JP3659715B2 - Internal liner for T-type or L-type hot gas piping - Google Patents

Internal liner for T-type or L-type hot gas piping Download PDF

Info

Publication number
JP3659715B2
JP3659715B2 JP29415795A JP29415795A JP3659715B2 JP 3659715 B2 JP3659715 B2 JP 3659715B2 JP 29415795 A JP29415795 A JP 29415795A JP 29415795 A JP29415795 A JP 29415795A JP 3659715 B2 JP3659715 B2 JP 3659715B2
Authority
JP
Japan
Prior art keywords
tube
liner
shaped
pipe
spring support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29415795A
Other languages
Japanese (ja)
Other versions
JPH09137880A (en
Inventor
三千雄 松本
与志幸 土居
幸一 吉家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29415795A priority Critical patent/JP3659715B2/en
Publication of JPH09137880A publication Critical patent/JPH09137880A/en
Application granted granted Critical
Publication of JP3659715B2 publication Critical patent/JP3659715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温ガスを流す配管の内部ライナに関し、特に高温ガス配管におけるT形管又はL形管のための内部ライナに関する。
【0002】
【従来の技術】
近年の火力発電プラントでは、高効率化を図るために各種方式の複合発電設備が建設されており、中でも石炭焚きボイラの炭種多様化と高効率化を狙いとした加圧流動床ボイラとその排ガスによって駆動されるガスタービンとの複合発電設備がここ数年間に数多く建設されつつある。
【0003】
加圧流動床ボイラからガスタービンに高温ガスを供給する配管では、従来の各種産業プラント(例えば製鉄所や化学プラント等)を構成する高温ガス配管と比べてかなりの高圧条件で使用されるものであり、なおかつ高温条件下(800〜900℃)で使用されるために、もし金属材料だけでその耐圧管を構成するものとした場合、高価な耐熱合金で厚肉の耐圧管を製作する必要があってプラント建設費を高額化させることになる。
【0004】
従って、耐圧管の内面に断熱材を施工することによって耐圧管の温度上昇を抑制し、耐圧管の強度が低温条件下(〜400℃)で確保されるように設計して、耐圧管を通常よく使用される炭素鋼や低合金鋼等の安価な材料で製作する手段が採用されている。
【0005】
ここに耐圧管の内面に断熱材を施工する高温ガス配管では、断熱材がガス流にさらされると飛散の恐れがあり、もし断熱材が脱落して耐圧管が直接高温ガスにさらされるようなことになった場合、耐圧管の構成材料が通常使用できないような高温条件下に置かれるために短期間の内に破損して、高温ガスがその周辺部に噴出する危険を伴うことになる。これに対し、断熱材の接ガス面をガス流から保護するためにライナを設けることにしている。
【0006】
本発明者らは、このような耐圧管の内面に施工されている断熱材の接ガス面をガス流から保護するために、図5,図6に示すようなライナを提案した。図5,図6において、3は耐圧管でその内面には断熱材7が施工され、断熱材7の接ガス面をガス流から保護するライナ1が内張りされている。
【0007】
ライナ1は軸方向に分割されていて、その両端部を帯状の取付け金具2の内径に挿入し一端部をすみ肉溶接取付けしている。これによってライナ1と耐圧管3との軸方向熱膨張差δX は取付け金具2部でのスライドによって吸収することができる。
【0008】
分割されたライナ1はガス流によって振動しないよう、各取付け金具2から耐圧管3の内面に向って放射状に管軸に対して傾斜して伸びる複数(図では6個)の板バネサポート4で固定されており、板バネサポート4は帯状の取付け金具2の端部に突合せ溶接取付けされている。
【0009】
一方、耐圧管3の内面には取付け座5がすみ肉溶接取付けされており、取付け座5の座面に板バネサポート4を沿わせてボルト6によって固定した後にすみ肉溶接取付けしている。これによってライナ1と耐圧管3との半径方向熱膨張差は板バネサポート4のたわみによって吸収することができる。
【0010】
【発明が解決しようとする課題】
以上説明した図5のライナは真直ぐなストレート形高温ガス配管に対する内部ライナとして優れており、板バネサポート4と耐圧管3との熱膨張差δ’X ならびにライナ1と耐圧管3との熱膨張差δX があっても、ライナ1が全長に亘って軸方向に移動して対応する。
【0011】
これに対し分岐合流のためのT形管ないしは曲りのためのL形管では、管台が母管の軸方向に移動しないようにして枝管の軸方向に円滑にスライドできるようにする必要があり、ストレート形管の内部ライナ構造をそのまま適用することができない。
【0012】
そこで本発明は、内側に断熱材とライナを設けたT形管またはL形管において、高温ガス流による熱膨張に伴う不具合の生じない高温ガス配管のライナを提供することを課題としている。
【0013】
【課題を解決するための手段】
本発明は、耐圧管の内面に施工されている断熱材の接ガス面をガス流から保護するためのライナと、そのライナを外側の耐圧管に保持するための板バネサポートと、この板バネサポートに前記ライナを取付けるための帯状の取付け金具とをもつ高温ガス配管におけるT形管ないしはL形管のための内部ライナについての前記課題を解決するため次の構造の内部ライナを提供する。
【0014】
すなわち、本発明によるT形管ないしL形管のための内部ライナでは、そのT形管ないしL形管の枝管軸と母管軸の交点における母管軸まわりのライナに前記帯状の取付け金具を取付けるとともに、前記枝管軸と母管軸の交点における母管軸まわりの位置で前記耐圧管内面に取付け座を取付け、前記取付け金具をパンタグラフ形板バネサポートによって前記取付け座に取付けて耐圧管に保持してなる構成を採用する。
【0015】
このように構成した内部ライナにおいては、そのT形管ないしL形管における母管側ライナと耐圧管との間に半径方向の熱膨張差があっても、母管軸交点まわりに配設されているパンタグラフ形板バネサポートがパンタグラフ状に変形することによってその熱膨張差を吸収する。
【0016】
また、枝管軸と母管軸の交点における母管軸のまわりにパンタグラフ形板バネサポートが配設され、そのパンタグラフ形板バネサポートは前記交点における母管軸まわりの位置で帯状の取付け金具を取付け座に取付けて耐圧管に保持ているので、母管側ライナへのパンタグラフ形板バネサポートの取付け位置と耐圧管へのパンタグラフ形板バネサポートの取付け位置とが母管の軸方向で同一となり、パンタグラフ形板バネサポートと耐圧管との間の熱膨張差がゼロとなり、母管側ライナと管台とが母管の軸方向に移動しない。これによって管台は枝管の軸方向に円滑に変位できることになる。
【0017】
このようにして、本発明の内部ライナによれば、内側に断熱材とライナを設けたT形管またはL形管における熱膨張に対応できる高温ガス配管の内部ライナが提供される。
【0018】
【発明の実施の形態】
以下、本発明による高温ガス配管の内部ライナを、図1〜図4に示した実施の形態に基づいて具体的に説明する。
なお、以下の実施の形態において、図5,図6に示したものと同じ構成の部分には説明を簡単にするため同じ符号を付してある。
【0019】
(実施の第1形態)
まず、図1〜図3に示す実施の第1形態による内部ライナについて説明する。
この実施の第1形態は、耐圧管3の内面に断熱材7を施工し、その断熱材7の接ガス面に母管側ライナ10と枝管側ライナ12を設けると共に、これらのライナ10,12を耐圧管3に保持するための板バネサポート4を設けた高温ガス配管におけるT形管に対し、本発明を適用したものである。
【0020】
図1〜図3に示されているように、T形管の母管側ライナ10には管台11が接続されており、母管側ライナ10の軸交点Oのまわりには取付け金具13を介してパンタグラフ形板バネサポート14が取付けられている。
【0021】
母管側ライナ10は取付け金具13と重なり合う部分の一部を切欠き、取付け金具13にすみ肉溶接取付けされている。パンタグラフ形板バネサポート14は管台11の大きさに応じて取付け範囲及び個数が決定され、母管と枝管とが同一口径の場合には、図2に示すように母管側ライナ10の下半部に5個のパンタグラフ形の板バネサポート14を設けることができる。
【0022】
また、母管の軸方向において、軸交点Oと一致する位置でパンタグラフ形板バネサポート14が取付け座15によって耐圧管3に取付けられている。
このように母管側ライナ10と耐圧管3とに取付けられたパンタグラフ形板バネサポート14は、パンタグラフの如く変形することにより母管側ライナ10と耐圧管3との半径方向熱膨張差を吸収する。
【0023】
前記したように、母管側ライナ10へのパンタグラフ形板バネサポート14の取付け位置と耐圧管3へのパンタグラフ形板バネサポート14の取付け位置とは母管の軸方向で同一となっている。これによってパンタグラフ形板バネサポート14と耐圧管3との熱膨張差δ’X がゼロとなり、母管側ライナ10と管台11とが母管の軸方向に移動しないことになるため、管台11が枝管の軸方向に円滑にスライドすることができる。
【0024】
なお、取付け金具13の両端部にパンタグラフ形板バネサポート14が突合せ溶接されており、また、耐圧管3の内面に取付け座15がすみ肉溶接取付けされていて、取付け座15の座面に板バネサポート14を沿わせてボルト6によって固定した後にすみ肉溶接取付けされている。
【0025】
このようにして母管側ライナ10と管台11とは軸交点Oを起点にして各々の軸方向に熱膨張する。
なお、図1において、T形管に接続されるストレート形管の内部ライナは図5に示したものと同じ構成となっている。
【0026】
(実施の第2形態)
次に図4に示した実施の第2形態による内部ライナについて説明する。この図4に示す内部ライナは、耐圧管3の内面に断熱材7を施工し、その断熱材7の接ガス面に母管側ライナ10と枝管側ライナ12を設けると共に、これらのライナ10,12を耐圧管3に保持するための板バネサポート4を設けた高温ガス配管におけるL形管に対し、本発明を適用したものである。
【0027】
この図4のA−A線に沿う断面図及びB部の拡大図は、図2及び図3と同じである。
本実施形態のL形管の場合も、その母管側ライナ10には管台11が接続さており、母管側ライナ10の軸交点Oのまわりには取付け金具13を介してパンタグラフ形板バネサポート14が取付けられている。
【0028】
母管側ライナ10は取付け金具13と重なり合う部分の一部を切欠き、取付け金具13にすみ肉溶接取付けされている。パンタグラフ形板バネサポート14は管台11の大きさに応じて取付け範囲及び個数が決定されているが、図4に示す母管と枝管とが同一口径の場合には、図1〜図3の場合と同様、母管側ライナ10の下半部に5個のパンタグラフ形の板バネサポート14を設けることができる。
【0029】
また、母管の軸方向において、軸交点Oと一致する位置で耐圧管3にパンタグラフ形板バネサポート14が取付け座15によって取付けられている。
このように母管側ライナ10と耐圧管3とに取付けられたパンタグラフ形板バネサポート14は、パンタグラフの如く変形することにより母管側ライナ10と耐圧管3との半径方向熱膨張差を吸収する。
【0030】
また、本実施形態の場合も前記したように、母管側ライナ10へのパンタグラフ形板バネサポート14の取付け位置と耐圧管3へのパンタグラフ形板バネサポート14の取付け位置とは母管の軸方向で同一となっている。これによってパンタグラフ形板バネサポート14と耐圧管3との熱膨張差δ’X がゼロとなり、母管側ライナ10と管台11とが母管の軸方向に移動しないことになるため、管台11が枝管の軸方向に円滑にスライドすることができる。
【0031】
なお、取付け金具13の両端部にパンタグラフ形板バネサポート14が突合せ溶接されており、また、耐圧管3の内面に取付け座15がすみ肉溶接取付けされていて、取付け座15の座面に板バネサポート14を沿わせてボルト6によって固定した後にすみ肉溶接取付けされている。
その他の構成は図1〜図3に示したものと実質同一であり母管側ライナ10と管台11とは軸交点Oを起点にして各々の軸方向に熱膨張できる。
【0032】
【発明の効果】
以上説明したように、本発明による高温ガス配管におけるT形管ないしはL形管のための内部ライナでは、枝管軸と母管軸の交点を含む母管軸まわりのライナに帯状の取付け金具を取付けるとともに、前記枝管軸と母管軸の交点における母管軸まわりの位置で前記耐圧管内面に取付け座を取付け、前記取付け金具をパンタグラフ形板バネサポートによって前記取付け座に取付けて前記耐圧管に保持してなるもので、これによれば内部を流れる高温ガス流による熱膨張に伴う不具合の生じない高温ガス配管のT形管またはL形管に対するライナを提供することができる。
【0033】
従って、本発明の高温ガス配管の内部ライナを適用することにより、加圧流動床ボイラとガスタービンとの複合発電プラントでボイラからガスタービンに高温ガスを供給する等の場合のように、高温ガス配管の分岐合流のために用いて好適なT形管及び曲りのためのL形管を供することができる。
【図面の簡単な説明】
【図1】本発明の高温ガス配管の内部ライナをT形管に適用した場合の実施の第1形態を示す横断面図。
【図2】図1及び図4のA−A線に沿う断面図。
【図3】図1及び図4のB部の部分的拡大断面図。
【図4】本発明の高温ガス配管の内部ライナをL形管に適用した場合の実施の第2形態に示す横断面図。
【図5】直管状の高温ガス配管における内部ライナの構造を示す横断面図。
【図6】図5のC−C線に沿う断面図。
【符号の説明】
1 ライナ
2 取付け金具
3 耐圧管
4 板バネサポート
5 取付け座
6 ボルト
7 断熱材
10 母管側ライナ
11 管台
12 枝管側ライナ
13 取付け金具
14 パンタグラフ形板バネサポート
15 取付け座
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal liner for piping through which hot gas flows, and more particularly to an internal liner for T-shaped tubes or L-shaped tubes in high-temperature gas piping.
[0002]
[Prior art]
In recent years, various types of combined power generation facilities have been constructed in order to achieve high efficiency in thermal power plants. Among them, pressurized fluidized bed boilers aiming at diversification and high efficiency of coal-fired boilers and their Many combined power generation facilities with gas turbines driven by exhaust gas have been built in recent years.
[0003]
Pipes that supply high-temperature gas from a pressurized fluidized bed boiler to a gas turbine are used under considerably high pressure conditions compared to high-temperature gas pipes that constitute various conventional industrial plants (such as steelworks and chemical plants). In addition, because it is used under high temperature conditions (800 to 900 ° C.), if the pressure tube is made of only a metal material, it is necessary to manufacture a thick pressure tube with an expensive heat-resistant alloy. Therefore, the plant construction cost will be increased.
[0004]
Therefore, the pressure tube is usually designed by suppressing the temperature rise of the pressure tube by constructing a heat insulating material on the inner surface of the pressure tube and ensuring the strength of the pressure tube under low temperature conditions (~ 400 ° C). Means of manufacturing with inexpensive materials such as commonly used carbon steel and low alloy steel are employed.
[0005]
Here, in high-temperature gas pipes where insulation is applied to the inner surface of the pressure tube, there is a risk of scattering if the heat-insulation material is exposed to the gas flow. If the heat-insulation material falls off, the pressure tube is directly exposed to the high-temperature gas. In such a case, since the pressure tube construction material is placed under a high temperature condition that cannot normally be used, it is damaged within a short period of time, and there is a risk that the high temperature gas is ejected to the periphery. On the other hand, a liner is provided to protect the gas contact surface of the heat insulating material from the gas flow.
[0006]
The present inventors have proposed a liner as shown in FIGS. 5 and 6 in order to protect the gas contact surface of the heat insulating material applied to the inner surface of such a pressure tube from the gas flow. 5 and 6, reference numeral 3 denotes a pressure-resistant pipe, and a heat insulating material 7 is applied to the inner surface thereof, and a liner 1 that protects the gas contact surface of the heat insulating material 7 from a gas flow is lined.
[0007]
The liner 1 is divided in the axial direction, and both end portions thereof are inserted into the inner diameter of the strip-shaped mounting bracket 2 and one end portion is fillet welded. As a result, the difference in axial thermal expansion δ X between the liner 1 and the pressure tube 3 can be absorbed by sliding on the mounting bracket 2 part.
[0008]
The divided liners 1 are a plurality of (six in the figure) leaf spring supports 4 extending radially from the respective mounting brackets 2 toward the inner surface of the pressure-resistant tube 3 so as not to vibrate due to the gas flow. The leaf spring support 4 is fixed by butt welding to the end of the belt-like mounting bracket 2.
[0009]
On the other hand, a mounting seat 5 is fillet welded to the inner surface of the pressure-resistant tube 3, and the fillet welding support is mounted after the leaf spring support 4 is fixed along the seating surface of the mounting seat 5 with the bolt 6. As a result, the radial thermal expansion difference between the liner 1 and the pressure tube 3 can be absorbed by the deflection of the leaf spring support 4.
[0010]
[Problems to be solved by the invention]
The liner shown in FIG. 5 described above is excellent as an internal liner for a straight straight high-temperature gas pipe, and the thermal expansion difference δ ′ X between the leaf spring support 4 and the pressure tube 3 and the thermal expansion between the liner 1 and the pressure tube 3. Even if there is a difference δ X , the liner 1 moves in the axial direction over the entire length.
[0011]
On the other hand, in a T-shaped tube for branching and joining or an L-shaped tube for bending, it is necessary to allow the nozzle to slide smoothly in the axial direction of the branch pipe without moving in the axial direction of the main pipe. Yes, the straight liner internal liner structure cannot be applied as it is.
[0012]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a liner for a high-temperature gas pipe that does not cause problems associated with thermal expansion due to a high-temperature gas flow in a T-shaped tube or an L-shaped tube provided with a heat insulating material and a liner on the inside.
[0013]
[Means for Solving the Problems]
The present invention relates to a liner for protecting a gas contact surface of a heat insulating material installed on the inner surface of a pressure tube from a gas flow, a leaf spring support for holding the liner on an outer pressure tube, and the leaf spring. An internal liner having the following structure is provided in order to solve the above-described problems with respect to an internal liner for a T-shaped tube or an L-shaped tube in a high-temperature gas pipe having a belt-like mounting bracket for mounting the liner on a support.
[0014]
That is, in the inner liner for the T-shaped tube or the L-shaped tube according to the present invention, the belt-like mounting bracket is attached to the liner around the mother tube axis at the intersection of the branch tube shaft and the mother tube shaft of the T-shaped tube or L-shaped tube. mounting Rutotomoni, attach the mounting seat to the pressure-resistant inner surface at a position about the substrate tube axis at the intersection of said branch pipe shaft and mother tube axis, withstand the mounting brackets attached to the mounting seat by pantograph Katachiban spring support A structure that is held in a tube is adopted.
[0015]
In the inner liner configured as described above, even if there is a radial thermal expansion difference between the mother tube side liner and the pressure tube in the T-shaped tube or L-shaped tube, the inner liner is arranged around the intersection of the mother tubes. The pantograph shaped leaf spring support is deformed into a pantograph shape to absorb the thermal expansion difference.
[0016]
Also, a pantograph-shaped leaf spring support is disposed around the mother tube axis at the intersection of the branch tube shaft and the mother tube shaft, and the pantograph-shaped leaf spring support has a belt-like mounting bracket at a position around the mother tube axis at the intersection. The mounting position of the pantograph type leaf spring support to the mother pipe side liner and the mounting position of the pantograph type leaf spring support to the pressure pipe are the same in the axial direction of the mother pipe because it is attached to the mounting seat and held by the pressure pipe. Thus, the difference in thermal expansion between the pantograph shaped plate spring support and the pressure tube becomes zero, and the mother tube side liner and the nozzle do not move in the axial direction of the mother tube. As a result, the nozzle can be smoothly displaced in the axial direction of the branch pipe.
[0017]
Thus, according to the inner liner of the present invention, an inner liner of a high-temperature gas pipe that can cope with thermal expansion in a T-shaped tube or an L-shaped tube provided with a heat insulating material and a liner inside is provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the internal liner of the high-temperature gas pipe according to the present invention will be specifically described based on the embodiment shown in FIGS.
In the following embodiments, the same reference numerals are given to the same components as those shown in FIGS. 5 and 6 for the sake of simplicity.
[0019]
(First embodiment)
First, the internal liner according to the first embodiment shown in FIGS. 1 to 3 will be described.
In the first embodiment, the heat insulating material 7 is applied to the inner surface of the pressure-resistant tube 3, and the mother pipe side liner 10 and the branch pipe side liner 12 are provided on the gas contact surface of the heat insulating material 7. The present invention is applied to a T-shaped pipe in a high-temperature gas pipe provided with a leaf spring support 4 for holding 12 in a pressure-resistant pipe 3.
[0020]
As shown in FIGS. 1 to 3, a nozzle base 11 is connected to a mother pipe side liner 10 of a T-shaped pipe, and a mounting bracket 13 is provided around an axis intersection O of the mother pipe side liner 10. A pantograph-shaped leaf spring support 14 is attached thereto.
[0021]
The mother pipe side liner 10 is cut out at a portion overlapping with the mounting bracket 13 and is welded to the mounting bracket 13 by fillet welding. The attachment range and the number of the pantograph-shaped leaf spring supports 14 are determined according to the size of the nozzle 11, and when the mother pipe and the branch pipe have the same diameter, as shown in FIG. Five pantograph-shaped leaf spring supports 14 can be provided in the lower half.
[0022]
In addition, a pantograph-shaped leaf spring support 14 is attached to the pressure-resistant tube 3 by a mounting seat 15 at a position that coincides with the axis intersection point O in the axial direction of the mother pipe.
Thus, the pantograph-shaped leaf spring support 14 attached to the mother pipe side liner 10 and the pressure tube 3 absorbs the radial thermal expansion difference between the mother pipe side liner 10 and the pressure tube 3 by being deformed like a pantograph. To do.
[0023]
As described above, the attachment position of the pantograph-type leaf spring support 14 to the mother pipe side liner 10 and the attachment position of the pantograph-type leaf spring support 14 to the pressure resistant pipe 3 are the same in the axial direction of the mother pipe. As a result, the thermal expansion difference δ ′ X between the pantograph-shaped plate spring support 14 and the pressure tube 3 becomes zero, and the mother pipe side liner 10 and the nozzle 11 do not move in the axial direction of the mother pipe. 11 can slide smoothly in the axial direction of the branch pipe.
[0024]
A pantograph-shaped plate spring support 14 is butt welded to both ends of the mounting bracket 13, and a mounting seat 15 is fillet welded to the inner surface of the pressure-resistant tube 3, and a plate is attached to the seating surface of the mounting seat 15. After the spring support 14 is fixed along the bolt 6, the fillet is welded.
[0025]
In this way, the mother pipe side liner 10 and the nozzle base 11 thermally expand in the respective axial directions starting from the axis intersection point O.
In FIG. 1, the inner liner of the straight tube connected to the T tube has the same configuration as that shown in FIG.
[0026]
(Second embodiment)
Next, an internal liner according to the second embodiment shown in FIG. 4 will be described. The internal liner shown in FIG. 4 has a heat insulating material 7 applied to the inner surface of the pressure-resistant tube 3, and a mother pipe side liner 10 and a branch pipe side liner 12 are provided on the gas contact surface of the heat insulating material 7. , 12 is applied to the L-shaped pipe in the high-temperature gas pipe provided with the leaf spring support 4 for holding the pressure-resistant pipe 3.
[0027]
The cross-sectional view taken along the line AA in FIG. 4 and the enlarged view of the portion B are the same as those in FIGS.
In the case of L-shaped pipe of the present embodiment, the the main pipe side liner 10 is connected to nozzle stub 11, pantograph type via a mounting bracket 13 about the axis intersection O of the main pipe side liner 10 A leaf spring support 14 is attached.
[0028]
The mother pipe side liner 10 is cut out at a portion overlapping with the mounting bracket 13 and is welded to the mounting bracket 13 by fillet welding. The mounting range and the number of the pantograph-shaped leaf spring supports 14 are determined according to the size of the nozzle 11, but when the main pipe and the branch pipe shown in FIG. As in the case of (5), five pantograph-shaped leaf spring supports 14 can be provided in the lower half of the mother pipe side liner 10.
[0029]
Further, a pantograph-shaped plate spring support 14 is attached to the pressure-resistant tube 3 by a mounting seat 15 at a position coinciding with the axis intersection point O in the axial direction of the mother pipe.
Thus, the pantograph-shaped leaf spring support 14 attached to the mother pipe side liner 10 and the pressure tube 3 absorbs the radial thermal expansion difference between the mother pipe side liner 10 and the pressure tube 3 by being deformed like a pantograph. To do.
[0030]
In the case of this embodiment, as described above, the mounting position of the pantograph plate spring support 14 to the mother pipe side liner 10 and the mounting position of the pantograph plate spring support 14 to the pressure tube 3 are the axis of the mother pipe. The direction is the same. As a result, the thermal expansion difference δ ′ X between the pantograph-shaped plate spring support 14 and the pressure tube 3 becomes zero, and the mother pipe side liner 10 and the nozzle 11 do not move in the axial direction of the mother pipe. 11 can slide smoothly in the axial direction of the branch pipe.
[0031]
A pantograph-shaped plate spring support 14 is butt welded to both ends of the mounting bracket 13, and a mounting seat 15 is fillet welded to the inner surface of the pressure-resistant tube 3, and a plate is attached to the seating surface of the mounting seat 15. After the spring support 14 is fixed along the bolt 6, the fillet is welded.
Other configurations are substantially the same as those shown in FIGS. 1 to 3, and the mother pipe side liner 10 and the nozzle 11 can be thermally expanded in the respective axial directions starting from the axis intersection O.
[0032]
【The invention's effect】
As described above, in the internal liner for the T-shaped pipe or the L-shaped pipe in the high-temperature gas pipe according to the present invention, the belt-like mounting bracket is provided on the liner around the main pipe axis including the intersection of the branch pipe axis and the main pipe axis. mounting Rutotomoni, attach the mounting seat to the pressure-resistant inner surface at a position about the substrate tube axis at the intersection of said branch pipe shaft and mother tube axis, the said mounting brackets mounted on the mounting seat by pantograph Katachiban spring support breakdown voltage According to this, it is possible to provide a liner for a T-shaped tube or an L-shaped tube of a high-temperature gas pipe that does not cause a problem due to thermal expansion due to a high-temperature gas flow flowing inside.
[0033]
Therefore, by applying the internal liner of the hot gas pipe of the present invention, the hot gas is supplied to the gas turbine from the boiler in a combined power plant of a pressurized fluidized bed boiler and a gas turbine, etc. A suitable T-shaped tube used for branching and joining of pipes and an L-shaped tube for bending can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment when an internal liner of a high-temperature gas pipe of the present invention is applied to a T-shaped pipe.
2 is a cross-sectional view taken along the line AA in FIGS. 1 and 4. FIG.
3 is a partially enlarged cross-sectional view of a portion B in FIGS. 1 and 4. FIG.
FIG. 4 is a cross-sectional view shown in a second embodiment when the inner liner of the hot gas pipe of the present invention is applied to an L-shaped pipe.
FIG. 5 is a cross-sectional view showing the structure of an inner liner in a straight tubular high-temperature gas pipe.
6 is a cross-sectional view taken along line CC in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liner 2 Mounting bracket 3 Pressure-resistant pipe 4 Leaf spring support 5 Mounting seat 6 Bolt 7 Heat insulating material 10 Mother side pipe side liner 11 Base 12 Branch pipe side liner 13 Mounting bracket 14 Pantograph type leaf spring support 15 Mounting seat

Claims (1)

耐圧管の内面に施工されている断熱材の接ガス面をガス流から保護するためのライナと、同ライナを前記耐圧管に保持するための板バネサポートと、同板バネサポートに前記ライナを取付けるための帯状の取付け金具とをもつ高温ガス配管におけるT形管ないしはL形管のための内部ライナであって、枝管軸と母管軸の交点における母管軸まわりのライナに帯状の取付け金具を取付けるとともに、前記枝管軸と母管軸の交点における母管軸まわりの位置で前記耐圧管内面に取付け座を取付け、前記取付け金具をパンタグラフ形板バネサポートによって前記取付け座に取付けて前記耐圧管に保持してなることを特徴とするT形又はL形高温ガス配管の内部ライナ。A liner for protecting the gas contact surface of the heat insulating material installed on the inner surface of the pressure tube from a gas flow, a leaf spring support for holding the liner on the pressure tube, and the liner on the leaf spring support An internal liner for a T-shaped tube or L-shaped tube in a high temperature gas pipe having a strip-shaped mounting bracket for mounting, and the strip-shaped mounting on the liner around the main tube axis at the intersection of the branch tube shaft and the main tube shaft Rutotomoni mounting the bracket, attaching the mounting seat to the pressure-resistant inner surface at a position about the substrate tube axis at the intersection of said branch pipe shaft and mother tube axis, said mounting brackets mounted on the mounting seat by pantograph Katachiban spring support T-shaped or L-shaped hot gas inside liner of the pipe, characterized by comprising holding the breakdown voltage tube.
JP29415795A 1995-11-13 1995-11-13 Internal liner for T-type or L-type hot gas piping Expired - Lifetime JP3659715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29415795A JP3659715B2 (en) 1995-11-13 1995-11-13 Internal liner for T-type or L-type hot gas piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29415795A JP3659715B2 (en) 1995-11-13 1995-11-13 Internal liner for T-type or L-type hot gas piping

Publications (2)

Publication Number Publication Date
JPH09137880A JPH09137880A (en) 1997-05-27
JP3659715B2 true JP3659715B2 (en) 2005-06-15

Family

ID=17804056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29415795A Expired - Lifetime JP3659715B2 (en) 1995-11-13 1995-11-13 Internal liner for T-type or L-type hot gas piping

Country Status (1)

Country Link
JP (1) JP3659715B2 (en)

Also Published As

Publication number Publication date
JPH09137880A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP5738355B2 (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
US4004887A (en) Catalytic converter having a resilient thermal-variation compensating monolith-mounting arrangement
JPH1113483A (en) Gas turbine exhaust duct
US9982564B2 (en) Turbine frame assembly and method of designing turbine frame assembly
JP2006226283A (en) Exhaust liner assembly and narrow outlet member thereof
US5579639A (en) Double walled exhaust pipe for an engine
EP1867909B1 (en) Pipe penetration system
JP3659715B2 (en) Internal liner for T-type or L-type hot gas piping
EP2622278B1 (en) Gas turbine assembly and method therefor
US5358284A (en) High temperature non-metallic expansion joint
JP5687825B2 (en) Distortion suppression jig and steel wall repair method
JP3909435B2 (en) Thermally acceptable support structure for catalytic combustors.
JP2004116518A (en) Method and device for supporting high-temperature duct device
JP3659714B2 (en) High temperature gas pipe inner liner mounting device
JPH10252984A (en) High temperature gas duct
JP2002536595A (en) Flexible seals for gas turbine expansion joints
JP3610561B2 (en) High temperature piping lining structure
JP3637429B2 (en) Hot gas piping
US9488105B2 (en) Gas turbine assembly and method therefor
US10605401B2 (en) Expansion joint containing dynamic flange
JPH09280446A (en) Non-metallic expansion joint
JP3550463B2 (en) Gas piping
JP2001200729A (en) Installation structure for exterior plate
CN219955373U (en) Wear-resistant tile for tail flue
JP2023133868A (en) vehicle exhaust system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term