JP3659714B2 - High temperature gas pipe inner liner mounting device - Google Patents

High temperature gas pipe inner liner mounting device Download PDF

Info

Publication number
JP3659714B2
JP3659714B2 JP28853695A JP28853695A JP3659714B2 JP 3659714 B2 JP3659714 B2 JP 3659714B2 JP 28853695 A JP28853695 A JP 28853695A JP 28853695 A JP28853695 A JP 28853695A JP 3659714 B2 JP3659714 B2 JP 3659714B2
Authority
JP
Japan
Prior art keywords
split ring
pressure
liner
spring support
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28853695A
Other languages
Japanese (ja)
Other versions
JPH09133255A (en
Inventor
三千雄 松本
与志幸 土居
幸一 吉家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28853695A priority Critical patent/JP3659714B2/en
Publication of JPH09133255A publication Critical patent/JPH09133255A/en
Application granted granted Critical
Publication of JP3659714B2 publication Critical patent/JP3659714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧流動床ボイラーとガスタービンとからなる複合発電プラントにおいて、ボイラーからガスタービンに高温ガスを供給する等の、高温ガス配管の内部に張設する、断熱材を保護するライナを取付けるための高温ガス管内部ライナ取付装置に関する。
【0002】
【従来の技術】
近年の火力発電プラントでは、プラントの高効率化を図るために、各種方式の複合発電設備が建設されており、なかでも、石炭焚きボイラーの炭種多様化と、高効率化を狙いとした、加圧流動床ボイラーと、その排ガスによって駆動されるガスタービンとの複合発電プラントが、ここ数年間に数多く建設されつつある。
【0003】
このような複合発電プラントにおいて、加圧流動床ボイラーからガスタービンに高温ガスを供給する配管は、例えば、製鉄所や化学プラント等の従来の各種産業プランに使用される高温ガス配管に比べて、かなりの高圧条件で使用される耐圧管を使用する必要があり、なおかつ、高温条件下(800〜900℃)で使用されるために、もし金属材料だけで、その耐圧管を構成するようにした場合、このような、高温、高圧に耐える高価な耐熱合金で、厚肉の耐圧管を製作する必要があり、高価なものとなり、プラント建設費を高騰化させることになる。
【0004】
従って、耐圧管の内面に断熱材を施工することによって、耐圧管の温度上昇を抑制し、耐圧管の強度が低温条件下(〜400℃)で確保される様に設計して、耐圧管の材料を、通常よく使用される炭素鋼や、低合金鋼等の安価な材料で製作して、プラント建設費を低廉にする手段が採用されている。
【0005】
しかしながら、このような安価な材料で製作された耐圧管の内面に断熱材を施工した高温ガス配管では、内面に施工した断熱材が高温、高速のガス流にさらされると、飛散、脱落する恐れが有り、もし万一、断熱材が飛散、脱落して、耐圧管が直接高温ガスにさらされる様なことが起った場合、耐圧管の構成材料が通常では、使用できない様な高温条件下に置かれるために、短期間のうちに破損して、高温ガスがその周辺部に噴出する危険を伴うことになる。
【0006】
このような最悪の事態が生じないようにするため、耐圧管の内面に施工され、耐圧管が高温ガスに直接さらされるのを防止する断熱材の接ガス面に、ライナを設けて、このライナによって断熱材の接ガス面を高温ガス流から保護し、断熱材の飛散、脱落を防止することが行われている。
図9〜図11は、従来の加圧流動床ボイラーからガスタービンに高温ガスを供給する配管に使用され、断熱材の飛散、脱落を防止するように、ライナ1を断熱材7の内面に取付けるための高温ガス管内部ライナ取付装置を示す図である。
【0007】
図に示すように、耐圧管3の内面に施工され、耐圧管3の温度上昇を抑制する断熱材7の内周側の接ガス面8は、ライナ1で被覆するようにしている。
ライナ1は、軸方向に耐圧管3の外径D(図14参照)より短い長さに分割された円筒体からなり、その両端部が、断熱材7の内周面に嵌装され、ライナ1の内部を流れる高温ガスによって生じる、ライナ1の軸方向の熱膨張を吸収できる長さのピッチで断熱材7内面に配設された、帯状の分割リング2の内周面に挿入され、両端部のうちの一端部のみが、すみ肉溶接9で分割リング2の内周面に固着されている。
【0008】
これによって、ライナ1の内部を流れる高温ガスにより、ライナ1と耐圧管3との間に、軸方向の熱膨張差δが生じても、分割リング2の内周面に両端部が挿入され、断熱材7の内周面に配設されたライナ1の、溶接されてない方の一端部が分割リング2内部でのスライドすることによって、この熱膨張差δを吸収するようにしている。
【0009】
また、軸方向に分割され、断熱材7の排ガス面8を被覆するライナ1が高温、高速のガス流によって振動することがないように、内周面にライナ1の一端部が固着されるとともに、他端部が挿入された、各分割リング2は、外周面に一端がすみ肉溶接で固着され、他端が耐圧管3の内面に向って、分割リング2の外周面から放射状に管軸に対して傾斜して伸び、耐圧管3の内周面に、同様にすみ肉溶接で固着された複数(図では6個)の板バネサポート4で耐圧管3に固定されている。
【0010】
これによって、前述したように、ライナ1の軸方向熱膨張を内周面のライナ1の摺動で吸収する分割リング2およびライナ1と、耐圧管3との間に生じる半径方向熱膨張差δは、図12に示す様な板バネサポート4の径方向のたわみによって吸収することができる。
【0011】
また、上述した従来の技術による高温ガス管内部ライナ取付装置で、ライナ1を耐圧管3の内部に取付ける組立て手順としては、まず図13に示す様に、複数の板バネサポート4の内周端部を、分割リング2の外周面上にすみ肉溶接12取付けておく。
次いで、図14に示すように、板バネサポート4と分割リング2との組立て品を、耐圧管3内部の所定位置に挿入配置し、分割リング2と耐圧管3とが同一軸線上になる様に注意しながら、板バネサポート4の外周端部を耐圧管3の内周面上にすみ肉溶接12取付けした後、耐圧管3の内面を分割リング3の外面の間に断熱材7を張設、施工する。
【0012】
次いで、図15に示すように、ライナ1の両端部を隣接する分割リング2の内周面に挿入して、ライナ1の一端部のみを、分割リング2の内周面上にすみ肉溶接して取付ける。
このように、軸方向に分割されたライナ1を順次この手順で挿入、取付けして、最終的に、図9に示す高温ガス配管内部の断熱材7の排ガス面をライナ1で被覆して、断熱材7の飛散、脱落を防止した高温ガス配管10が完成するわけであるが、上述した従来の技術による、高温ガス配管10の耐圧管3内部へライナ1を取付ける、高温ガス管内部ライナ取付装置には、次の様な問題が有る。
【0013】
まず、ライナ1(および分割リング2)と耐圧管3との半径方向熱膨張差δは、図11に示す様な、板バネサポート4のたわみによって吸収することができるわけであるが、その際に板バネサポート4の両端部の分割リング2の外周面、および耐圧管3の内周面へのすみ肉溶接部に、曲げモーメントMによる応力が発生する。
【0014】
このうち、比較的低温の耐圧管3の内周面へのすみ肉溶接部に発生する曲げモーメントMについては、このモーメントMによって、少し位高い応力が発生しても、材料強度上、特に支障は生じないが、高温の分割リング2の外周面のすみ肉溶接部の、曲げモーメントMにより発生する応力は、たとえ、それが低い応力値であっても、この溶接部は高温のため、この部分の、材料強度(クリープ及び疲労強度)がほとんど期待できないことから、それによって損傷を起こす恐れが有る。
【0015】
すなわち、分割リング2が耐圧管3の所定位置に固定できなくなり、ライナ1が軸方向に移動して、断熱材7の接ガス面に飛散、脱落が起る可能性が発生するとともに、ライナ1が振動を起すようになる。
この高温の分割リング2外周面への板バホサポート4の取付けは、すみ肉溶接によるものであり、その応力集中が高いために、より疲労損傷を起こし易い構造となっている。
【0016】
また、分割リング2は、隣接するライナ1間に、高温ガスにより伸縮する軸方向スライド分の隙間(>δ)が確保される様に、軸方向に位置決めして、耐圧管3の内面に取付ける必要が有り、そのためには、図13に示す板バネサポート4と分割リング2との外径Lの組立て品を、図14に示す様に、内径Dの耐圧管3の内部に挿入、取付けする必要があるが、この場合、相対する板バネサポート4の外径端部間寸法Lを、耐圧管3の内径Dよりも小さくしなければ、組立て品を耐圧管3の内部に挿入できないことは自明である。
このために、板バネサポート4の外径端部間の寸法を耐圧管3の内径Dより小さくして、組立て品を耐圧管3内に挿入して取付けるようにすると、板バネサポート4の外径側端部を耐圧管3の内面にすみ肉溶接して取付けする際に、隙間のあいた状態で溶接作業を行う必要が生じ、分割リング2と耐圧管3とが同一軸線上になる様に、正確に取付けする必要が有るにも拘わらず、作業性が悪くなるという不具合がある。
【0017】
【発明が解決しようとする課題】
本発明は、上述した従来の高温ガス管内部ライナ取付装置の不具合を解消するため、分割リング2を耐圧管3の内面に取付ける板バネサポート4の、特に、内径端部の分割リング2外周面への取付部に発生する曲げモーメントを軽減して、この取付部に発生する集中応力を小さくして、この部分の疲労損傷をなくするとともに、分割リング2の耐圧管3内部への取付時の、板バネサポート4の外径端部の耐圧管3内面への取付け作業性を良くして、分割リング2と耐圧管3とが同心状に、正確に、しかも容易に取付けることができる、高温ガス管内部ライナ取付装置を提供することを課題とする。
【0018】
【課題を解決するための手段】
このため本発明の高温ガス管内部ライナ取付装置は、次の手段とした。
【0019】
(1)軸方向に分割され、高温ガスを移送する耐圧管内面に施工した断熱材の接ガス面に設置される円筒状のライナ、前記ライナの軸方向両端部に設置され、内周面に挿入された前記ライナの両端部のうちの一端部を固着する分割リング、前記分割リングと前記耐圧管内面との間に、軸方向と傾斜して配設されて連結する板バネサポートからなる高温ガス管内部ライナ取付装置において、軸方向と平行な座面を形成して前記耐圧管内面に固着された取付座と、一端部が前記分割リングの一端に突合せ溶接固着され、他端部が前記座面と平行な面をもつボルト取付部にされ、前記分割リングを前記耐圧管の内部に固着する前記板バネサポートとを設けると共に、 前記分割リングに一端部を固着し、前記耐圧管内部に取付けるときの前記ボルト取付部の半径が、前記高温ガス通過時の前記耐圧管と前記分割リングとの径方向のほぼ熱膨張差分だけ短くした前記板バネサポートであることを要旨とする
【0020】
このように、本発明の高温ガス管内部ライナ取付装置は、帯状の分割リングの端部に、板バネサポートの内径端部が突合せ、溶接取付けされ、耐圧管内面に取付けられた取付座の座面に、板バネサポートの外径端部を沿わせて、ボルト止めした後に、板バネサポートを取付け座に、すみ肉溶接取付けする構造とすることにより、断熱材の内周面を被覆する隣接したライナは、分割リングの内周面を自由に摺動して、従来装置と同様に耐圧管との間に生じる軸方向の熱膨張差δが吸収され、また、ライナおよび分割リングの耐圧管との間に生じる半径方向の熱膨張差δは、板バネサポートの半径方向のたわみで吸収されるともに、内部を流れる高温ガス流によって、ライナに振動が発生するようなことはなくなる。
【0021】
また、この板バネサポートがたわむときに、板バネサポートの分割リングおよび耐圧管への取付部に発生する曲げモーメントを著しく軽減することができる。
これにより、特に板バネサポートの分割リングへの取付部に発生していた疲労損傷をなくすることができる。
また、分割リングの耐圧管内部への同心状の取付けが、正確に、しかも容易になり取付け作業性が良好になる
【0022】
このように、板バネサポートを耐圧管とライナ(分割リング)との半径方向熱膨張差分だけ短い寸法の外径で製作し、分割リングの耐圧管内部への取付け時には、取付け座の座面に、板バネサポートのボルト取付部をボルトの締付けで引寄せて、沿わせる構造とすることにより、分割リングと板バネサポートを前もって組立てておき、耐圧管内部に取付けるとき、耐圧管内部へ挿入が容易になるとともに、ボルトの均等な締付けにより、分割リングを耐圧管と軸心を合わせて、耐圧管の内部に、正確に取付けることができ、作業が容易になる。
【0023】
また、内部を高温ガスが通過するとき、板バネサポートに発生する応力は、前述した板バネサポートの内径端部の分割リングとの取付け、ボルト取付部の取付座との取付構造の採用と相俟って、ほとんど、ゼロとすることができ、クリープによる損傷の恐れをなくすることができる。
【0024】
【発明の実施の形態】
以下、本発明の高温ガス管内部ライナ取付装置の実施の一形態を、図面にもとづき説明する。
図1は、本発明の高温ガス管内部ライナ取付装置の実施の第1形態を示す縦断面図、図2は、図1に示す矢視A−Aにおけるよこ断面図、図3は図1に示すA部の拡大図である。
なお、本発明の実施の形態を示す図面において、図8〜図14において示した、従来の高温ガス管内部ライナ取付装置の部材と同一部材には、同一符番を付して説明は省略する。
【0025】
これらの図に示すように、耐圧管3の内周面には、取付座11が突設されている。
取付座11の内面には、軸心方向と平行にされた座面12が設けられており、この座面12に、後述する板バネサポート4の外径端部に設けたボルト取付部42を沿わせて、ボルト13で固着するようにしている。
【0026】
また、耐圧管3の内面には、断熱材7が張設されるとともに、断熱材7の内周面の接ガス面8には、軸方向に分割されたライナ1が張設されている。
ライナ1の分割部両端部は、ライナ1の軸方向の長さに、耐圧管3とライナ1の軸方向の熱膨張差δを加えた長さより、若干長くしたピッチで軸方向に配設された、帯状の分割リング2の内周面にそれぞれ挿入され、一端部のみが分割リング2の内周面に、図3のC部詳細を示す図4(b)に示すように、溶接固定されている。
従って、分割リング2の内周面に固着されない他端部が、分割リング2の内周面を軸方向に摺動して、ライナ1の軸方向の熱伸びを吸収することができる。
【0027】
また、分割リング2の1端には、軸心方向と平行にされた、板バネサポート4の内径端部41の端面が、図3のD部詳細を示す図4(d)に示すように突き合せ溶接で固着されている。
板バネサポート4の外径端部には、内径端部41と同様に、軸心方向と平行にされたボルト取付部42が設けられており、このボルト取付部42が前述したように、取付座11の座面12とボルト13で固着された後、図3のB部詳細を示す図4(a)に示すように、端面を座面12と溶接して固着するようにしている。
【0028】
このように、内径端部41が分割リング2の一端に突き合せ溶接で固着され、外径端部のボルト取付部42が座面12と固着され、軸心方向から傾斜させて拡開された板バネサポート4により、分割リング2は耐圧管3内部の所定位置に固着されて、ライナ1を断熱材7の接ガス面8に張設するようにしている。
【0029】
以上に述べた、本実施の形態の高温ガス管内部ライナ取付装置による、ライナ1の耐圧管3内部への組立て手順としては、まず図5に示す様に、複数の板バネサポート4を帯状の分割リング2の端部に突合せ溶接取付けしておく。
ここに、板バネサポート4は、取付け寸法hに対して耐圧管3とライナ1との半径方向熱膨張差δだけ短い寸法h−δで製作する。
【0030】
次に、図6及び図7に示す様に、取付け座11を耐圧管3内面の所定位置にすみ肉溶接で取付けておき、図5に示す板バネサポート4と分割リング2との組立て品を挿入して、取付座11の座面12に板バネサポート4のボルト取付部42をボルト13締付けで引寄せ固定する。
そして、取付け寸法hで取付座11の座面12に、板バネサポート4の取付部42を沿わせた後に、取付部42の端面を座面12にすみ肉溶接して取付け、その後に耐圧管3の内面に断熱材7を施工する。
【0031】
次いで、図8に示す様に、ライナ1の両端部を分割リング2の内周面に挿入してライナ1の一端部のみを、分割リング2の内周面にすみ肉溶接取付けする。このようにして、軸方向に耐圧管3の直径よりも短い長さに分割されたライナ1を、順次この手順で、挿入、取付けして、図1に示す高温ガス配管10の内部ライナ構造が耐圧管3の内部に完成するわけであるが、隣接するライナ1間には、軸方向スライド分の隙間(>δ)が確保される様に、分割リング2が軸方向に位置決めして取付けられている。
【0032】
以上述べた、本発明の実施の形態による高温ガス管内部ライナ取付装置を採用することにより、従来の技術と同様に、ライナ1と耐圧管3との軸方向熱膨張差δは、ライナ1の分割リング2内部でのスライドによって吸収することができ、ライナ1と耐圧管3との半径方向熱膨張差δは、各分割リング2から耐圧管3の内面に向って放射状に、管軸に対して傾斜して伸びる複数の板バネサポート4のたわみによって吸収することができるとともに、内部の高温ガスの通過によって生じるライナ1の振動は、板バネサポートによる分割リング2の耐圧管3への固着によって止めることができる。
【0033】
さらに、本発明の実施の形態では、板バネサポート4を耐圧管3とライナ1との半径方向熱膨張差分だけ短い寸法で製作し、取付座11の座面12に板バネサポート4をボルト13締付けで引寄せて取付けたことにより、高温時の応力がゼロに近づくことになり、クリープによる損傷の心配は無くなる。
また、高温の分割リング2側の板バネサポート4取付けは、突合せ溶接によるものであり、その応力集中が、従来技術のすみ肉溶接の場合よりも軽減されて、疲労損傷を起こしにくくなる。
【0034】
さらに、板バネサポート4と分割リング2との組立て品を、耐圧管3の内部に挿入する際、複数の板バネサポート4の全数が製作寸法h−δにできていて、その時の相対する板バネサポートの外径間の寸法L′が、相対する取付座11の座面12間寸法D′よりも小さくなっていることにより、挿入が容易となる。また、板バネサポート4の全数を製作寸法h−δで、均等に製作しておくことにより、ボルト13の締付けを均等に行うことにより、自動的に分割リング2と耐圧管3とが同一軸線上になり、分割リング2を耐圧管3と同軸にして、耐圧管3内部へ取付けるための作業性が改善される。
【0035】
要するに、上述した実施形態のものは、下記(1)から(3)の構成を有するものである。
(1)耐圧管の軸心方向と平行にされ、板バネサポートの外径端部が取付けられる座面をもつ取付座を、耐圧管の内面に固着して設けた。なお、取付座は、分割リングから軸心と傾斜して拡開される板バネサポートの外径端部の、それぞれを耐圧管内面に固着する位置に、周方向に複数設ける板バネサポートの個数だけ設けるようにした。
【0036】
(2)一端部である内径端部が、分割リング(ライナ)の半径方向の熱伸縮時に発生する曲げモーメントを少くするように、分割リングの一端に同軸状に固着され、軸心と傾斜して拡開させた他端部の外径端部が、取付座の座面と平行な面にされたボルト取付部にされて、分割リングを同心状に耐圧管内部に固着して、支持する板バネサポートを設けた。
【0037】
(3)分割リングを耐圧管の内部に固着し、支持する板バネサポートの一端部を、分割リングの一端部に固着したとき、板バネサポートの他端部に設けられ、軸心方向と平行にされたボルト取付部の外径が、耐圧管の内径よりも、高温ガス通過時に生じる耐圧管と分割リングとの径方向のほぼ熱膨張差分だけ短くなるようにした。
【0038】
【発明の効果】
本発明の高温ガス管内部ライナ取付装置によれば、特許請求の範囲に示す構成により、板バネサポートの損傷を確実に防止することができ、かつ、組立ての作業性を改善することができる。
これによって、加圧流動床ボイラーとガスタービンとの複合発電プラトで、ボイラーからガスタービンに高温ガスを供給する等の高温ガス配管の、信頼性向上に寄与することができる。
【図面の簡単な説明】
【図1】 本発明の高温ガス管内部ライナ取付装置の実施の第1形態を示す縦断面図、
【図2】 図1に示す矢視A−Aにおける横断面図、
【図3】 図1に示すA部の拡大図、
【図4】 図3の溶接部の詳細を示す図で、図4(a)は図3のB部詳細図、図4(b)は図3のC部詳細図、図4(c)は図3のD部詳細図、
【図5】 分割リングと板バネサポートの組立て体の縦断面図、
【図6】 図5に示す分割リングと板バネサポート組立て体の、耐圧管内部への挿入時を示す縦断面図、
【図7】 図6のE部詳細図、
【図8】 断熱材内周面へライナ張設時を示す縦断面図、
【図9】 従来の高温ガス配管の内部構造を示す縦断面図、
【図10】 図9に示す矢視B−Bにおける横断面図、
【図11】 図9のF部を示す拡大図で、図11(a)はF部全体図、図11(b)は図11(a)のG部詳細図、図11(c)は図11(a)のH部詳細図、
【図12】 耐圧管とライナ(分割リング)の熱膨張差が生じたときの板バネサポートの挙動を示す図、
【図13】 従来の分割リングと板バネサポートの組立て体の縦断面図、
【図14】 図13に示す組立て体の耐圧管内部への挿入時を示す縦断面図、
【図15】 従来の断熱材内周面へライナを張設している状態を示す縦断面図である。
【符号の説明】
1 ライナ
2 分割リング
3 耐圧管
4 板バネサポート
41 板バネサポート内径端部
42 板バネサポートボルト取付部
7 断熱材
8 接ガス面
9 すみ肉溶接部
10 高温ガス配管
11 取付座
12 座面
13 ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a liner for protecting a heat insulating material stretched inside a high-temperature gas pipe, such as supplying a high-temperature gas from a boiler to a gas turbine in a combined power plant including a pressurized fluidized bed boiler and a gas turbine. The present invention relates to a high-temperature gas pipe inner liner mounting device for mounting.
[0002]
[Prior art]
In recent thermal power plants, various types of combined power generation facilities have been constructed in order to increase the efficiency of the plant, and in particular, the aim was to diversify the types of coal-fired boilers and increase the efficiency. Many combined power plants with pressurized fluidized bed boilers and gas turbines driven by the exhaust gas have been built in recent years.
[0003]
In such a combined power plant, piping for supplying high-temperature gas from a pressurized fluidized bed boiler to a gas turbine is, for example, compared to high-temperature gas piping used in various industrial plans such as steelworks and chemical plants, It is necessary to use a pressure tube that is used under a considerably high pressure condition, and since it is used under a high temperature condition (800 to 900 ° C.), the pressure tube is configured only with a metal material. In such a case, it is necessary to manufacture a thick pressure-resistant pipe made of such an expensive heat-resistant alloy that can withstand high temperatures and high pressures, which is expensive and increases plant construction costs.
[0004]
Therefore, by designing the heat-insulating material on the inner surface of the pressure tube, the temperature rise of the pressure tube is suppressed and the strength of the pressure tube is ensured under low temperature conditions (~ 400 ° C). Means have been adopted in which the material is made of an inexpensive material such as carbon steel or low alloy steel that is usually used to reduce plant construction costs.
[0005]
However, in high-temperature gas pipes with insulation material applied to the inner surface of pressure tubes made of such inexpensive materials, the insulation material applied to the inner surface may be scattered or dropped if exposed to high-temperature, high-speed gas flow. In the unlikely event that the insulation material scatters or drops off and the pressure tube is directly exposed to high-temperature gas, the pressure tube components are not normally usable under high temperature conditions. Therefore, there is a risk that the gas is damaged in a short period of time and the hot gas is ejected to the periphery thereof.
[0006]
In order to prevent such a worst case from occurring, a liner is provided on the gas contact surface of the heat insulating material which is constructed on the inner surface of the pressure tube and prevents the pressure tube from being directly exposed to the high temperature gas. Thus, the gas contact surface of the heat insulating material is protected from the high-temperature gas flow, and the heat insulating material is prevented from scattering and dropping off.
9 to 11 are used in a pipe for supplying a high-temperature gas from a conventional pressurized fluidized bed boiler to a gas turbine, and the liner 1 is attached to the inner surface of the heat insulating material 7 so as to prevent the heat insulating material from scattering and dropping off. It is a figure which shows the high temperature gas pipe internal liner attachment apparatus for this.
[0007]
As shown in the figure, the gas contact surface 8 on the inner peripheral side of the heat insulating material 7 which is constructed on the inner surface of the pressure tube 3 and suppresses the temperature rise of the pressure tube 3 is covered with the liner 1.
The liner 1 is made of a cylindrical body that is divided in the axial direction into a length shorter than the outer diameter D (see FIG. 14) of the pressure-resistant tube 3, and both end portions thereof are fitted on the inner peripheral surface of the heat insulating material 7. 1 is inserted into the inner peripheral surface of the strip-shaped split ring 2 disposed on the inner surface of the heat insulating material 7 at a pitch of a length capable of absorbing the thermal expansion in the axial direction of the liner 1 caused by the high-temperature gas flowing inside the Only one end of the portion is fixed to the inner peripheral surface of the split ring 2 by fillet welding 9.
[0008]
As a result, even if an axial thermal expansion difference δ x occurs between the liner 1 and the pressure tube 3 due to the high-temperature gas flowing inside the liner 1, both ends are inserted into the inner peripheral surface of the split ring 2. , the liner 1 is disposed on the inner peripheral surface of the heat insulating material 7, one end of which is not welded it is by sliding inside the split ring 2, so as to absorb the thermal expansion difference [delta] x .
[0009]
In addition, one end of the liner 1 is fixed to the inner peripheral surface so that the liner 1 that is divided in the axial direction and covers the exhaust gas surface 8 of the heat insulating material 7 is not vibrated by a high-temperature, high-speed gas flow. Each of the split rings 2 with the other end inserted is fixed to the outer peripheral surface by fillet welding, and the other end faces the inner surface of the pressure-resistant tube 3, and the tube shaft is radiated from the outer peripheral surface of the split ring 2. It is fixed to the pressure-resistant tube 3 by a plurality of (six in the figure) leaf spring supports 4 that are similarly inclined and extended to the inner peripheral surface of the pressure-resistant tube 3 by the fillet welding.
[0010]
Thus, as described above, the radial thermal expansion difference δ generated between the pressure ring 3 and the split ring 2 and the liner 1 that absorb the axial thermal expansion of the liner 1 by the sliding of the liner 1 on the inner peripheral surface. R can be absorbed by the radial deflection of the leaf spring support 4 as shown in FIG.
[0011]
Further, as an assembly procedure for attaching the liner 1 to the inside of the pressure resistant tube 3 in the above-described prior art high-temperature gas pipe inner liner attaching device, first, as shown in FIG. the parts, keep attached by weld 12 corners on the outer peripheral surface of the split ring 2.
Next, as shown in FIG. 14, the assembly of the leaf spring support 4 and the split ring 2 is inserted and arranged at a predetermined position inside the pressure resistant tube 3 so that the split ring 2 and the pressure resistant tube 3 are on the same axis. After attaching the outer peripheral end of the leaf spring support 4 to the inner peripheral surface of the pressure tube 3 by fillet welding 12 , the heat insulating material 7 is placed between the inner surface of the pressure tube 3 and the outer surface of the split ring 3. Tension and construction.
[0012]
Next, as shown in FIG. 15, both end portions of the liner 1 are inserted into the inner peripheral surface of the adjacent split ring 2, and only one end portion of the liner 1 is fillet welded on the inner peripheral surface of the split ring 2. And install.
In this way, the liner 1 divided in the axial direction is sequentially inserted and attached in this procedure, and finally, the exhaust gas surface of the heat insulating material 7 inside the high-temperature gas pipe shown in FIG. The high-temperature gas pipe 10 in which the heat insulating material 7 is prevented from scattering and dropping off is completed . The liner 1 is attached to the inside of the pressure-resistant pipe 3 of the high-temperature gas pipe 10 according to the above-described conventional technique. The device has the following problems.
[0013]
First, the radial thermal expansion difference δ R between the liner 1 (and the split ring 2) and the pressure tube 3 can be absorbed by the deflection of the leaf spring support 4 as shown in FIG. At this time, stress due to the bending moment M is generated at the fillet welds to the outer peripheral surface of the split ring 2 at both ends of the leaf spring support 4 and the inner peripheral surface of the pressure-resistant tube 3.
[0014]
Among these, regarding the bending moment M generated in the fillet welded portion to the inner peripheral surface of the relatively low temperature pressure-resistant tube 3, even if a slightly higher stress is generated by this moment M, there is a particular problem in terms of material strength. However, the stress generated by the bending moment M of the fillet weld on the outer peripheral surface of the high-temperature split ring 2 is high even if it is a low stress value. Since the material strength (creep and fatigue strength) of the part can hardly be expected, it may cause damage.
[0015]
That is, the split ring 2 cannot be fixed at a predetermined position of the pressure-resistant tube 3, the liner 1 moves in the axial direction, and there is a possibility that the gas contact surface of the heat insulating material 7 is scattered and dropped off. Will start to vibrate.
The plate bahoe support 4 is attached to the outer peripheral surface of the high-temperature split ring 2 by fillet welding. Since the stress concentration is high, the structure is more susceptible to fatigue damage.
[0016]
The split ring 2 is positioned in the axial direction so that a gap (> δ x ) for the axial slide that expands and contracts by the high-temperature gas is secured between the adjacent liners 1, and is arranged on the inner surface of the pressure tube 3. For this purpose, an assembly with the outer diameter L of the leaf spring support 4 and the split ring 2 shown in FIG. 13 is inserted into the pressure tube 3 with the inner diameter D as shown in FIG. In this case, the assembled product cannot be inserted into the pressure tube 3 unless the dimension L between the outer diameter ends of the opposed leaf spring supports 4 is made smaller than the inner diameter D of the pressure tube 3. Is self-explanatory.
For this reason, if the dimension between the outer diameter ends of the leaf spring support 4 is made smaller than the inner diameter D of the pressure resistant tube 3 and the assembly is inserted into the pressure resistant tube 3 and attached, When fillet-welding the end of the radial side to the inner surface of the pressure-resistant tube 3, it is necessary to perform welding work with a gap between them, so that the split ring 2 and the pressure-resistant tube 3 are on the same axis. In spite of the necessity of accurate mounting, there is a problem that workability is deteriorated.
[0017]
[Problems to be solved by the invention]
The present invention eliminates the problems of the conventional high-temperature gas pipe inner liner mounting apparatus described above, and particularly the outer peripheral surface of the split ring 2 of the leaf spring support 4 for mounting the split ring 2 to the inner surface of the pressure-resistant pipe 3. The bending moment generated in the mounting portion is reduced, the concentrated stress generated in the mounting portion is reduced, the fatigue damage of this portion is eliminated, and the split ring 2 is attached to the inside of the pressure-resistant pipe 3 during the mounting. The workability of attaching the outer diameter end of the leaf spring support 4 to the inner surface of the pressure tube 3 is improved, and the split ring 2 and the pressure tube 3 can be mounted concentrically, accurately and easily. It is an object of the present invention to provide a gas pipe internal liner mounting device.
[0018]
[Means for Solving the Problems]
For this reason, the high-temperature gas pipe inner liner mounting device of the present invention is the following means.
[0019]
(1) A cylindrical liner that is installed in the gas contact surface of a heat insulating material that is divided in the axial direction and that is installed on the inner surface of the pressure-resistant pipe that transfers high-temperature gas, and is installed at both axial ends of the liner, A split ring for fixing one end of both ends of the inserted liner, and a leaf spring support that is disposed between the split ring and the inner surface of the pressure-resistant tube so as to be inclined and connected with each other. In the gas pipe inner liner mounting apparatus, a mounting seat that forms a seating surface parallel to the axial direction and is fixed to the inner surface of the pressure-resistant pipe, one end is butt welded and fixed to one end of the split ring, and the other end is A bolt mounting portion having a surface parallel to the seating surface is provided, and the leaf spring support for fixing the split ring to the inside of the pressure tube is provided, and one end is fixed to the split ring, Bolt removal when installing The gist is that the radius of the attaching portion is the leaf spring support shortened by substantially the difference in thermal expansion in the radial direction between the pressure-resistant tube and the split ring when the high-temperature gas passes .
[0020]
As described above, the high-temperature gas pipe inner liner mounting device according to the present invention has a mounting seat seat mounted on the inner surface of the pressure tube, with the inner end of the leaf spring support butted against the end of the strip-shaped split ring. Adjoining the outer peripheral edge of the leaf spring support to the surface, bolting, and then adhering the inner peripheral surface of the heat insulating material by adopting a structure in which the leaf spring support is mounted on the mounting seat by fillet welding The liner freely slides on the inner peripheral surface of the split ring, and the axial thermal expansion difference δ x generated between the pressure resistant tube and the pressure resistant tube as in the conventional apparatus is absorbed, and the pressure resistance of the liner and the split ring is also absorbed. The radial thermal expansion difference δ R generated between the pipe and the tube is absorbed by the radial deflection of the leaf spring support, and the high-temperature gas flow flowing therethrough does not cause vibration in the liner.
[0021]
Further, when the leaf spring support is bent, the bending moment generated in the split ring of the leaf spring support and the attachment portion to the pressure tube can be remarkably reduced.
Thereby, the fatigue damage which has generate | occur | produced especially in the attaching part to the split ring of a leaf | plate spring support can be eliminated.
Further, the concentric mounting of the split ring inside the pressure-resistant pipe is accurate and easy, and the mounting workability is improved .
[0022]
In this way, the leaf spring support is manufactured with an outer diameter that is as short as the radial thermal expansion difference between the pressure tube and the liner (split ring). When the split ring is mounted inside the pressure tube, it is attached to the seating surface of the mounting seat. , By pulling the bolt mounting part of the leaf spring support by tightening the bolt, and making it fit, the split ring and the leaf spring support are assembled in advance, and when it is installed inside the pressure tube, it is inserted into the pressure tube In addition to the ease of tightening the bolts, the split ring can be accurately attached to the inside of the pressure tube with the pressure tube aligned with the shaft center, which facilitates the work.
[0023]
In addition, when high-temperature gas passes through the inside, the stress generated in the leaf spring support is combined with the mounting structure with the split ring at the inner diameter end of the leaf spring support and the mounting structure with the bolt mounting seat. As a result, it can be almost zero, eliminating the risk of damage from creep.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a high-temperature gas pipe inner liner mounting device of the present invention will be described with reference to the drawings.
1 is a longitudinal sectional view showing a first embodiment of an apparatus for attaching an inner liner of a high-temperature gas pipe according to the present invention, FIG. 2 is a sectional side view taken along the line AA shown in FIG. 1, and FIG. It is an enlarged view of the A section shown.
In the drawings showing the embodiment of the present invention, the same members as those of the conventional high-temperature gas pipe inner liner mounting apparatus shown in FIGS. .
[0025]
As shown in these drawings, a mounting seat 11 projects from the inner peripheral surface of the pressure-resistant tube 3.
A seat surface 12 that is parallel to the axial direction is provided on the inner surface of the mounting seat 11, and a bolt mounting portion 42 provided at an outer diameter end portion of the leaf spring support 4 described later is provided on the seat surface 12. It is made to adhere along with the bolt 13 along.
[0026]
A heat insulating material 7 is stretched on the inner surface of the pressure-resistant tube 3, and an axially divided liner 1 is stretched on the gas contact surface 8 on the inner peripheral surface of the heat insulating material 7.
Both ends of the dividing portion of the liner 1 are disposed in the axial direction at a pitch slightly longer than the length obtained by adding the axial thermal expansion difference δ x between the pressure tube 3 and the liner 1 to the axial length of the liner 1. 3 is inserted into the inner peripheral surface of the belt-shaped split ring 2, and only one end is welded to the inner peripheral surface of the split ring 2 as shown in FIG. Has been.
Therefore, the other end portion not fixed to the inner peripheral surface of the split ring 2 can slide in the axial direction on the inner peripheral surface of the split ring 2, and can absorb the thermal elongation in the axial direction of the liner 1.
[0027]
Further, at one end of the split ring 2, an end face of the inner diameter end portion 41 of the leaf spring support 4 that is parallel to the axial direction is as shown in FIG. It is fixed by butt welding.
Similar to the inner diameter end portion 41, the outer diameter end portion of the leaf spring support 4 is provided with a bolt mounting portion 42 that is parallel to the axial direction, and the bolt mounting portion 42 is mounted as described above. After being fixed to the seat surface 12 of the seat 11 with the bolt 13, the end surface is welded and fixed to the seat surface 12 as shown in FIG.
[0028]
In this way, the inner diameter end portion 41 is fixed to one end of the split ring 2 by butt welding, and the bolt mounting portion 42 of the outer diameter end portion is fixed to the seat surface 12 and is expanded by being inclined from the axial direction. The split ring 2 is fixed to a predetermined position inside the pressure-resistant tube 3 by the leaf spring support 4 so that the liner 1 is stretched on the gas contact surface 8 of the heat insulating material 7.
[0029]
As a procedure for assembling the liner 1 into the pressure tube 3 by the high-temperature gas pipe inner liner mounting device of the present embodiment described above, first, as shown in FIG. Butt welding is attached to the end of the split ring 2.
Here, the leaf spring support 4 is manufactured by a short dimension h-[delta] R radial thermal expansion difference [delta] R of the pressure-resistant pipe 3 and the liner 1 relative to the mounting dimension h.
[0030]
Next, as shown in FIGS. 6 and 7, the mounting seat 11 is attached to a predetermined position on the inner surface of the pressure-resistant tube 3 by fillet welding, and the assembly of the leaf spring support 4 and the split ring 2 shown in FIG. The bolt mounting portion 42 of the leaf spring support 4 is pulled and fixed to the seat surface 12 of the mounting seat 11 by tightening the bolt 13.
And after attaching the attachment part 42 of the leaf | plate spring support 4 to the seat surface 12 of the attachment seat 11 with the attachment dimension h, the end surface of the attachment part 42 is fillet-welded to the seat surface 12, and it attaches after that, and a pressure-resistant pipe | tube A heat insulating material 7 is applied to the inner surface of 3.
[0031]
Next, as shown in FIG. 8, both end portions of the liner 1 are inserted into the inner peripheral surface of the split ring 2, and only one end portion of the liner 1 is fillet welded to the inner peripheral surface of the split ring 2. In this way, the liner 1 divided into a length shorter than the diameter of the pressure tube 3 in the axial direction is sequentially inserted and attached in this procedure, so that the internal liner structure of the hot gas pipe 10 shown in FIG. The pressure ring 3 is completed inside, but the split ring 2 is axially positioned and attached so that a gap (> δ x ) for the axial slide is secured between the adjacent liners 1. It has been.
[0032]
By adopting the above-described high-temperature gas pipe inner liner mounting device according to the embodiment of the present invention, the axial thermal expansion difference δ x between the liner 1 and the pressure-resistant pipe 3 is equal to the liner 1 as in the prior art. The radial thermal expansion difference δ R between the liner 1 and the pressure tube 3 can be absorbed by the slide inside the divided ring 2 radially from the divided ring 2 toward the inner surface of the pressure tube 3. The vibration of the liner 1 caused by the passage of the high-temperature gas inside can be absorbed by the deflection of the plurality of leaf spring supports 4 extending obliquely with respect to the pressure tube 3 of the split ring 2 by the leaf spring support. Can be stopped by sticking.
[0033]
Furthermore, in the embodiment of the present invention, the leaf spring support 4 is manufactured with a dimension that is short by the radial thermal expansion difference between the pressure tube 3 and the liner 1, and the leaf spring support 4 is mounted on the seat surface 12 of the mounting seat 11 with the bolt 13. By attaching by tightening, the stress at high temperature approaches zero, and there is no risk of damage due to creep.
Further, the attachment of the leaf spring support 4 on the high-temperature split ring 2 side is by butt welding, and the stress concentration is reduced as compared with the case of the fillet welding of the prior art, and fatigue damage is less likely to occur.
[0034]
Furthermore, the assembly of the plate spring support 4 and the split ring 2, when inserted into the pressure-resistant tube 3, have made the total number of the plurality of leaf springs support 4 is in the fabrication dimension h-[delta] R, relative at that time Since the dimension L ′ between the outer diameters of the leaf spring supports is smaller than the dimension D ′ between the seating surfaces 12 of the mounting seat 11 facing each other, the insertion becomes easy. Also, the total number of fabrication dimension h-[delta] R of the leaf spring support 4, by previously uniformly fabricated, by performing tightening of bolts 13 evenly, automatically and split ring 2 and the breakdown voltage tube 3 are the same The workability for mounting on the inside of the pressure tube 3 with the split ring 2 being coaxial with the pressure tube 3 is improved.
[0035]
In short, the above-described embodiment has the following configurations (1) to (3).
(1) A mounting seat that is parallel to the axial direction of the pressure tube and has a seat surface to which the outer diameter end of the leaf spring support is mounted is fixed to the inner surface of the pressure tube. The number of leaf spring supports provided in the circumferential direction at the positions where the outer diameter end portions of the leaf spring supports that are expanded from the split ring while being inclined with respect to the shaft center are fixed to the inner surface of the pressure tube. I only provided it.
[0036]
(2) The inner diameter end, which is one end, is fixed coaxially to one end of the split ring so as to reduce the bending moment generated when the split ring (liner) is thermally expanded and contracted in the radial direction, and is inclined with respect to the axis. The outer diameter end of the other end that has been expanded is made into a bolt mounting portion that is parallel to the seating surface of the mounting seat, and the split ring is concentrically fixed and supported inside the pressure tube. A leaf spring support was provided.
[0037]
(3) When the split ring is fixed inside the pressure tube and one end of the supporting leaf spring support is fixed to one end of the split ring, it is provided at the other end of the flat spring support and is parallel to the axial direction. The outer diameter of the bolt mounting portion thus made is made shorter than the inner diameter of the pressure-resistant tube by substantially the difference in thermal expansion between the pressure-resistant tube and the split ring generated when the high-temperature gas passes.
[0038]
【The invention's effect】
According to the high-temperature gas pipe inner liner mounting device of the present invention, the structure shown in the claims can surely prevent the leaf spring support from being damaged and can improve the workability of assembly.
Thus, in combined cycle power generation plan bets with pressurized fluidized bed boiler and a gas turbine, the hot gas pipe for supplying hot gases from the boiler to the gas turbine, it is possible to contribute to improving reliability.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a hot gas pipe inner liner mounting device according to the present invention,
FIG. 2 is a cross-sectional view taken along the line AA shown in FIG.
FIG. 3 is an enlarged view of a portion A shown in FIG.
4 is a view showing details of the welded portion of FIG. 3, FIG. 4 (a) is a detailed view of B portion of FIG. 3, FIG. 4 (b) is a detailed view of C portion of FIG. 3, and FIG. Part D detail view of FIG.
FIG. 5 is a longitudinal sectional view of an assembly of a split ring and a leaf spring support;
6 is a longitudinal sectional view showing the split ring and leaf spring support assembly shown in FIG. 5 inserted into the pressure tube.
FIG. 7 is a detailed view of a portion E in FIG.
FIG. 8 is a longitudinal sectional view showing a liner stretched on the inner peripheral surface of the heat insulating material;
FIG. 9 is a longitudinal sectional view showing the internal structure of a conventional hot gas pipe;
10 is a cross-sectional view taken along the arrow BB shown in FIG.
11 is an enlarged view showing an F portion of FIG. 9, FIG. 11 (a) is an overall view of the F portion, FIG. 11 (b) is a detailed view of a G portion of FIG. 11 (a), and FIG. 11 (a) H section detail view,
FIG. 12 is a view showing the behavior of a leaf spring support when a difference in thermal expansion occurs between the pressure tube and the liner (split ring);
FIG. 13 is a longitudinal sectional view of an assembly of a conventional split ring and leaf spring support;
14 is a longitudinal sectional view showing when the assembly shown in FIG. 13 is inserted into the pressure tube.
FIG. 15 is a longitudinal sectional view showing a state where a liner is stretched on the inner peripheral surface of a conventional heat insulating material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liner 2 Split ring 3 Pressure-resistant pipe 4 Leaf spring support 41 Leaf spring support internal diameter end part 42 Leaf spring support bolt mounting part 7 Heat insulating material 8 Gas contact surface 9 Fillet weld part 10 Hot gas piping 11 Mounting seat 12 Seat surface 13 Bolt

Claims (1)

軸方向に分割され、高温ガスを移送する耐圧管内面に施工した断熱材の接ガス面に設置される円筒状のライナ、前記ライナの軸方向両端部に設置され、内周面に挿入された前記ライナの両端部のうちの一端部を固着する分割リング、前記分割リングと前記耐圧管内面との間に、軸方向と傾斜して配設されて連結する板バネサポートからなる高温ガス管内部ライナ取付装置において、軸方向と平行な座面を形成して前記耐圧管内面に固着された取付座と、一端部が前記分割リングの一端に突合せ溶接固着され、他端部が前記座面と平行な面をもつボルト取付部にされ、前記分割リングを前記耐圧管の内部に固着する前記板バネサポートとを設けると共に、前記分割リングに一端部を固着し、前記耐圧管内部に取付けるときの前記ボルト取付部の半径が、前記高温ガス通過時の前記耐圧管と前記分割リングとの径方向のほぼ熱膨張差分だけ短くした前記板バネサポートであることを特徴とする高温ガス管内部ライナ取付装置。Cylindrical liners installed on the gas contact surface of the heat insulating material divided into the axial direction and applied to the inner surface of the pressure-resistant pipe that transfers high-temperature gas, installed at both axial ends of the liner, and inserted into the inner peripheral surface The inside of the high-temperature gas pipe which consists of the split ring which fixes one end part of the both ends of the said liner, and the leaf | plate spring support which is inclined and arrange | positioned and connected between the said split ring and the said pressure | voltage resistant inner surface. In the liner mounting device, a mounting seat that forms a seat surface parallel to the axial direction and is fixed to the inner surface of the pressure-resistant tube, one end portion is butt welded and fixed to one end of the split ring, and the other end portion is connected to the seat surface. is the bolt mounting portion having parallel faces, Rutotomoni provided with the leaf spring support for securing said split ring inside the pressure-resistant tube, secured at one end portion to the split ring, when mounted inside the pressure-resistant tube Of the bolt mounting part Diameter, high-temperature gas pipe inner liner attachment device, characterized in that the said leaf spring support which is substantially only the thermal expansion difference shorter in the radial direction of the high temperature gas the pressure-resistant tube at the time of passing between the split ring.
JP28853695A 1995-11-07 1995-11-07 High temperature gas pipe inner liner mounting device Expired - Lifetime JP3659714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28853695A JP3659714B2 (en) 1995-11-07 1995-11-07 High temperature gas pipe inner liner mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28853695A JP3659714B2 (en) 1995-11-07 1995-11-07 High temperature gas pipe inner liner mounting device

Publications (2)

Publication Number Publication Date
JPH09133255A JPH09133255A (en) 1997-05-20
JP3659714B2 true JP3659714B2 (en) 2005-06-15

Family

ID=17731514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28853695A Expired - Lifetime JP3659714B2 (en) 1995-11-07 1995-11-07 High temperature gas pipe inner liner mounting device

Country Status (1)

Country Link
JP (1) JP3659714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220559A1 (en) * 2018-05-16 2019-11-21 三菱日立パワーシステムズ株式会社 Pipe member, gasification combined power generation device, and pipe member assembly method

Also Published As

Publication number Publication date
JPH09133255A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
US7805946B2 (en) Combustor flow sleeve attachment system
US8092161B2 (en) Thermal shield at casing joint
US6807803B2 (en) Gas turbine exhaust diffuser
US8141370B2 (en) Methods and apparatus for radially compliant component mounting
JP4097994B2 (en) Joint for two-part CMC combustion chamber
US8511972B2 (en) Seal member for use in a seal system between a transition duct exit section and a turbine inlet in a gas turbine engine
CN101806460B (en) Fuel nozzle detachable burner tube
JP5342191B2 (en) Combustion liner stops in gas turbines.
JP5451314B2 (en) Fuel nozzle assembly for use in a gas turbine engine and assembly method thereof.
JP2010071466A (en) Gas turbine seal
JP6058174B2 (en) Combustor device in a gas turbine engine
US9212567B2 (en) Gas duct for a gas turbine and gas turbine having such a gas duct
US20030185675A1 (en) Rotor insert assembly and method of retrofitting
US7431126B2 (en) Support means for an acoustic liner used in an auxiliary power unit exhaust muffler
EP2530246B1 (en) System for mounting combustor transition piece to frame of gas turbine engine
US20030005705A1 (en) Industrial gas turbine multi-axial thermal isolator
EP3106686B1 (en) Damping means for components in a turbomachine and method for assembling said damping means
JP3659714B2 (en) High temperature gas pipe inner liner mounting device
US5358284A (en) High temperature non-metallic expansion joint
US20220397061A1 (en) Vibration damper for fluid conduit of gas turbine combustor
CN106482155B (en) Wear liner system for a turbine combustion system and method of coupling a wear liner
US20180058682A1 (en) Penetration seal apparatus and method
US2813396A (en) Tail cone and resilient mounting therefor
JP3659715B2 (en) Internal liner for T-type or L-type hot gas piping
KR20010042553A (en) Flex seal for gas turbine expansion joints

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term