.66;d;1)(6.68〜6.71;d;1)(6.81〜6.83;d;2)(7.03〜7.12;m;4)(7.27〜7.30;d;1)(7.62〜7.72;m;3)(7.92〜7.94;d;1)(8.10〜8.13;d;1)(8.20〜8.22;d;1)(8.72〜8.74;d;1)(8.83〜8.90;t;1)
▲3▼光学的特性:クロロホルム溶媒でのUVスペクトル測定
λmax;597nm、ε;1.15×105
【0058】
[製造実施例8](ペンタメチン型シアニン系化合物の製造)
窒素置換した反応フラスコに、中間体A3.9g、下記式で表される中間体d4.5g、無水酢酸3.1g、ピリジン15.8gを仕込み、25℃で10時間反応させた。クロロホルム30.0g、水30.0g、六フッ化リンカリウム5.5gを加え、50℃で30分撹拌し塩交換を行った。水層を除去後、水30.0g、六フッ化リンカリウムを更に1.0gを加え、30分撹拌した後、水相を除去した油相を30.0gの水で3回洗浄し、無水硫酸ナトリウム乾燥後、減圧脱溶媒して残渣を得た。この残渣にメタノール45.0gを加えて晶析を行い、濾取した結晶を洗浄後、150℃真空乾燥して目的物である下記式で表すペンタメチン型化合物No.52の六フッ化リン塩の緑色結晶4.7g(収率:70.4%)を得た。これについて下記分析を行い、構造等を確認した。
【0059】
【化13】
Figure 0003659922
【0060】
<分析結果>
▲1▼純度:HPLC測定;100%
▲2▼構造解析:1H−NMR測定
(ケミカルシフトppm;多重度;プロトン数)
(1.79;s;3)(1.96〜1.99;d;6)(2.40;s;3)(3.28;s;3)(3.48〜3.52;d;1)(3.66〜3.70;d;1)(3.73;s;3)(6.22〜6.26;d;1)(6.31〜6.36;d;1)(6.55〜6.63;m;3)(6.95〜7.05;m;4)(7.13〜7.15;d;1)(7.48〜7.50;t;1)(7.58s;1)(7.64〜7.70;t;1)(7.73〜7.76;d;1)(8.04〜8.09;t;2)(8.23〜8.26;d;1)(8.41〜8.49;m;2)
▲3▼光学的特性:メタノール溶媒でのUVスペクトル測定
λmax;667nm、ε;2.26×105
【0061】
[評価例]
上記の製造実施例で得た化合物及び以下に示す比較化合物1〜4について、窒素気流中の示差熱分析を行い熱分解温度と熱分解の急峻性を評価した。熱分解温度は、DTAの発熱のピークトップ温度で比較評価し、急峻性は、DSCの融解〜発熱分解終了の温度及びその幅で評価した。結果を表1〜4に示す。
【0062】
【化14】
Figure 0003659922
【0063】
【表1】
Figure 0003659922
【0064】
【表2】
Figure 0003659922
【0065】
【表3】
Figure 0003659922
【0066】
【表4】
Figure 0003659922
【0067】
上記の表1〜4の結果から、本発明に係る3位にベンジル基を導入したシアン系化合物が低温で分解し、熱分解の急峻性も優れることが確認できた。これらの性質は、高速記録に適するものである。
【0068】
[実施例1〜6](記録媒体の製造及び評価)
チタンキレート化合物(T−50:日本曹達社製)を塗布、加水分解して下地層(0.01μm)を設けた直径12cmのポリカーボネートディスク基板上に、上記の製造実施例1〜3、5、7〜8で得たシアニン系化合物について、2,2,3,3−テトラフルオロプロパノール溶液(濃度2%)によるスピンコーティング法にて塗布して、厚さ100nmの光学記録層を形成し光学記録媒体を得た。これらの光学記録媒体について、現在、光学記録ディスクに用いられている記録光の波長について、UVスペクトル吸収の測定による評価を行った。各記録媒体のλmaxの強度を1として、これに対する相対強度の値が0.15より小さいと記録及び再生の特性が悪化し、0.50を超えると光学記録層の耐光性が悪くなり、記録の保存安定性が悪くなる。従って、相対強度が、好適な範囲である0.15〜0.50を示すものを適正記録光波長とした。結果を表5に記す。
【0069】
【表5】
Figure 0003659922
【0070】
【発明の効果】
本発明は、高速記録に対応できる光学記録媒体に合致したシアニン系化合物を含有してなる光学記録材料を提供できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical recording material used for an optical recording medium for recording information by applying information as a thermal information pattern by a laser or the like. Specifically, the optical recording material has a wavelength in the visible and near-infrared region and has low energy. The present invention relates to an optical recording material used for an optical recording medium capable of high-density optical recording and reproduction by a laser or the like.
[0002]
[Prior art and problems to be solved by the invention]
Optical recording media are widely used because they generally have a large storage capacity and have excellent characteristics such as non-contact recording or reproduction. In write-once optical discs such as WORM, CD-R, DVD-R, etc., the laser is focused on a very small area of the optical recording layer and recorded by changing the properties of the optical recording layer. Playback is in progress.
[0003]
The optical recording layer of an optical recording medium typified by an optical disc is easy to form an optical recording layer, so organic dyes are used. Especially, cyanine compounds have high sensitivity and can cope with high speed. It is being considered from what it can do.
[0004]
Currently, in the above optical disc, the wavelength of the semiconductor laser used for recording and reproduction is 750 to 830 nm for CD-R, 620 to 690 nm for DVD-R, and even higher density optical discs of 600 nm or less. Has been developed. Examples of cyanine compounds corresponding to these optical disks include, for example, JP-A-59-55795, JP-A-5-173282, JP-A-10-278426, JP-A-11-53761, and JP-A-11. -170695, JP-A-11-227331, JP-A-11-277904, JP-A-11-34499, JP-A-2000-108510, JP-A-2000-289335, Special Table 2001. 506933 and the like.
[0005]
However, the above cyanine compounds have a problem in thermal decomposition characteristics. High-speed recording requires low thermal interference, and suitable optical recording materials are those with low decomposition temperatures and those with sharp thermal decomposition. It did not have sufficient characteristics.
[0006]
Accordingly, an object of the present invention is to provide an optical recording material containing a cyanine compound that matches an optical recording medium capable of high-speed recording.
[0007]
[Means for Solving the Problems]
The present inventors consider that optimization of thermal decomposition behavior and optimization of absorption wavelength are effective for realizing sensitivity capable of handling high-speed recording, and as a result of repeated studies, a cyanine compound having a specific molecular structure has been found. The inventors have found that the above problems can be solved, and have reached the present invention.
[0008]
The present invention has been made on the basis of the above findings, and comprises an optical recording material comprising a compound represented by the following general formula (I) or (II), and a substrate on the substrate. The present invention provides an optical recording medium characterized in that a thin film made of an optical recording material is formed.
[Chemical 2]
Figure 0003659922
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0010]
The cyanine compound represented by the general formula (I) or (II) according to the present invention has a benzyl group at a specific site and has a decomposition temperature lower than that of other cyanine compounds used in optical recording materials. The absorption wavelength is appropriate.
[0011]
In JP-A-5-173282, JP-A-10-278426, JP-A-11-227331, and JP-A-11-277904, the above general formula (I) and / or ( The general formula of the cyanine compound which is a concept partially including the compound represented by II) is described. In these reports, an aralkyl group is described as a substituent bonded to the 3-position of the indole skeleton, but a benzyl group is not specifically exemplified, and a benzyl group or an aralkyl group is introduced into a cyanine compound. The method and the effect of the benzyl group are also not described.
[0012]
In the above general formula (I) or (II), the substituent of the benzene ring or naphthalene ring which may have a substituent represented by ring A and ring B is a halogen such as fluorine, chlorine, bromine or iodine. Groups: methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, isobutyl, amyl, isoamyl, tert-amyl, hexyl, cyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary Alkyl groups such as octyl and 2-ethylhexyl; aryl groups such as phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl and 3-isopropylphenyl; methoxy, ethoxy, propoxy, iso Alkoxy groups such as propoxy, butoxy, sec-butoxy, tert-butoxy; methyl Oh, ethylthio, propylthio, isopropylthio, butylthio, secondary butylthio, alkylthio groups such as tert-butylthio; nitro group, a cyano group, and the like. Examples of the alkyl group having 1 to 4 carbon atoms represented by R1 include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl and isobutyl. Examples of the alkyl group having 1 to 4 carbon atoms represented by R2 and R3 include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, isobutyl, etc., and formed by linking R2 and R3. Examples of the 3- to 6-membered ring group include cyclopropane-1,1-diyl, cyclobutane-1,1-diyl, 2,4-dimethylcyclobutane-1,1-diyl, and 3-dimethylcyclobutane-1,1. -Diyl, cyclopentane-1,1-diyl, cyclohexane-1,1-diyl, tetrahydropyran-4,4-diyl, thian-4,4-diyl, piperidine-4,4-diyl, N-substituted piperidine- 4,4-diyl, morpholine-2,2-diyl, morpholine-3,3-diyl, N-substituted morpholine-2,2-diyl, N-substituted morpholine-3,3-di Le, and the like, Examples of the N- substituent include those exemplified in ring A.
[0013]
Examples of the halogen atom represented by X include fluorine, chlorine, bromine and iodine. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, Examples thereof include tributyl and isobutyl, and examples of the substituent for the phenyl group and benzyl group include the substituents described for ring A. The organic group represented by Y1 or Y2 is not particularly limited. For example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, isobutyl, amyl, isoamyl, tert-amyl, hexyl, cyclohexyl , Cyclohexylmethyl, 2-cyclohexylethyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl, nonyl, isononyl, decyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, peptadecyl, octadecyl An alkyl group such as vinyl, 1-methylethenyl, 2-methylethenyl, propenyl, butenyl, isobutenyl, pentenyl, hexenyl, heptenyl, octenyl, decenyl, pentadecenyl, 1-phenylpropene- Alkenyl groups such as -yl; phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 4-butylphenyl, 4-isobutylphenyl 4-tert-butylphenyl, 4-hexylphenyl, 4-cyclohexylphenyl, 4-octylphenyl, 4- (2-ethylhexyl) phenyl, 4-stearylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl Alkylaryl groups such as 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2,4-ditertiarybutylphenyl, cyclohexylphenyl; benzyl, phenethyl 2-phenylpropan-2-yl, di Arylalkyl groups such as phenylmethyl, triphenylmethyl, styryl, cinnamyl and the like and hydrocarbon groups interrupted by an ether bond or a thioether bond, such as 2-methoxyethyl, 3-methoxypropyl, 4-methoxybutyl, 2 -Butoxyethyl, methoxyethoxyethyl, methoxyethoxyethoxyethyl, 3-methoxybutyl, 2-phenoxyethyl, 2-methylthioethyl, 2-phenylthioethyl, and these groups include alkoxy, alkenyl, nitro Group, cyano group, halogen atom and the like.
[0014]
Anm-As the anion represented by, for example, as a monovalent halogen anion such as chlorine anion, bromine anion, iodine anion, fluorine anion; perchlorate anion, chlorate anion, thiocyanate anion, phosphorus hexafluoride anion Inorganic anions such as antimony hexafluoride anion and boron tetrafluoride anion; organic sulfonate anions such as benzenesulfonate anion, toluenesulfonate anion and trifluoromethanesulfonate anion; octyl phosphate anion, dodecyl phosphate anion, octadecyl Organic phosphate anions such as phosphate anion, phenyl phosphate anion, nonylphenyl phosphate anion, 2,2′-methylenebis (4,6-ditert-butylphenyl) phosphonate anion, etc. As an example Benzenedicarboxylic acid anion and naphthalene disulfonic acid anion. In addition, quencher anions that have the function of de-exciting (quenching) active molecules in the excited state, and ferrocene and luteocene having an anionic group such as a carboxyl group, a phosphonic acid group, and a sulfonic acid group on the cyclopentadienyl ring. A metallocene compound anion such as can also be used as necessary.
[0015]
Examples of the quencher anion include those represented by the following general formula (A) or (B), JP-A-60-234892, JP-A-5-43814, JP-A-6-239028. And anions as described in JP-A-9-309886, JP-A-10-45767, and the like.
[0016]
[Chemical 3]
Figure 0003659922
[0017]
In the above general formula (I) or (II), for X, a hydrogen atom is preferable because the thermal decomposition characteristics, particularly the thermal decomposition temperature is suitable for high-speed recording, and for Y1, the same group as R1 is preferable. Since there are few manufacturing processes, it is low cost and preferable. R2 and R3 are preferably groups which are linked to form a 3- to 6-membered ring because UV absorption is particularly suitable for laser light used for recording.
[0018]
Specific examples of the compound represented by the general formula (I) according to the present invention include the following compound No. 1-51 is mentioned. In the following examples, cyanine cations without anions are shown.
[0019]
[Formula 4]
Figure 0003659922
[0020]
[Chemical formula 5]
Figure 0003659922
[0021]
[Chemical 6]
Figure 0003659922
[0022]
[Chemical 7]
Figure 0003659922
[0023]
[Chemical 8]
Figure 0003659922
[0024]
Specific examples of the compound represented by the general formula (II) include the compound Nos. Exemplified above. The compound whose carbon number of 1-51 polymethine chain is 5 is mentioned.
[0025]
The cyanine compound represented by the general formula (I) or (II) according to the present invention is not limited by the production method. Examples of the method for producing these cyanine compounds include the following route when R1 and Y1 are the same. Moreover, when R1 and Y1 differ, the route which synthesize | combines what introduce | transduced Y1 group into the hydrazine compound previously and uses it as a raw material similarly to the following is mentioned.
[0026]
[Chemical 9]
Figure 0003659922
[0027]
Examples of the halogen represented by D include chlorine, bromine, and iodine. Examples of the substituted sulfonyloxy include phenylsulfonyloxy, 4-methylphenylsulfonyloxy, 4-chlorophenylsulfonyloxy, and the like.
[0028]
The above-mentioned cyanine compound as the optical recording material of the present invention is applied as an optical recording layer of an optical recording medium, and the optical recording layer is not particularly limited. Generally, lower alcohols such as methanol and ethanol; ether alcohols such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and butyl diglycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol, ethyl acetate, Esters such as butyl acetate and methoxyethyl acetate; acrylic acid esters such as ethyl acrylate and butyl acrylate; fluorinated alcohols such as 2,2,3,3-tetrafluoropropanol; benzene, toluene, xylene and the like Hydrocarbons: A wet coating method in which a solution dissolved in an organic solvent such as chlorinated hydrocarbons such as methylene dichloride, dichloroethane, and chloroform is applied on a substrate by spin coating, spraying, dipping, or the like. Other methods include vapor deposition and sputtering.
[0029]
The thickness of the optical recording layer is usually 0.001 to 10 μm, preferably 0.01 to 5 μm. In addition, when the optical recording material of the present invention is contained in the optical recording layer of the optical recording medium, the amount used with respect to the optical recording layer is preferably 50 to 100% by weight.
[0030]
In addition to the optical recording material of the present invention, the optical recording layer may be a compound used in an optical recording layer such as a cyanine compound, an azo compound, or a phthalocyanine compound as necessary; polyethylene, polyester, polystyrene, polycarbonate, etc. The following resins may be contained: surfactants; antistatic agents; lubricants; flame retardants; radical scavengers such as hindered amines; pit formation accelerators such as ferrocene derivatives; dispersants; antioxidants; A property-imparting agent may be contained.
[0031]
Furthermore, the optical recording layer may contain an aromatic nitroso compound, an aminium compound, an iminium compound, a bisiminium compound, a transition metal chelate compound, or the like as a quencher such as singlet oxygen. These are preferably used in the range of 0 to 50% by weight with respect to the optical recording layer.
[0032]
The material of the substrate on which such an optical recording layer is provided is not particularly limited as long as it is substantially transparent to writing (recording) light and reading (reproducing) light. For example, polymethyl methacrylate, polyethylene A resin such as terephthalate or polycarbonate, glass or the like is used. Moreover, the shape can use arbitrary shapes, such as a tape, a drum, a belt, a disk, according to a use.
[0033]
Further, a reflective film can be formed on the optical recording layer by vapor deposition or sputtering using gold, silver, aluminum, copper or the like, or a protective layer is formed by acrylic resin, ultraviolet curable resin, or the like. You can also.
[0034]
The optical recording material of the present invention is suitable for an optical recording medium using a semiconductor laser for recording and reproduction, and particularly suitable for an optical disc such as a high-speed recording type CD-R and DVD-R.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail with production examples, production examples, evaluation examples, and examples. However, the present invention is not limited by the following examples.
[0036]
  [Production Example 1] (Production of Intermediate Compound A)
  Into a nitrogen-substituted reaction flask, 39.7 g of 4-methylphenylhydrazine hydrochloride and 117.2 g of ethanol were charged.4-Phenylbutan-2-one40.8 g was added dropwise. Further, 114.7 g of 35% aqueous hydrochloric acid was added dropwise and refluxed for 2 hours. After cooling, 500 g of toluene and 500 g of water were added, and a 50% aqueous sodium hydroxide solution was further added to adjust the pH to 8 or higher, and oil-water separation was performed. The oil phase was washed with 500 g of warm water three times to perform dehydration and desolvation. The obtained residue was crystallized from 117.2 g of ethanol, and the obtained crystal was collected by filtration and vacuum dried at 80 ° C. to obtain 35.6 g (yield 60.8%) of white crystal. . 11.8 g of the obtained white crystals, 28.4 g of methyl iodide, and 19.6 g of methanol were charged into a reaction flask and reacted at 100 ° C. for 5 hours in an autoclave. After removing the solvent, 40 g of ethyl acetate was added and refluxed for 30 minutes. After cooling to room temperature, the crystals were collected by filtration and dried in vacuo at 80 ° C. to yield 11.4 g of intermediate A yellow crystals (yield: 58. 3%).
[0037]
  [Production Example 2] (Production of Intermediate Compound B)
  Into a nitrogen-substituted reaction flask, 34.9 g of 4-methoxyphenylhydrazine hydrochloride and 100 g of ethanol were charged.4-Phenylbutan-2-one35.6 g was added dropwise. After refluxing for 1 hour, 5.9 g of sulfuric acid was added dropwise, and the mixture was further refluxed for 2 hours. After cooling, 200 g of toluene and 200 g of water were added, and a 50% aqueous sodium hydroxide solution was further added to adjust the pH to 8 or higher, followed by oil-water separation. The oil phase was washed with 200 g of warm water three times to perform dehydration and desolvation. The obtained residue was crystallized from 100 g of toluene, and the resulting crystals were collected by filtration and vacuum dried at 80 ° C. to obtain 25.4 g (yield 50.5%) of white crystals. 10.1 g of the obtained white crystals, 28.4 g of methyl iodide, and 19.6 g of methanol were charged into a reaction flask and reacted at 100 ° C. for 5 hours in an autoclave. After removing the solvent, 32.0 g of ethyl acetate was added and refluxed for 30 minutes. After cooling to room temperature, the crystals were collected by filtration and vacuum dried at 80 ° C. to obtain 9.5 g of yellow crystals of intermediate B (yield: 58.3%).
[0038]
  [Production Example 3] (Production of Intermediate Compound C)
  Nitrogen-substituted reaction flask was charged with 79.1 g of 2-naphthylhydrazine and 274.1 g of ethanol at 55 ° C. under a nitrogen stream.4-Phenylbutan-2-one88.9 g was added dropwise. After stirring for 30 minutes, 49 g of sulfuric acid was added dropwise while paying attention to heat generation, and the mixture was refluxed for 1 hour. After cooling, 1000 g of toluene and 1000 g of water were added, and a 50% aqueous sodium hydroxide solution was further added to adjust the pH to 8 or higher, and oil-water separation was performed. The oil phase was washed with 500 g of warm water three times to perform dehydration and desolvation. The obtained residue was crystallized from 137 g of toluene, and the resulting crystals were collected by filtration and vacuum dried at 80 ° C. to obtain 72.4 g (yield 53.4%) of white crystals. The obtained white crystals (13.6 g), methyl iodide (28.4 g), and methanol (21.4 g) were charged into a reaction flask and reacted at 100 ° C. for 15 hours in an autoclave. After removing the solvent, crystallization was performed with a mixed solvent of 100 g of ethyl acetate and 6.0 g of methanol. The crystals were collected by filtration and vacuum dried at 140 ° C. to obtain 6.9 g (yield: 32.3%) of crude crystals of Intermediate C (HPLC purity 60%).
[0039]
  [Production Example 4] (Production of Intermediate Compound D)
  A reaction flask purged with nitrogen was charged with 157 g of phenylhydrazine sulfate and 221 g of ethanol, and was careful of heat generation at 70 ° C. under a nitrogen stream.4-Phenylbutan-2-one178 g was added dropwise. Further, 4.9 g of sulfuric acid was added dropwise and refluxed for 8 hours. After cooling, 250 g of toluene and 300 g of warm water were added, and a 50% aqueous sodium hydroxide solution was further added to adjust the pH to 8 or higher, and oil-water separation was performed. The oil phase was washed with 300 g of warm water three times to perform dehydration and desolvation. The obtained residue was crystallized from 300 g of ethanol, and the resulting crystal was collected by filtration and vacuum dried at 80 ° C. to obtain 116.1 g (yield 52.5%) of white crystals. The obtained white crystals 22.1 g, methyl iodide 56.8 g, and methanol 37.7 g were charged into a reaction flask and reacted at 100 ° C. for 16 hours in an autoclave. After removing the solvent, 3.80 g of methanol was added and dissolved by heating, 38.0 g of ethyl acetate was added, and the mixture was cooled to room temperature and crystallized. The crystals were collected by filtration and vacuum dried at 80 ° C. to obtain 17.5 g (yield: 46.4%) of white crystals of Intermediate D.
[0040]
  [Production Example 5] (Production of intermediate compound E)
  A reaction flask purged with nitrogen was charged with 19.0 g of 4-isopropylphenylhydrazine hydrochloride and 54.0 g of ethanol, while being careful of heat generation at 70 ° C. under a nitrogen stream.4-Phenylbutan-2-one18.1 g was added dropwise. After refluxing for 1 hour, 2.0 g of sulfuric acid was added dropwise, and the mixture was further refluxed for 1 hour. After cooling, 120 g of toluene and 120 g of water were added, and a 50% aqueous sodium hydroxide solution was further added to adjust the pH to 8 or higher for oil-water separation. The oil phase was washed 3 times with 60.0 g of warm water to perform dehydration and desolvation. The obtained residue was crystallized from 100 g of toluene, and the resulting crystals were collected by filtration and vacuum dried at 80 ° C. to obtain 18.1 g (yield 67.4%) of light brown crystals. 10.5 g of the obtained light brown crystals, 28.4 g of methyl iodide and 16.8 g of methanol were charged into a reaction flask and reacted at 100 ° C. for 5 hours in an autoclave. After removing the solvent, 40.0 g of ethyl acetate was added and the mixture was refluxed for 30 minutes. After cooling to room temperature, the crystals were collected by filtration and vacuum dried at 80 ° C. to give 10.3 g of yellow crystals of Intermediate E (yield: 59.6%).
[0041]
[Production Example 1] (Production of Compound No. 4 phosphorus hexafluoride salt)
A reaction flask purged with nitrogen was charged with 4.5 g of intermediate A, 3.9 g of intermediate a represented by the following formula, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 50 ° C. for 3 hours. Chloroform 50.0 g, water 50 g, and potassium hexafluorophosphate 5.5 g were added, and the mixture was stirred for 30 minutes for salt exchange. After removing the aqueous layer, 50.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 50.0 g of water and dried. After drying over sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was carried out by adding 30.0 g of methanol to the residue, and the crystals collected by filtration were washed and then vacuum dried at 140 ° C. to obtain the target compound No. 1. Thus, 2.5 g (yield: 38.9%) of green crystals of phosphorus hexafluoride 4 were obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0042]
[Chemical Formula 10]
Figure 0003659922
[0043]
<Analysis results>
(1) Purity: HPLC measurement; 99.3%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.77; s; 3) (1.79; s; 3) (2.04; s; 3) (3.34; s; 3) (3.37 to 3.41; d; 1) ( D) 1) (4.21; s; 3) (6.45 to 6.50; d; 1) (6.63 to 6.66; d; 2) (6. 99-7.05; m; 3) (7.07-7.09; d; 1) (7.17-7.19; d; 1) (7.55; s; 1) (7.58- 7.65; m; 2) (7.80-7.83; d; 1) (7.92-7.95; d; 1) (8.06-8.09; d; 1) (8. 31 to 8.54; t; 1) (8.63 to 8.66; d; 1)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 593 nm, ε; 1.17 × 10Five
[0044]
[Production Example 2] (Production of Compound No. 7 phosphorus hexafluoride salt)
A reaction flask purged with nitrogen was charged with 4.1 g of intermediate B, 4.5 g of intermediate a, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 50 ° C. for 3 hours. Chloroform 50.0 g, water 50.0 g, and potassium hexafluoride 5.5 g were added, and the mixture was stirred for 30 minutes for salt exchange. After removing the aqueous layer, 50.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 50.0 g of water and dried. After drying over sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was carried out by adding 100 g of methanol to the residue, and the crystal collected by filtration was washed and then vacuum dried at 140 ° C. to obtain the target compound No. 1. Thus, 2.4 g (yield: 35.7%) of green crystals of phosphorous hexafluoride 7 were obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0045]
<Analysis results>
(1) Purity: HPLC measurement; 99.1%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.83; s; 3) (2.00; s; 3) (2.06; s; 3) (3.49; s; 3) (3.55-3.58; d; 1) ( 3.69 to 3.72; d; 1) (3.89; s; 3) (4.34; s; 3) (6.56 to 6.60; d; 1) (6.66 to 6. 69; d; 1) (6.79 to 6.80; d; 2) (6.95 to 6.97; d; 1) (7.02 to 7.09; m; 3) (7.12 to 7.15; d; 1) (7.36; s; 1) (7.58-7.66; m; 2) (7.75-7.77; d; 1) (7.91-7. 93; d; 1) (8.06 to 8.08; d; 1) (8.68 to 8.78; t + d; 2)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 602 nm, ε; 1.09 × 10Five
[0046]
[Production Example 3] (Production of Compound No. 34 phosphorus hexafluoride salt)
Intermediate C 6.0 g, N, N'-diphenylamidine 1.4 g, acetic anhydride 2.1 g, and pyridine 11.1 g were charged into a nitrogen-substituted reaction flask and reacted at 55 ° C. for 2 hours. Chloroform 20.0 g, water 40.0 g, and potassium hexafluoride 3.9 g were added, and the mixture was stirred at 50 ° C. for 30 minutes for salt exchange. After removing the aqueous layer, 50.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 40.0 g of water and dried. After drying sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was performed by adding 40.0 g of methanol to the residue, and the crystals collected by filtration were dissolved by heating in 5.0 g of dimethylformamide, and recrystallized by adding methanol thereto. The crystals were washed and then vacuum dried at 80 ° C. to obtain the target compound No. As a result, 0.6 g (yield: 10.6%) of 34 green crystals of phosphorous hexafluoride was obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0047]
<Analysis results>
(1) Purity: HPLC measurement; 98.0%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(2.19; s; 6) (3.56; s; 6) (3.68 to 3.72; d; 2) (4.20 to 4.24; d; 2) (6.49 to 6) D; 4) (6.64 to 6.68; d; 2) (6.85 to 6.90; t; 6) (6.94 to 6.98; t; 2) (7.54) ˜7.60; m; 4) (7.75 to 7.80; t; 2) (8.02 to 8.09; m; 4) (8.51 to 8.53; d; 2) (8 .82-8.90; t; 3)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 608 nm, ε; 1.23 × 10Five
[0048]
[Production Example 4] (Production of Compound No. 36 phosphorus hexafluoride salt)
A reaction flask purged with nitrogen was charged with 7.5 g of intermediate D, 2.0 g of N, N'-diphenylamidine, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 60 ° C for 3 hours. Chloroform 25.0g, water 25.0g, and potassium hexafluoride 5.5g were added, and salt exchange was performed by stirring for 30 minutes. After removing the aqueous layer, 25.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 25.0 g of water and dried. After drying sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was carried out by adding 60.0 g of methanol to the residue, and the crystals collected by filtration were washed and dried in vacuo at 140 ° C. Thus, 2.2 g (yield: 33.6%) of red crystals of 36 hexafluorophosphorous salt was obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0049]
<Analysis results>
(1) Purity: HPLC measurement; 100%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.91; s; 6) (3.40 to 3.52; m + s; 2 + 6) (3.59 to 3.71; m; 2) (6.52 to 6.60; d; 2) (6 4) (6.98-7.09; m; 6) (7.19-7.25; d; 2) (7.28-7.39; m; 4) (7.73 to 7.76; d; 2) (8.60 to 8.66; t; 1)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 561 nm, ε; 1.42 × 10Five
[0050]
[Production Example 5] (Production of Compound No. 41 phosphorus hexafluoride salt)
A reaction flask purged with nitrogen was charged with 5.4 g of intermediate D, 3.8 g of intermediate b represented by the following formula, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 25 ° C. for 10 hours. After heating to 50 ° C., 30.0 g of chloroform, 30.0 g of water, and 5.5 g of potassium hexafluorophosphate were added, and the mixture was stirred for 30 minutes for salt exchange. After removing the aqueous layer, 30.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 30.0 g of water and dried. Sodium sulfate was dried and the solvent was removed under reduced pressure to obtain a residue. To this residue, 2.0 g of dimethylformamide was added and dissolved by heating. 20.0 g of methanol was added for crystallization, and the crystal collected by filtration was recrystallized again using 4.0 g of dimethylformamide and 20.0 g of methanol. The crystals obtained by filtration are washed and then vacuum dried at 140 ° C. to obtain the target compound No. 1. As a result, 1.4 g (yield: 20.9%) of 41 dark green crystals of phosphorous hexafluoride was obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0051]
Embedded image
Figure 0003659922
[0052]
<Analysis results>
(1) Purity: HPLC measurement; 99.0%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.66 to 1.89; br; 4) (1.80; s; 3) (2.49 to 2.62 br + br; 4) (2.49 to 2.62; m; 2) (3.38) S; 3) (3.42-3.47; m; 2) (4.04; s; 3) (6.56-6.79; m; 4) (6.98-7.06; m; 3) (7.14 to 7.17; d; 1) (7.21 to 7.26; t; 1) (7.31 to 7.36; t; 1) (7.54 to 7.59); T; 1) (7.62-7.65; d; 1) (7.69-7.74; t; 1) (7.81-7.84; d; 1) (7.86-8) .17; m; 2) (8.30-8.37; m; 2)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 579 nm, ε; 1.00 × 10Five
[0053]
[Production Example 6] (Production of compound No. 43 phosphorous hexafluoride)
A reaction flask purged with nitrogen was charged with 3.9 g of intermediate A, 4.9 g of intermediate c represented by the following formula, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 50 ° C. for 3 hours. Chloroform 50.0 g, water 50.0 g, and potassium hexafluoride 5.5 g were added, and the mixture was stirred for 30 minutes for salt exchange. After removing the aqueous layer, 50.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 50.0 g of water and dried. After drying over sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was performed by adding 30.0 g of methanol to the residue, and the crystal collected by filtration was washed and then vacuum dried at 140 ° C. Thus, 4.3 g (yield: 62.9%) of 43 green hexafluorophosphate crystals was obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0054]
Embedded image
Figure 0003659922
[0055]
<Analysis results>
(1) Purity: HPLC measurement; 99.3%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.74 to 1.96; br; 7) (2.09 to 2.19; br; 6) (2.32; s; 3) (3.36; s; 3) (3.41 to 3) .45; d; 1) (3.52-3.56; d; 1) (4.30; s; 3) (6.44 to 6.48; d; 1) (6.52 to 6.55) D; 1) (6.64-6.66; d; 2) (6.88-6.96; m; 4) (7.09-7.11; d; 1) (7.42; s; 1) (7.42 to 7.57; m; 2) (7.78 to 7.80; d; 1) (7.96 to 7.99; d; 2) (8.06 to 8.08); D; 1) (8.57 to 8.59; d; 1) (8.66 to 8.73; t; 1)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 596 nm, ε; 1.34 × 10Five
[0056]
[Production Example 7] (Production of Compound No. 44 phosphorus hexafluoride salt)
A reaction flask purged with nitrogen was charged with 4.2 g of intermediate E, 4.9 g of intermediate c, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 50 ° C. for 3 hours. Chloroform 50.0 g, water 50.0 g, and potassium hexafluorophosphate 5.5 g were added, and the mixture was stirred for 30 minutes for salt exchange. After removing the aqueous layer, 50.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 50.0 g of water and dried. After drying over sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was performed by adding 30.0 g of methanol to the residue, and the crystal collected by filtration was washed and then vacuum dried at 140 ° C. Thus, 3.3 g (yield: 46.3%) of 44 crystals of phosphorous hexafluoride were obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0057]
<Analysis results>
(1) Purity: HPLC measurement; 99.5%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.30 to 1.35; t; 6) (1.88 to 2.08; br; 7) (2.24 to 2.34; br; 6) (3.03 to 3.07; m; 1) (3.53 to 3.58; s + d; 4) (3.69 to 3.73; d; 1) (4.43; s; 3) (6.63 to 6.66; d; 1) (6.68 to 6.71; d; 1) (6.81 to 6.83; d; 2) (7.03 to 7.12; m; 4) (7.27 to 7.30; d; 1) (7.62 to 7.72; m; 3) (7.92 to 7.94; d; 1) (8.10 to 8.13; d; 1) (8.20 to 8.22; d; 1) (8.72 to 8.74; d; 1) (8.83 to 8.90; t; 1)
(3) Optical characteristics: UV spectrum measurement with chloroform solvent
λmax; 597 nm, ε; 1.15 × 10Five
[0058]
[Production Example 8] (Production of pentamethine-type cyanine compound)
A reaction flask purged with nitrogen was charged with 3.9 g of intermediate A, 4.5 g of intermediate d represented by the following formula, 3.1 g of acetic anhydride, and 15.8 g of pyridine, and reacted at 25 ° C. for 10 hours. Chloroform 30.0 g, water 30.0 g, and potassium hexafluoride 5.5 g were added, and the mixture was stirred at 50 ° C. for 30 minutes for salt exchange. After removing the aqueous layer, 30.0 g of water and 1.0 g of potassium hexafluorophosphate were further added and stirred for 30 minutes, and then the oil phase from which the aqueous phase had been removed was washed 3 times with 30.0 g of water and dried. After drying sodium sulfate, the solvent was removed under reduced pressure to obtain a residue. Crystallization was carried out by adding 45.0 g of methanol to the residue, and the crystals collected by filtration were washed and then vacuum dried at 150 ° C. to obtain the pentamethine-type compound No. 1 represented by the following formula. Thus, 4.7 g (yield: 70.4%) of a green crystal of 52 hexafluorophosphate was obtained. The following analysis was performed on this, and the structure and the like were confirmed.
[0059]
Embedded image
Figure 0003659922
[0060]
<Analysis results>
(1) Purity: HPLC measurement; 100%
(2) Structural analysis:1H-NMR measurement
(Chemical shift ppm; multiplicity; number of protons)
(1.79; s; 3) (1.96 to 1.99; d; 6) (2.40; s; 3) (3.28; s; 3) (3.48 to 3.52; d) 1) (3.66-3.70; d; 1) (3.73; s; 3) (6.22-6.26; d; 1) (6.31-6.36; d; 1 ) (6.55 to 6.63; m; 3) (6.95 to 7.05; m; 4) (7.13 to 7.15; d; 1) (7.48 to 7.50; t 1) (7.58 s; 1) (7.64 to 7.70; t; 1) (7.73 to 7.76; d; 1) (8.04 to 8.09; t; 2) ( 8.23 to 8.26; d; 1) (8.41 to 8.49; m; 2)
(3) Optical characteristics: UV spectrum measurement with methanol solvent
λmax; 667 nm, ε; 2.26 × 10Five
[0061]
[Evaluation example]
About the compound obtained by said manufacture Example and the comparative compounds 1-4 shown below, the differential thermal analysis in nitrogen stream was performed, and the thermal decomposition temperature and the steepness of thermal decomposition were evaluated. The thermal decomposition temperature was comparatively evaluated by the peak top temperature of DTA exotherm, and the steepness was evaluated by the temperature from DSC melting to the end of exothermic decomposition and its width. The results are shown in Tables 1-4.
[0062]
Embedded image
Figure 0003659922
[0063]
[Table 1]
Figure 0003659922
[0064]
[Table 2]
Figure 0003659922
[0065]
[Table 3]
Figure 0003659922
[0066]
[Table 4]
Figure 0003659922
[0067]
From the results of Tables 1 to 4 above, it was confirmed that the cyanide compound introduced with a benzyl group at the 3-position according to the present invention decomposes at low temperatures and has excellent thermal steepness. These properties are suitable for high-speed recording.
[0068]
[Examples 1 to 6] (Production and evaluation of recording medium)
A titanium chelate compound (T-50: manufactured by Nippon Soda Co., Ltd.) was applied and hydrolyzed to a polycarbonate disk substrate having a diameter of 12 cm provided with a base layer (0.01 μm). The cyanine compound obtained in 7 to 8 was applied by a spin coating method using a 2,2,3,3-tetrafluoropropanol solution (concentration 2%) to form an optical recording layer having a thickness of 100 nm, and optical recording A medium was obtained. For these optical recording media, the wavelength of recording light currently used for optical recording disks was evaluated by measuring UV spectrum absorption. If the intensity of λmax of each recording medium is 1, and the relative intensity value is less than 0.15, the recording and reproduction characteristics deteriorate, and if it exceeds 0.50, the light resistance of the optical recording layer deteriorates. The storage stability of becomes worse. Therefore, a recording light having a relative intensity of 0.15 to 0.50, which is a preferable range, was determined as an appropriate recording light wavelength. The results are shown in Table 5.
[0069]
[Table 5]
Figure 0003659922
[0070]
【The invention's effect】
The present invention can provide an optical recording material containing a cyanine compound suitable for an optical recording medium capable of high-speed recording.

Claims (5)

基体上に光学記録層が形成された光学記録媒体の該光学記録層に用いられ、下記一般式(I)又は(II)で表される化合物を含有してなる光学記録材料。
Figure 0003659922
An optical recording material used for an optical recording layer of an optical recording medium having an optical recording layer formed on a substrate and containing a compound represented by the following general formula (I) or (II).
Figure 0003659922
上記一般式(I)又は(II)において、R2、R3が連結して3〜6員環を形成する基である請求項1に記載の光学記録材料。2. The optical recording material according to claim 1, wherein, in the general formula (I) or (II), R 2 and R 3 are a group that is linked to form a 3- to 6-membered ring. 上記一般式(I)又は(II)において、Xが水素原子である請求項1又は2に記載の光学記録材料。The optical recording material according to claim 1 or 2, wherein in the general formula (I) or (II), X is a hydrogen atom. 上記一般式(I)又は(II)において、Y1がR1と同じ基である請求項1〜3に記載の光学記録材料。The optical recording material according to any one of claims 1 to 3, wherein in the general formula (I) or (II), Y1 is the same group as R1. 基体上に、請求項1〜4のいずれかに記載の光学記録材料からなる薄膜を形成してなる光学記録媒体。An optical recording medium formed by forming a thin film made of the optical recording material according to claim 1 on a substrate.
JP2002033599A 2002-02-12 2002-02-12 Optical recording material Expired - Fee Related JP3659922B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002033599A JP3659922B2 (en) 2002-02-12 2002-02-12 Optical recording material
TW099116889A TW201035080A (en) 2002-02-12 2003-01-07 Otical recording material
TW092100236A TW200306334A (en) 2002-02-12 2003-01-07 Optical recording material
KR1020030008182A KR100814215B1 (en) 2002-02-12 2003-02-10 Optical recording material
CNB031043860A CN1266693C (en) 2002-02-12 2003-02-12 Otical recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002033599A JP3659922B2 (en) 2002-02-12 2002-02-12 Optical recording material

Publications (3)

Publication Number Publication Date
JP2003231359A JP2003231359A (en) 2003-08-19
JP3659922B2 true JP3659922B2 (en) 2005-06-15
JP2003231359A5 JP2003231359A5 (en) 2005-07-07

Family

ID=27678004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002033599A Expired - Fee Related JP3659922B2 (en) 2002-02-12 2002-02-12 Optical recording material

Country Status (4)

Country Link
JP (1) JP3659922B2 (en)
KR (1) KR100814215B1 (en)
CN (1) CN1266693C (en)
TW (2) TW200306334A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708094B2 (en) 2003-08-07 2005-10-19 旭電化工業株式会社 Cyanine compound, optical recording material and optical recording medium
JP3698708B2 (en) * 2003-08-07 2005-09-21 旭電化工業株式会社 Cyanine compound, optical recording material and optical recording medium
JP4255359B2 (en) * 2003-10-31 2009-04-15 ソニー株式会社 Optical recording medium and optical recording / reproducing method
JP4614751B2 (en) * 2003-12-10 2011-01-19 株式会社Adeka Cyanine compound, optical filter using the compound, optical recording material, and optical recording medium
EP1772282B1 (en) 2004-07-29 2012-02-01 Adeka Corporation Optical recording material and optical recording medium
JP4640769B2 (en) * 2004-10-07 2011-03-02 株式会社Adeka Cyanine compound and optical recording material
JP4381958B2 (en) * 2004-10-27 2009-12-09 ソニー株式会社 Optical recording medium and optical recording / reproducing method using the same
JP2006124542A (en) * 2004-10-29 2006-05-18 Asahi Denka Kogyo Kk Indolium compound and optical recording material
WO2006051922A1 (en) * 2004-11-10 2006-05-18 Ricoh Company, Ltd. Optical recording medium, recording and reproducing method thereof, and optical recording and reproducing apparatus
JP4688480B2 (en) * 2004-11-25 2011-05-25 株式会社Adeka Cyanine compound, optical recording material using the compound, and optical recording medium
JP4691098B2 (en) * 2005-05-17 2011-06-01 三井化学株式会社 Trimethine dimer compound and optical recording medium using the same
JP2007090576A (en) * 2005-09-27 2007-04-12 Tdk Corp Optical recording material and optical recording medium
JP4953645B2 (en) 2006-01-27 2012-06-13 ソニー株式会社 Optical recording medium and manufacturing method thereof
WO2007105297A1 (en) 2006-03-13 2007-09-20 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Methine dye and use thereof
JP4982695B2 (en) * 2006-03-16 2012-07-25 株式会社リコー Optical recording medium
CN101410460B (en) * 2006-03-31 2013-01-09 株式会社艾迪科 Cyanine compound and optical recording material
WO2007114074A1 (en) 2006-03-31 2007-10-11 Adeka Corporation Indolium compound and optical recording material
WO2007135924A1 (en) 2006-05-23 2007-11-29 Adeka Corporation Optical recording material and cyanine compound
JP4806377B2 (en) * 2006-09-06 2011-11-02 株式会社リコー Optical recording medium
JP5086027B2 (en) * 2007-10-15 2012-11-28 株式会社Adeka Indolium compound and optical recording material using the compound
JP5086026B2 (en) 2007-10-15 2012-11-28 株式会社Adeka Indolium compound and optical recording material using the compound
CN101255129B (en) * 2008-03-26 2011-12-28 太仓市茜泾化工有限公司 Synthetic process of cyanine
EP3035332B1 (en) * 2013-08-14 2021-04-07 Sony Corporation Optical medium reproduction device and optical medium reproduction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443078A (en) * 1990-06-09 1992-02-13 Mitsubishi Paper Mills Ltd Optical data recording medium
WO1993022142A1 (en) * 1992-04-23 1993-11-11 Eastman Kodak Company Stabilizers for cyanine ir dyes
JP4127925B2 (en) * 1999-04-06 2008-07-30 株式会社Adeka Optical recording material
JP4467206B2 (en) * 2000-06-01 2010-05-26 株式会社Adeka Optical recording material

Also Published As

Publication number Publication date
JP2003231359A (en) 2003-08-19
CN1266693C (en) 2006-07-26
CN1438639A (en) 2003-08-27
KR20030068414A (en) 2003-08-21
TW200306334A (en) 2003-11-16
TWI341858B (en) 2011-05-11
TWI359146B (en) 2012-03-01
KR100814215B1 (en) 2008-03-17
TW201035080A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
JP3659922B2 (en) Optical recording material
JP4679520B2 (en) Optical recording material and optical recording medium
JP3698708B2 (en) Cyanine compound, optical recording material and optical recording medium
EP1652892B1 (en) Cyanine compounds, optical recording materials and optical recording media
JP4640769B2 (en) Cyanine compound and optical recording material
JP4488963B2 (en) Optical recording material
JP4467206B2 (en) Optical recording material
TWI436979B (en) Indolium (INDOLIUM) compound and an optical recording material using the same
JP5241084B2 (en) Cross-linked cyanine compound and optical recording material using the compound
JP4070366B2 (en) Optical recording material
JP2006089434A (en) Heterocyclic compound and optical recording material
JP4056295B2 (en) Optical recording material
EP1826208A1 (en) Cyanine compound, optical recording material utilizing the compound, and optical recording medium
JP4093807B2 (en) Optical recording material
JP4401032B2 (en) Optical recording material
JP4265724B2 (en) Optical recording material
JP4190352B2 (en) Optical recording material
JP4454177B2 (en) Optical recording material
JP4869018B2 (en) Optical recording material
JP4454166B2 (en) Optical recording material
TWI407434B (en) An optical recording material and an optical recording medium including the same
JP2007055043A (en) Optical recording material and optical recording medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees