JP3659867B2 - Humidity control building materials - Google Patents

Humidity control building materials Download PDF

Info

Publication number
JP3659867B2
JP3659867B2 JP2000148392A JP2000148392A JP3659867B2 JP 3659867 B2 JP3659867 B2 JP 3659867B2 JP 2000148392 A JP2000148392 A JP 2000148392A JP 2000148392 A JP2000148392 A JP 2000148392A JP 3659867 B2 JP3659867 B2 JP 3659867B2
Authority
JP
Japan
Prior art keywords
humidity control
building material
humidity
control building
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000148392A
Other languages
Japanese (ja)
Other versions
JP2001328857A (en
Inventor
忠彦 高田
Original Assignee
株式会社サメジマコーポレーション
株式会社シリックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18654431&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3659867(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社サメジマコーポレーション, 株式会社シリックス filed Critical 株式会社サメジマコーポレーション
Priority to JP2000148392A priority Critical patent/JP3659867B2/en
Publication of JP2001328857A publication Critical patent/JP2001328857A/en
Application granted granted Critical
Publication of JP3659867B2 publication Critical patent/JP3659867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials

Description

【0001】
【発明の属する技術分野】
本発明は、オパーリンシリカとスメクタイトとを主成分とする天然鉱物の優れた調湿性と自硬性とを利用した、リサイクルできる調湿建材、並びに、低温焼成によって陶磁器質床タイルとして使用可能な耐摩耗性を備える調湿セラミックス建材に関する。
【0002】
【従来の技術】
近年、高気密・高断熱建築において社会的問題となっている湿害対策として調湿建材を使用する手法が注目され、各種の調湿建材が開発されている。これらの調湿建材は、材料の形態によって、不定形と定形とに大別される。
【0003】
一方、日本の産業廃棄物の最終処分量に占める建築廃材の割合は40%を超え、建築廃材のリサイクル率を高める技術を開発することが重要な課題となっている。その課題を達成するための開発は、最終処分を見越した材料設計に基づいてなされる必要があるが、環境材料である調湿建材においてもリサイクルが困難なものが殆どであるといった課題がある。
【0004】
不定形調湿建材の代表的なものは左官用調湿性塗材である。これは、調湿原料、硬化剤、骨材、繊維質原料、結合剤などをプレミックスした材料で、これに水を加えて混練し、左官が現場に合わせて施工される。従来の調湿性塗材は、調湿原料として各種珪藻土、硬化剤としてセメントやプラスター、結合材として樹脂をそれぞれ使用するのが一般的であるが、硬化剤の水和生成物或いは樹脂によって調湿原料の細孔が塞がれ、その機能が阻害されるという問題があり、また、セメントや樹脂で固化した材料を再利用することは困難であるという問題もある。
【0005】
定形調湿建材の一つに調湿セラミックス建材がある。例えば、本願発明者が発明者の一人となっている「稚内層珪藻土を利用した調湿機能材料の製造法」(特許第2652593号)、並びに、「調湿セラミックス建材」(特許第2964393号)などに記載されているものである。これらは、多孔質クリストバライトを主成分とし、優れた調湿性能を有する天然鉱物を利用して作製するところに特徴がある。
【0006】
【発明が解決しようとする課題】
しかしながら、発明の実施の形態の項で詳述するように、この製造法では600〜900℃の低温焼成で、JIS A 5209で規定されている床タイルの規格を満足する耐摩耗性を有する調湿セラミックス建材の作製は出来ない。
【0007】
上述の従来技術の問題点を鑑みてなされた本発明の目的は、リサイクルできる調湿材料、並びに床材としても使用できる強度と耐摩耗性を備えた調湿セラミックス建材を提供するものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、調湿性及び自硬性、並びに低温焼結性を備えるオパーリンシリカとスメクタイトとを主鉱物とした天然鉱物を主原料として作製することを特徴とする。
【0009】
本発明は、調湿性と自硬性とを備えた天然鉱物と、骨材、繊維質物、解膠剤などとを混合し、現場で水と混練して施工する塗材であり、特別な硬化剤や結合剤を使用することなく固化するために、再利用が容易であることを特徴とする調湿建材である。
【0010】
天然鉱物は、通常、粒径1mm以下に調整して使用し、水に対する分散性を良くするために適正な解膠剤を加える。天然鉱物の配合比が大きいほど固化体の強度と調湿性能は大きくなるが、乾燥・固化による収縮が大きくなり、亀裂が発生しやすくなるため、10〜50wt%の配合比とする。骨材には種々の珪藻土、パーライトなどを使用するが、機能性の高い珪藻土の配合比が大きいほど調湿性能は大きくなる。繊維質物にはセルローズファイバー、合成繊維などを使用するが、古紙から再生したセルローズファイバーを利用すると廃棄物のリサイクル率が高まり、本発明の意義はより大きくなる。本発明の調湿建材は天然鉱物の自硬性によって固化することから、配合する原料固有の機能が阻害されないため、高機能化が容易であり、また、固化体は解砕するだけで元の状態に戻るため、再利用が容易である。
【0011】
本発明は、調湿性と自硬性とを備えた天然鉱物の単独又は混合粉体を通常の建築用セラミックスの成形法によって任意の形状に成形した後、乾燥・固化した調湿建材である。セメント、樹脂などのような特別な硬化剤又は結合剤を使用しないことから、再利用できることを特徴とする。天然鉱物の配合量が多いほど高強度となるが、JIS A 5209で規定された陶磁器質内装タイルの規格、輸送及び施工現場でのハンドリングを考慮すると、その配合割合を50wt%以上とするのが望ましい。この天然鉱物と混合する原材料には、焼成しないことから有機質、無機質など多種多様なものが使用できる。したがって、機能性原料の混合によって吸着・脱臭など新たな機能を付加することが容易であり、本発明による調湿建材の機能を多様化又は高度化することができる。また、本発明による調湿建材は天然鉱物の自硬性によって固化するため、解砕するだけで元の状態に戻り、再利用が容易である。
【0012】
本発明は、調湿性と自硬性とを備えた天然鉱物の単独又は混合粉体を通常の建築用セラミックスの成形法によって任意の形状に成形した後、焼成して作製する調湿建材であり、JIS A 5209で規定された陶磁器質床タイルの規格を満足することを特徴とする。天然鉱物の配合量が多いほど高強度となるが、JIS A 5209の床タイルの規格を満足するためには、その配合割合は50wt%以上とするのが望ましい。また、調湿性能及び焼成温度の関係は、調湿性能は焼成温度が高いほど小さくなり、強度は逆に大きくなるが、床タイルとして使用可能な調湿建材とするためには、600〜900℃の焼成温度とする。600℃ぐらいの低温焼成で高強度にできるため、他の多孔質原料を配合してもその機能が阻害されないことから本発明による調湿建材の機能を多様化又は高度化することができる。
【0013】
本発明で使用する調湿性と自硬性とを備えた天然鉱物は、オパーリンシリカとスメクタイトを主成分とした天然資源を開発して得られたものである。その吸着等温線並びに吸放湿変化図を図1〜2に示した。比較対照に用いたゼオライトに比べ、中・高湿度側における水蒸気吸着量並びに吸放湿機能が大きく、卓越した調湿性能を有している。この天然鉱物が備える自硬性はスメクタイトの特性に基づくものと考えられるが、特別な硬化剤又は結合剤を加えることなく固化し、その凝結力は他の粘土鉱物に比し卓越したものである。また、この天然鉱物は600℃ぐらいの低温焼成によって陶磁器質床タイルの規格を満足する強度と耐摩耗性を発現するという比類のない特徴を有する。本発明の調湿建材は、天然鉱物のこれらの特性を利用することによってはじめて可能としたものである。
【0014】
【発明の実施の形態】
以下、本発明の実施例について説明する。
【0015】
[実施例1]:本発明の請求項1に係る調湿建材
粒径1mm以下に粉砕したオパーリンシリカとスメクタイトとを主成分とし、調湿性と自硬性とを備えた天然鉱物(浅茅野層、ポンニタチナイ層、17線川層等の地層に広く分布している:以下、OPS粉体と略称する)、解膠剤、骨材、繊維質物及び増粘剤の混合粉体に所定の水を加えて混練し、それをコテによって石膏ボード下地に塗り付け、乾燥・固化した調湿建材を作製し、吸放湿機能と耐摩耗性とを測定した。骨材には珪藻土、パーライト、火山灰を使用し、繊維質物には古紙から再生したセルローズファイバーを使用したが、それらの配合比並びに測定結果を表1に示す。
【0016】
【表1】

Figure 0003659867
【0017】
−−吸放湿機能の測定法−−
恒温恒湿機を用いて槽内温度を一定にし、24時間毎に湿度を変動させて試料の吸湿率を測定し、その差を吸放湿機能とするが、槽内の温度は25℃、変動させる湿度は低温度側を50%、高湿度側を90%とした。当然ながら、吸放湿機能が大きいほど調湿性(調湿作用)も大きい。
【0018】
−−耐摩耗性Aの測定法−−
試料表面を荷重450グラムのブラシ(JIS A 6909で規定された黒豚の剛毛製)で左右に1000回擦った後、擦り減った量を測定する。それをグラム数で表し、摩耗減量とするが、それが小さいほど耐摩耗性は大きい。
【0019】
[比較例1]
OPS粉体の代わりにセメントを硬化剤として用いた以外は実施例1と同じ原料を使用して同じ方法で作製した試料について、同様の方法で吸放湿機能と耐摩耗性を測定した。その配合比並びに測定結果を表1に示した。
【0020】
[実施例2]:実施例1を高機能化した調湿建材
骨材の一部に高機能調湿原料を使用し、実施例1と同様の方法で調湿建材を作製し、その吸放湿機能と耐摩耗性Aを測定した。その配合比と測定結果を表1に示した。
【0021】
[実施例3]:本発明の実施例2を再利用した調湿建材
実施例2の調湿建材の石膏ボード下地から分離・解砕したものを用いて、同様の方法で調湿建材を作製し、その吸放湿機能と耐摩耗性Aを測定した。その測定結果を表1に示した。
【0022】
以上の実施例及び比較例から明らかなように、OPS粉体を利用した左官用調湿建材は、固化した時の凝結力が大きく、セメントを硬化剤に使用するよりも耐摩耗性に優れ、それ自体の機能が付加されることによって、吸放湿機能が大きい。また、骨材等に機能性原料を利用すれば、特別な硬化剤や結合剤を使用しないためにその機能が阻害されないことから、材料設計が容易であり、作製する左官用調湿建材の機能を高度化又は多様化することができる。さらには、一旦固化したものも分離・解砕するだけで元の状態に戻るため、再利用が容易である。
【0023】
[実施例4]:本発明の請求項2に係る調湿建材
OPS粉体単独又はそれと高機能珪藻土を配合した混合粉体を用いて加圧成形機でタイル状に成形後、乾燥・固化することによって調湿建材を作製し、その曲げ強度と吸放湿機能並びに耐摩耗性Bを測定した。その配合例と測定結果とを表2に示した。
【0024】
【表2】
Figure 0003659867
【0025】
−−耐摩耗性Bの測定法−−
JIS A 5209で規定されている陶磁器質床タイルの摩耗試験法で摩耗減量を測定し、それをグラム数で表して耐摩耗性を評価した。なお、JIS規格の陶磁器質床タイルの耐摩耗性は摩耗減量が0.1g以下である。
【0026】
[比較例2]
実施例4と比較対照するために、市販されている2種類の調湿セラミックスの吸放湿機能と耐摩耗性Bとを測定した。それらの主原料と測定結果とを表3に示した。
【0027】
【表3】
Figure 0003659867
【0028】
以上の実施例及び比較例から明らかなように、OPS粉体を利用した定形調湿建材は、成形・乾燥・固化によって作製したものであるが、焼成することによって作製した市販の調湿セラミックスに匹敵もしくはそれを上回る強度と耐摩耗性とを備えている。焼成しないためにOPS粉体と配合する原料には有機質物を含めて多様なものが利用でき、目的とする材料の設計が容易でありその機能を高度化又は多様化することができる。また、作製した調湿建材は解砕するだけで元の状態に戻るために再利用が容易である。
【0029】
[実施例5]:本発明の請求項3に係る調湿建材
OPS粉体を用いて加圧成形機でタイル状に成形後、600〜900℃で焼成することによって調湿建材を作製し、その曲げ強度と吸放湿機能並びに耐摩耗性Bを測定した。焼成温度別測定結果を表4に示した。
【0030】
【表4】
Figure 0003659867
【0031】
[実施例6]:実施例5を高機能化した調湿建材
OPS粉体と高機能珪藻土を配合した混合粉体を用いて、加圧成形機でタイル状に成形後、850℃で焼成することによって調湿建材を作製し、その曲げ強度と吸放湿機能並びに耐摩耗性Bを測定した。その配合比と測定結果を表5に示した。
【0032】
【表5】
Figure 0003659867
【0033】
[比較例3]
実施例4及び6で使用した高機能珪藻土粉体単独を用いて、同様の方法で成形後、850〜1150℃で焼成することによって調湿建材を作製し、その吸放湿機能と耐摩耗性Bとを測定した。焼成温度別測定結果を表6に示した。ここで使用した高機能珪藻土は従来技術の項で述べた、特許第2652593に記載されている稚内層珪藻土である。
【0034】
【表6】
Figure 0003659867
【0035】
以上の実施例から明らかなように、OPS粉体単独で作製した調湿セラミックス建材は、600℃の低温焼成で表3に示した市販の調湿セラミックスよりも強度は大きく、耐摩耗性は陶磁器質床タイルのJIS規格を満足する。
【0036】
OPS粉体単独で作製した調湿セラミックス建材の焼成温度と吸放湿機能、耐摩耗性及び曲げ強度の関係を図3〜5に示す。吸放湿機能は焼成温度と負の相関関係となるが、耐摩耗性と曲げ強度は正の相関関係となる。床タイルの耐摩耗性の規格を満足し、市販の調湿セラミックスBの吸放湿機能以上とするためには900℃以下の焼成温度とする。
【0037】
OPS粉体に高機能珪藻土を配合して高機能化することができるが、表5並びに図4に示した高機能珪藻土のセラミックス特性から明らかなように、耐摩耗性はOPS粉体のセラミックス特性に支配されることから、その配合比は最大50%とする。
【0038】
比較例の高機能珪藻土単独で作製した調湿セラミックスの焼成温度と吸放湿機能、耐摩耗性及び曲げ強度の関係を示したものが図6〜8である。これらの図から明らかなように表2に示したOPS粉体単独で作製した不焼成の調湿建材の曲げ強度及び耐摩耗性に匹敵するものとするためには、1050℃以上で焼成する必要があるが、焼結によって吸放湿機能がほとんど失われる。床タイルの規格を満足する耐摩耗性を有するものとするためには、1100℃以上の高温焼成が必要となり、吸放湿機能が無くなることから調湿建材とならない。しかし、実施例6で示したように、OPS粉体に配合する原料として使用することによって、床タイルとして使用可能な耐摩耗性を有する調湿セラミックス建材を作製することができる。
【0039】
【発明の効果】
以上説明したように、本発明の調湿建材はいずれも調湿性能が優れていることから、建築物の各部位に使用することによって、建築物の湿害を防止し、室内環境を快適かつ健康的に保つばかりでなく、建築物の耐久性を向上することができながら、セメントや樹脂などの特別な硬化剤又は結合剤を使用しないことから、リサイクルが容易であり、建築廃材の削減と環境負荷の低減に寄与する。
【0040】
さらに、セラミックスとした調湿建材は優れた強度と耐摩耗性とを有していることから、建築物のフロアや家具の部材として使用することができ、住環境をより健康的に維持することができる。
【図面の簡単な説明】
【図1】OPS及びゼオライトの25℃における水蒸気吸着等温線図である。
【図2】OPS及びゼオライトの25℃における吸放湿変化図である。
【図3】OPS粉体単独で作製した調湿セラミックス建材の焼成温度と吸放湿機能との相関図である。
【図4】OPS粉体単独で作製した調湿セラミックス建材の焼成温度と曲げ強度との相関図である
【図5】OPS粉体単独で作製した調湿セラミックス建材の焼成温度と摩耗減量との相関図である。
【図6】高機能珪藻土単独で作製した調湿セラミックス建材の焼成温度と吸放湿機能との相関図である。
【図7】高機能珪藻土単独で作製した調湿セラミックスの焼成温度と曲げ強度との相関図である。
【図8】高機能珪藻土単独で作製した調湿セラミックスの焼成温度と摩耗減量との相関図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a recyclable humidity building material that utilizes the excellent moisture conditioning and self-hardness of natural minerals mainly composed of opaline silica and smectite, and wear resistance that can be used as a ceramic floor tile by low-temperature firing. The present invention relates to a humidity control ceramic building material.
[0002]
[Prior art]
In recent years, techniques for using humidity-controlled building materials have attracted attention as countermeasures against moisture damage, which has become a social problem in highly airtight and highly insulated buildings, and various types of humidity-controlled building materials have been developed. These humidity control building materials are roughly classified into an indeterminate form and a definite form depending on the form of the material.
[0003]
On the other hand, the proportion of construction waste in the final disposal amount of Japanese industrial waste exceeds 40%, and it is an important issue to develop a technology for increasing the recycling rate of construction waste. Development to achieve the problem needs to be made based on material design in anticipation of final disposal, but there is a problem that most of the humidity control building materials that are environmental materials are difficult to recycle.
[0004]
A typical example of an amorphous moisture-conditioning building material is a plastering moisture-conditioning coating material. This is a premixed material of humidity conditioning materials, hardeners, aggregates, fiber materials, binders, etc., which is kneaded with water, and the plasterer is applied to the site. Conventional humidity control coating materials generally use various diatomaceous earth as a humidity control raw material, cement or plaster as a curing agent, and resin as a binder, respectively. There is a problem that the pores of the raw material are blocked and the function thereof is hindered, and there is also a problem that it is difficult to reuse the material solidified with cement or resin.
[0005]
One of the standard humidity-controlled building materials is humidity-controlled ceramic building materials. For example, the inventor of the present application is one of the inventors, “Method of producing a humidity control functional material using Wakkanai layer diatomaceous earth” (Patent No. 2652593), and “Humidity control ceramic building material” (Patent No. 2964393) Etc. are described. These are characterized in that they are produced using a natural mineral having porous cristobalite as a main component and excellent humidity control performance.
[0006]
[Problems to be solved by the invention]
However, as described in detail in the section of the embodiment of the present invention, this manufacturing method is a low-temperature firing of 600 to 900 ° C. and has a wear resistance satisfying the floor tile standard defined in JIS A 5209. Wet ceramic building materials cannot be produced.
[0007]
An object of the present invention, which has been made in view of the above-described problems of the prior art, is to provide a humidity control material that can be recycled, and a humidity control ceramic building material having strength and wear resistance that can be used as a flooring material.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a natural mineral mainly composed of opaline silica and smectite having humidity conditioning and self-hardening properties and low-temperature sinterability is produced as a main raw material.
[0009]
The present invention is a coating material that is applied by mixing natural minerals with humidity control and self-hardening properties, aggregates, fibrous materials, peptizers, etc., and kneading them with water on site. It is a humidity control building material characterized in that it can be easily reused because it is solidified without using any binder.
[0010]
Natural minerals are usually used with a particle size adjusted to 1 mm or less, and an appropriate peptizer is added to improve water dispersibility. As the blending ratio of natural minerals increases, the strength and humidity control performance of the solidified body increase. However, shrinkage due to drying and solidification increases, and cracks tend to occur. Therefore, the blending ratio is set to 10 to 50 wt%. As the aggregate, various diatomaceous earths, perlites, etc. are used. As the mixing ratio of highly functional diatomaceous earth increases, the humidity control performance increases. Cellulose fibers, synthetic fibers, and the like are used as the fibrous material. However, when cellulose fibers regenerated from waste paper are used, the waste recycling rate increases, and the significance of the present invention is further increased. Since the moisture-conditioning building material of the present invention is solidified by the self-hardness of natural minerals, the functions specific to the raw materials to be blended are not hindered, so it is easy to achieve high functionality. It is easy to reuse.
[0011]
The present invention is a humidity control building material obtained by molding a natural mineral single or mixed powder having humidity control properties and self-hardness into an arbitrary shape by an ordinary ceramic forming method, and then drying and solidifying it. Since it does not use a special curing agent or binder such as cement or resin, it can be reused. The greater the amount of natural mineral blended, the higher the strength. However, in consideration of the ceramic interior tile standards specified in JIS A 5209, transportation and handling at construction sites, the blending ratio should be 50 wt% or more. desirable. A wide variety of materials such as organic and inorganic materials can be used as raw materials to be mixed with natural minerals since they are not baked. Therefore, it is easy to add new functions such as adsorption and deodorization by mixing functional raw materials, and the functions of the humidity control building material according to the present invention can be diversified or sophisticated. Moreover, since the humidity-control building material by this invention is solidified by the self-hardness of a natural mineral, it returns to the original state only by crushing and is easy to reuse.
[0012]
The present invention is a humidity control building material produced by firing after forming a natural mineral single or mixed powder with humidity control and self-hardening into an arbitrary shape by a normal method of forming ceramics for building, It is characterized by satisfying the standard of ceramic floor tiles defined in JIS A 5209. The greater the blending amount of natural mineral, the higher the strength. However, in order to satisfy the floor tile standard of JIS A 5209, the blending ratio is desirably 50 wt% or more. In addition, the relationship between the humidity control performance and the firing temperature is such that the humidity control performance decreases as the firing temperature increases and the strength increases, but in order to obtain a humidity control building material that can be used as a floor tile, 600 to 900. The firing temperature is 0 ° C. Since the strength can be increased by low-temperature firing at about 600 ° C., the function of the humidity control building material according to the present invention can be diversified or enhanced because the function is not inhibited even if other porous raw materials are blended.
[0013]
The natural mineral having moisture conditioning and self-hardening properties used in the present invention is obtained by developing a natural resource mainly composed of opaline silica and smectite. The adsorption isotherm and the moisture absorption / release change diagrams are shown in FIGS. Compared to the zeolite used for comparison, the amount of water vapor adsorption and moisture absorption / desorption on the middle and high humidity sides is large, and it has excellent humidity control performance. The self-hardening property of this natural mineral is thought to be based on the properties of smectite, but it solidifies without the addition of a special hardener or binder, and its cohesive strength is superior to that of other clay minerals. In addition, this natural mineral has an unrivaled characteristic that it exhibits strength and wear resistance satisfying the standard of ceramic floor tiles when fired at a low temperature of about 600 ° C. The humidity control building material of the present invention is made possible only by utilizing these properties of natural minerals.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0015]
[Example 1]: A natural mineral (asakuno layer, Ponitachinai) which is composed mainly of opaline silica and smectite pulverized to a particle size of 1 mm or less according to claim 1 of the present invention, and has humidity conditioning and self-hardening properties. Is widely distributed in the strata, such as the 17 Line River Formation: hereinafter abbreviated as OPS powder), and a predetermined amount of water is added to the mixed powder of the peptizer, aggregate, fibrous material and thickener. Kneaded and applied to the base of the gypsum board with a trowel to produce a dried and solidified humidity control building material, and its moisture absorption / release function and wear resistance were measured. Diatomite, perlite, and volcanic ash were used for the aggregate, and cellulose fiber regenerated from waste paper was used for the fibrous material. Table 1 shows the blending ratio and measurement results.
[0016]
[Table 1]
Figure 0003659867
[0017]
--Measurement method of moisture absorption / release function--
The temperature inside the tank is kept constant using a thermo-hygrostat, the humidity is changed every 24 hours, the moisture absorption rate of the sample is measured, and the difference is taken as a moisture absorption / release function. The changing humidity was 50% on the low temperature side and 90% on the high humidity side. Naturally, the greater the moisture absorption / release function, the greater the humidity control (humidity control).
[0018]
--Measurement method of wear resistance A--
The surface of the sample is rubbed 1000 times to the left and right with a brush having a load of 450 grams (made of black pig bristles specified in JIS A 6909), and the amount of abrasion is measured. It is expressed in grams and used as a weight loss, but the smaller it is, the greater the wear resistance.
[0019]
[Comparative Example 1]
Except for using cement as a curing agent instead of the OPS powder, a moisture absorption / release function and wear resistance were measured in the same manner for a sample produced by the same method using the same raw material as in Example 1. The blending ratio and measurement results are shown in Table 1.
[0020]
[Example 2]: Using a highly functional humidity-controlling raw material for a part of the humidity-controlling building material aggregate that is highly functional from Example 1, a humidity-controlling building material is produced in the same manner as in Example 1, and its absorption and release Wet function and abrasion resistance A were measured. The blending ratio and measurement results are shown in Table 1.
[0021]
[Example 3]: Humidity control building material reused from Example 2 of the present invention The humidity control building material of Example 2 was separated and crushed from the gypsum board substrate, and a humidity control building material was produced in the same manner. The moisture absorption / release function and wear resistance A were measured. The measurement results are shown in Table 1.
[0022]
As is clear from the above examples and comparative examples, the humidity control building material for plastering using OPS powder has a large cohesive force when solidified, and is superior in wear resistance than using cement as a hardener, By adding its own function, the moisture absorption / release function is great. In addition, if functional raw materials are used for aggregates, the function is not hindered because no special curing agent or binder is used, so the material design is easy, and the function of the humidity control building material for plasterers to be produced Can be advanced or diversified. Furthermore, once solidified, it can be easily reused because it returns to its original state simply by separating and crushing.
[0023]
[Example 4]: A humidity control building material OPS powder according to claim 2 of the present invention alone or a mixed powder blended with it and a high-functional diatomaceous earth is molded into a tile shape by a pressure molding machine, and then dried and solidified. Thus, a humidity control building material was prepared, and its bending strength, moisture absorption / release function and abrasion resistance B were measured. The formulation examples and measurement results are shown in Table 2.
[0024]
[Table 2]
Figure 0003659867
[0025]
--Measurement method of abrasion resistance B--
Abrasion weight loss was measured by the abrasion test method for ceramic floor tiles defined in JIS A 5209, and expressed in grams to evaluate the wear resistance. The wear resistance of JIS standard ceramic floor tiles is 0.1 g or less in weight loss.
[0026]
[Comparative Example 2]
For comparison with Example 4, the moisture absorption / release function and the wear resistance B of two types of commercially available humidity control ceramics were measured. The main raw materials and the measurement results are shown in Table 3.
[0027]
[Table 3]
Figure 0003659867
[0028]
As is clear from the above examples and comparative examples, the regular moisture-conditioning building material using OPS powder is produced by molding, drying, and solidifying, but it is a commercially available humidity-conditioning ceramic produced by firing. Has comparable or superior strength and wear resistance. Various materials including organic substances can be used as raw materials to be blended with the OPS powder so as not to be baked, the design of the target material is easy, and its functions can be advanced or diversified. Moreover, since the produced humidity control building material returns to the original state only by crushing, it can be easily reused.
[0029]
[Example 5]: After forming into a tile shape with a pressure molding machine using the humidity control building material OPS powder according to claim 3 of the present invention, a humidity control building material is prepared by firing at 600 to 900 ° C. The bending strength, moisture absorption / release function and abrasion resistance B were measured. Table 4 shows the measurement results according to the firing temperature.
[0030]
[Table 4]
Figure 0003659867
[0031]
[Example 6]: Using a mixed powder containing the highly functional humidity control building material OPS powder and the high-functional diatomaceous earth of Example 5, after forming into a tile shape with a pressure molding machine, firing at 850 ° C. Thus, a humidity control building material was prepared, and its bending strength, moisture absorption / release function and abrasion resistance B were measured. The blending ratios and measurement results are shown in Table 5.
[0032]
[Table 5]
Figure 0003659867
[0033]
[Comparative Example 3]
Using the high-functional diatomaceous earth powder alone used in Examples 4 and 6, after molding by the same method, a moisture-conditioning building material is produced by firing at 850 to 1150 ° C., and its moisture absorption / release function and wear resistance. B was measured. Table 6 shows the measurement results for each firing temperature. The high-functional diatomaceous earth used here is Wakkanai layer diatomaceous earth described in Japanese Patent No. 2565593 described in the section of the prior art.
[0034]
[Table 6]
Figure 0003659867
[0035]
As is clear from the above examples, the humidity-controlled ceramic building material produced by using OPS powder alone has a strength higher than that of the commercially available humidity-controlled ceramics shown in Table 3 when fired at a low temperature of 600 ° C. Satisfies the JIS standard for quality floor tiles.
[0036]
The relationship between the firing temperature and moisture absorption / release function, wear resistance and bending strength of the humidity-controlling ceramic building material produced with the OPS powder alone is shown in FIGS. The moisture absorption / release function has a negative correlation with the firing temperature, but the wear resistance and the bending strength have a positive correlation. In order to satisfy the specifications of the abrasion resistance of the floor tile and to make it more than the moisture absorption / release function of the commercially available humidity control ceramic B, the firing temperature is set to 900 ° C. or less.
[0037]
Although high-functional diatomaceous earth can be added to the OPS powder to improve its functionality, as is apparent from the ceramic characteristics of the high-functional diatomaceous earth shown in Table 5 and FIG. 4, the wear resistance is the ceramic characteristic of the OPS powder. Therefore, the blending ratio is set to 50% at maximum.
[0038]
FIGS. 6 to 8 show the relationship between the firing temperature and the moisture absorbing / releasing function, the wear resistance and the bending strength of the humidity-controlling ceramic produced with the high-performance diatomaceous earth of Comparative Example alone. As is clear from these figures, it is necessary to fire at 1050 ° C. or higher in order to be comparable to the bending strength and wear resistance of the non-fired humidity-conditioning building material produced with the OPS powder alone shown in Table 2. However, the moisture absorption / release function is almost lost by sintering. In order to have abrasion resistance that satisfies the specifications of floor tiles, high-temperature firing at 1100 ° C. or higher is required, and the moisture absorbing and releasing function is lost, so that it is not a humidity control building material. However, as shown in Example 6, by using it as a raw material to be blended with OPS powder, a humidity-controlling ceramic building material having wear resistance that can be used as a floor tile can be produced.
[0039]
【The invention's effect】
As described above, since the humidity control building material of the present invention has excellent humidity control performance, it can be used for each part of the building to prevent moisture damage to the building and to make the indoor environment comfortable and comfortable. While not only keeping healthy but also improving the durability of the building, it does not use special hardeners or binders such as cement and resin, so it is easy to recycle and reduce building waste. Contributes to reducing environmental impact.
[0040]
In addition, humidity control building materials made of ceramics have excellent strength and wear resistance, so they can be used as building floors and furniture components to maintain a healthy living environment. Can do.
[Brief description of the drawings]
FIG. 1 is a water vapor adsorption isotherm at 25 ° C. for OPS and zeolite.
FIG. 2 is a graph showing changes in moisture absorption and desorption of OPS and zeolite at 25 ° C.
FIG. 3 is a correlation diagram between a firing temperature and a moisture absorbing / releasing function of a humidity-controlling ceramic building material produced with OPS powder alone.
FIG. 4 is a correlation diagram between the firing temperature and bending strength of a humidity-controlled ceramic building material produced with OPS powder alone. It is a correlation diagram.
FIG. 6 is a correlation diagram between a firing temperature and a moisture absorbing / releasing function of a humidity-controlling ceramic building material produced with a high-performance diatomaceous earth alone.
FIG. 7 is a correlation diagram between the firing temperature and the bending strength of humidity-controlling ceramics made with high-functional diatomaceous earth alone.
FIG. 8 is a correlation diagram between the firing temperature and the weight loss of humidity control ceramics made with high-functional diatomaceous earth alone.

Claims (3)

オパーリンシリカとスメクタイトとを主成分とする天然鉱物を固化してなることを特徴とする調湿建材。A humidity control building material obtained by solidifying a natural mineral mainly composed of opaline silica and smectite. オパーリンシリカとスメクタイトとを主成分とする天然鉱物の単独粉体又はこれと他の原料とを配合した混合粉体を成形した後、固化してなることを特徴とする調湿建材。A humidity control building material obtained by molding a single powder of a natural mineral mainly composed of opaline silica and smectite or a mixed powder containing this and other raw materials and then solidifying. オパーリンシリカとスメクタイトとを主成分とする天然鉱物の単独粉体又はこれと他の原料とを配合した混合粉体を成形した後、600〜900℃で低温焼成することを特徴とする調湿建材。A humidity control building material characterized by molding a natural mineral single powder mainly composed of opaline silica and smectite or a mixed powder containing this and other raw materials, followed by low-temperature firing at 600 to 900 ° C. .
JP2000148392A 2000-05-19 2000-05-19 Humidity control building materials Expired - Fee Related JP3659867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148392A JP3659867B2 (en) 2000-05-19 2000-05-19 Humidity control building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148392A JP3659867B2 (en) 2000-05-19 2000-05-19 Humidity control building materials

Publications (2)

Publication Number Publication Date
JP2001328857A JP2001328857A (en) 2001-11-27
JP3659867B2 true JP3659867B2 (en) 2005-06-15

Family

ID=18654431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148392A Expired - Fee Related JP3659867B2 (en) 2000-05-19 2000-05-19 Humidity control building materials

Country Status (1)

Country Link
JP (1) JP3659867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133153A (en) * 2006-11-28 2008-06-12 Shoji Seike Porous ceramics with moisture permeable glaze applied thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133153A (en) * 2006-11-28 2008-06-12 Shoji Seike Porous ceramics with moisture permeable glaze applied thereto

Also Published As

Publication number Publication date
JP2001328857A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP5025872B2 (en) Fiber cement building materials with low density additives
WO2015130677A1 (en) Improved fire core compositions and methods
JP3025906B2 (en) Gypsum-containing cementitious composition and production material therefrom
MX2012006015A (en) Heat-insulating, fire-proof, water-resistant, permeable-to-air, flexible lightweight concrete.
US8088217B2 (en) Cement-based fire door core
CA2521751C (en) Fire door core
RU2434823C2 (en) Building tile
KR101498986B1 (en) Low moisture content plastic composition comprising hydraulic cement and manufacturing method thereof
KR20150092432A (en) High strength pervious concrete blocks and method of the same
CN109138355A (en) The environmental protection construction method on hydrophobic cement ground
US20200207662A1 (en) Method for producing a molding from a dry mixture comprising graphite particles and molding thus produced
JP3659867B2 (en) Humidity control building materials
KR101703881B1 (en) Manufacturing Method of Insulation Panel with excellent Solidity and Water Resistance and Insulation Panel made thereby
JP5129941B2 (en) Inorganic molded body and method for producing the same
JP3753388B2 (en) Method for manufacturing plate-shaped composite recycled building material
JP4213405B2 (en) Fiber-containing gypsum board and manufacturing method thereof
KR101213393B1 (en) Functional mortar composition for Construction finishing material and Bicycle road
CN111635250A (en) Microporous ceramsite sound absorption plate and preparation method thereof
AU2001272205B2 (en) Mortar composition and method
KR100532541B1 (en) Bubble concrete mortar composition and its manufacturing process
JPH04284242A (en) Light-weight composite panel
JP3964138B2 (en) Moisture absorption / release cement board and method for producing the same
JP2001311248A (en) Permanent form concrete panel and manufacturing method therefor
JP3082720U (en) wall
JPH0752307A (en) Panel board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees