JP3610561B2 - High temperature piping lining structure - Google Patents

High temperature piping lining structure Download PDF

Info

Publication number
JP3610561B2
JP3610561B2 JP16363595A JP16363595A JP3610561B2 JP 3610561 B2 JP3610561 B2 JP 3610561B2 JP 16363595 A JP16363595 A JP 16363595A JP 16363595 A JP16363595 A JP 16363595A JP 3610561 B2 JP3610561 B2 JP 3610561B2
Authority
JP
Japan
Prior art keywords
outer tube
pressure
liner
resistant outer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16363595A
Other languages
Japanese (ja)
Other versions
JPH0914577A (en
Inventor
勝実 菊地
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP16363595A priority Critical patent/JP3610561B2/en
Publication of JPH0914577A publication Critical patent/JPH0914577A/en
Application granted granted Critical
Publication of JP3610561B2 publication Critical patent/JP3610561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Pipeline Systems (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Supports For Pipes And Cables (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Description

【0001】
【産業上の利用分野】
本発明は曲がり部を有する高温配管に係わり、更に詳しくは、高温配管のライニング構造に関する。
【0002】
【従来の技術】
例えば、加圧下で石炭を流動燃焼させる加圧流動層ボイラ(Pressurised Fluidized Bed Combuster)は、図3に例示するように、ボイラ本体1、サイクロン2、灰クーラ3、ベッド材貯蔵容器4、等が圧力容器5内に格納された構成のものであり、外部から供給さた石炭Cをボイラ本体1内で燃焼させ、その排ガスがサイクロン2に送られ、サイクロン2で除去された灰が灰クーラ3で冷却されてボイラ本体1に戻り、灰が除去された排ガスが排ガス管7を通って外部のガスタービン(図示せず)に供給され、仕事(例えば発電機の駆動)をするようになっている。なお、この図でA,Bは燃焼用空気と流動層、6a,6b,6cは蒸発器、過熱器、及び再熱器である。
【0003】
図3において、サイクロン2を出たガスは、高温高圧(例えば860℃、15ata以上)であり、かつサイクロン2では分離できない微細な灰を含んでいる。このため、従来の排ガス管7(高温配管)の曲がり部は、図4に例示するように、圧力を受ける耐圧外管8a、内部を流れる高温ガス9を保温しかつ耐圧外管8aの温度を低く保持する内部保温材8b、及び灰による保温材の摩耗や高温ガス流れによる保温材の飛散を防止する一体ライナ8c、等から構成されていた。
【0004】
また、このライナ8cは、高温ガス9に直接接触するため、圧力を受けずに自由に熱変形(熱膨張と熱収縮)する必要がある。このため、ライナ8cの外側にも高温ガス9がわずかに流れるように、ライナ8cの接続箇所に隙間(図示せず)を設けると共に、曲がり部のライナ8cを図4(B)に示す支持板8dを介して外管8aに連結・固定し、ライナ8cが軸方向に自由に熱変形できるようにしていた。なお、図4(B)は、(A)のA−A線における断面図である。
【0005】
【発明が解決しようとする課題】
しかし、上述した従来の高温配管のライニング構造では、ライナ8cが熱変形すると、図4のB部に示すように、ライナ8cは軸方向だけではなく、半径方向にも変位し、特に固定位置(支持板8dの位置)から離れた部分では、曲がり部の熱変形による半径方向移動量が加わるため半径方向(B部では上向き)の変位が大きくなり、▲1▼保温材に強く当たって保温材8bを破損させ保温材同士の隙間を拡大させたり、▲2▼保温材8bとライナ8cとの隙間が部分的に大きくなってその部分の保温性能を低下させ、これにより耐圧外管8aのメタル温度を部分的に上昇させたり、▲3▼更に、保温材8b同士の隙間が拡大すると、高温ガス9が耐圧外管8aにまで達し、耐圧外管8aを部分的に過熱し、許容応力を大幅に低下させてしまう、▲4▼キャスタブル等の断熱材の場合、クラック発生し粒子がガスタービンへ飛散してタービン翼を破損させるおそれがある、等の問題点があった。
【0006】
本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、曲がり部の影響を受けることなくライナを軸方向及び半径方向に自由に熱変形させることができ、かつライナのまわりにできる隙間が小さくかつ周方向にほぼ均等であり、内部保温材の保温性能を各部でほぼ均一に保持でき、かつ保温材に亀裂や破損を生じさせにくい、高温配管のライニング構造を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、内圧を受ける耐圧外管と、耐圧外管の内面に取付けられ、内側を流れる高温ガスを保温して耐圧外管の温度を下げる内部保温材と、内部保温材の内側に配置され、高温ガスによる保温材の飛散及び摩耗を防止するライナと、ライナを耐圧外管に固定する支持金具と、からなり、耐圧外管の曲がり部は、少なくとも一端面が中心線に対して斜めに傾斜した端面を互いに接続した複数の円筒形外管片からなり、これにより耐圧外管の曲がり部を形成し、ライナは、前記各外管片と同心に配置され、かつ各外管片の両端面と平行な両端面を有する複数の円筒形ライナ片からなり、支持金具は、隣接するライナ片の一方の端部に接合され、他方の端部を軸線方向に移動可能に同心に囲む複数の支持リングと、該支持リングに内端が固定され、半径方向外方に斜めに延び、耐圧外管の内面に外端が固定された複数の支持プレートと、からなる、ことを特徴とする高温配管のライニング構造が提供される。
【0008】
本発明の好ましい実施例によれば、前記支持リングは、隣接するライナ片の端部を同心に囲む1対のリングからなり、該リングは互いに接合されている。また、前記内部保温材は、圧縮性を有する繊維質である、ことが好ましい。
【0009】
【作用】
上記本発明の構成によれば、耐圧外管の曲がり部が、中心線に対して斜めに傾斜した端面を互いに接続した複数の円筒形外管片から形成されており、かつライナは、各外管片と同心に配置され、かつ各外管片の両端面と平行な両端面を有する複数の円筒形ライナ片から構成されているので、各ライナ片の両端部を各外管片の端面付近に位置決めすることができる。
【0010】
また、複数の支持プレートの内端が各支持リングに固定され、支持プレートが半径方向外方に斜めに延び、支持プレートの外端が耐圧外管の内面に固定されているので、支持プレートの半径方向の撓みにより支持リングの半径方向変位を許容しながら、支持リングを外管片の内面から同一の間隔を隔て、かつ外管片の端面付近に位置決めすることができる。更に、支持プレートと各ライナ片はほぼ同一の温度であるため、それらの半径方向熱変位量はほぼ同一であり、曲がり部の影響を受けることなくライナを半径方向に自由に熱変形させることができる。
【0011】
また、複数の支持リングがそれぞれ隣接するライナ片の一方の端部に接合され、他方の端部を軸線方向に移動可能に同心に囲んでいるので、熱変形時に各ライナ片の一端を、隣接する一方の支持リングに固定したまま、他端を他方の支持リングの内側で軸方向に熱膨張させることができ、これにより、曲がり部の影響を受けることなくライナを軸方向に自由に熱変形させることができる。
【0012】
従って、各支持リングは、複数の支持プレートにより外管片の内面から同一の間隔で外管片の端面付近に位置決めされているので、ライナのまわりにできる隙間が小さくかつ周方向にほぼ均等であり、内部保温材の保温性能を各部でほぼ均一に保持できる。また、ライナのまわりにできる隙間が均等で小さいので、保温材の変形を最小限にすることができ、特に、圧縮性を有する繊維質の内部保温材を用いることにより、亀裂や破損をほとんどなくすことができる。
【0013】
【実施例】
以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
図1は、本発明による高温配管のライニング構造を示す図であり、(A)は側面断面図、(B)は図1(A)のC−C線における断面図である。また、図2は、図1(A)のD部拡大図である。
【0014】
図1及び図2において、本発明の高温配管のライニング構造は、内圧を受ける耐圧外管12と、耐圧外管12の内面に取付けられた内部保温材14と、内部保温材14の内側に配置され高温ガス9による保温材の飛散及び摩耗を防止するライナ16と、ライナ16を耐圧外管12に固定する支持金具18とからなる。
【0015】
耐圧外管12の曲がり部は、図1において、a,b,cの各端面で互いに接続された複数の円筒形外管片12a,12b,12c,12dからなる。各外管片12a〜dの少なくとも一端面a,b,cは中心線Z−Zに対してそれぞれ斜めに傾斜し、これにより耐圧外管の曲がり部を形成するようになっている。
【0016】
内部保温材14は、内側を流れる高温ガス9を保温して耐圧外管12の温度を下げる機能を有する。この内部保温材14は、適当な取付け金具(例えばスタッドボルト)により耐圧外管12の内面にほぼ一定の厚さに取付けられている。この内部保温材14は、例えば1000℃以上の高温に耐え、かつ圧縮性を有する繊維質であるのがよく、例えば、セラミックファイバ、等がよい。かかる内部保温材14の使用により、熱変形によりライナ16のまわりにできる隙間を内部保温材14の復元力により無くすことができ、かつ変形による内部保温材14同士の隙間の拡大や破損をほとんどなくすことができる。
【0017】
更に図1において、ライナ16は、複数の円筒形ライナ片16a,16b,16c,16dからなる。各ライナ片16a〜dは、各外管片12a〜dにそれぞれ対応して同心に配置され、かつ各外管片12a〜dの両端面とほぼ平行な両端面17a,17bを有している。この構成により、各ライナ片の両端面17a,17bを各外管片12a〜dの端面付近に位置決めすることができる。
【0018】
支持金具18は、複数の支持リング19と複数の支持プレート20からなる。支持リング19は、図2に示すように、隣接するライナ片の一方の端部17bに溶接等で接合され、ライナ片の他方の端部17aを軸線方向に移動可能に同心に囲んでいる。すなわち、支持リング19は、互いに溶接により接合された1対のリング19a,19bからなり、それぞれのリング19a,19bは、隣接するライナ片の端部17a,17bをそれぞれ同心に囲み、ライナ端部17bとリング19bが互いに溶接されている。かかる構成により、熱変形時に各ライナ片の一端部17bを、隣接する一方の支持リング19に固定したまま、他端部17aを他方の支持リング19の内側で軸方向に熱膨張させることができ、これにより、曲がり部の影響を受けることなく各ライナ片16a〜dを軸方向に自由に熱変形させることができる。
【0019】
また、図1(B)に示すように、支持プレート20は、支持リング19に内端20aが固定され、半径方向外方に斜めに延び、耐圧外管12の内面に外端19bが固定されている。この構成により、支持プレート20の半径方向の撓みにより支持リング19の半径方向変位を許容しながら、支持リング19を外管片12a〜dの内面から同一の間隔を隔て、かつ外管片12a〜dの端面付近に位置決めすることができる。更に、支持プレート20と各ライナ片16a〜dはほぼ同一の温度であるため、それらの半径方向熱変位量はほぼ同一であり、曲がり部の影響を受けることなく各ライナ片16a〜dを半径方向に自由に熱変形させることができる。
【0020】
従って、各支持リング19は、複数の支持プレート20により外管片12a〜dの内面から同一の間隔で外管片の端面付近に位置決めされているので、各ライナ片は、外管片12a〜dと同心を維持したまま軸方向に伸びるだけであり、各ライナ片16a〜dのまわりにできる隙間は小さくかつ周方向にほぼ均等となる。これにより、内部保温材14の保温性能を各部でほぼ均一に保持でき、また、ライナ16のまわりにできる隙間が均等で小さいので、保温材の変形を最小限にすることができ、特に、圧縮性を有する繊維質の内部保温材を用いることにより、保温材同士の隙間拡大や破損をほとんどなくすことができる。
【0021】
なお、上述した実施例では、本発明を高温配管の曲がり部について説明したが、本発明はかかる曲がり部に限定されず、Tピース部、Yピース部、等の高温配管の分岐・合流部にも同様に適用できる。従って本発明は上述した実施例に限定されず、本発明の要旨を逸脱しない範囲で自由に変更できることは勿論である。
【0022】
【発明の効果】
上述したように、本発明の高温配管のライニング構造は、曲がり部の影響を受けることなくライナを軸方向及び半径方向に自由に熱変形させることができ、かつライナのまわりにできる隙間が小さくかつ周方向にほぼ均等であり、内部保温材の保温性能を各部でほぼ均一に保持でき、かつ保温材同士の隙間拡大や破損を生じさせにくい、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による高温配管のライニング構造を示す図である。
【図2】図1のD部拡大図である。
【図3】従来の加圧流動層ボイラの全体構成図である。
【図4】従来の高温配管のライニング構造を示す図である。
【符号の説明】
1 ボイラ本体
2 サイクロン
3 灰クーラ
4 ベッド材貯蔵容器
5 圧力容器
6a 蒸発器
6b 過熱器
6c 再熱器
7 排ガス管
8a 耐圧外管
8b 内部保温材
8c 一体ライナ
9 高温ガス
12 耐圧外管
12a〜d 外管片
14 内部保温材
16 ライナ
16a〜d ライナ片
17a,17b 端部(端面)
18 支持金具
19 支持リング
20 支持プレート
A 空気
B 流動層
C 石炭
[0001]
[Industrial application fields]
The present invention relates to a high-temperature pipe having a bent portion, and more particularly to a lining structure for a high-temperature pipe.
[0002]
[Prior art]
For example, as illustrated in FIG. 3, a pressurized fluidized bed boiler that fluidly burns coal under pressure includes a boiler body 1, a cyclone 2, an ash cooler 3, a bed material storage container 4, and the like. It is configured to be stored in a pressure vessel 5, coal C supplied from the outside is burned in the boiler body 1, the exhaust gas is sent to the cyclone 2, and the ash removed by the cyclone 2 is removed from the ash cooler 3. The exhaust gas is cooled and returned to the boiler body 1, and the exhaust gas from which ash has been removed is supplied to an external gas turbine (not shown) through the exhaust gas pipe 7 to work (for example, drive a generator). Yes. In this figure, A and B are combustion air and a fluidized bed, and 6a, 6b, and 6c are an evaporator, a superheater, and a reheater.
[0003]
In FIG. 3, the gas exiting the cyclone 2 is high-temperature and high-pressure (for example, 860 ° C., 15 data or more), and contains fine ash that cannot be separated by the cyclone 2. For this reason, as shown in FIG. 4, the bent portion of the conventional exhaust gas pipe 7 (high-temperature pipe) keeps the pressure-resistant outer pipe 8a that receives pressure, the hot gas 9 flowing inside, and the temperature of the pressure-resistant outer pipe 8a. The internal heat insulating material 8b kept low, and the integrated liner 8c for preventing the heat insulating material from being worn by ash and the heat insulating material from being scattered by the high-temperature gas flow, and the like.
[0004]
Further, since the liner 8c is in direct contact with the high temperature gas 9, it is necessary to freely thermally deform (thermal expansion and contraction) without receiving pressure. For this reason, a gap (not shown) is provided at the connecting portion of the liner 8c so that the high temperature gas 9 slightly flows outside the liner 8c, and the bent portion of the liner 8c is shown in FIG. 4B. The liner 8c can be freely thermally deformed in the axial direction by being connected and fixed to the outer tube 8a via 8d. Note that FIG. 4B is a cross-sectional view taken along line AA in FIG.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional high-temperature piping lining structure, when the liner 8c is thermally deformed, the liner 8c is displaced not only in the axial direction but also in the radial direction as shown in FIG. In the part away from the support plate 8d), the amount of movement in the radial direction due to thermal deformation of the bent part is added, so the displacement in the radial direction (upward in the B part) increases, and (1) the heat insulating material hits the heat insulating material strongly. 8b is broken and the gap between the heat insulating materials is enlarged, or (2) the gap between the heat insulating material 8b and the liner 8c is partially enlarged to reduce the heat insulating performance of the portion, thereby the metal of the pressure-resistant outer tube 8a. When the temperature is partially increased or (3) and the gap between the heat insulating materials 8b is expanded, the high-temperature gas 9 reaches the pressure-resistant outer tube 8a, partially overheats the pressure-resistant outer tube 8a, and the allowable stress is increased. It ’s drastically reduced. , ▲ 4 ▼ if such insulation in castable, cracking and particles is likely to be scattered to the gas turbine damage to the turbine blades, there problems like is.
[0006]
The present invention has been developed to solve such problems. That is, the object of the present invention is that the liner can be freely thermally deformed in the axial direction and the radial direction without being affected by the bent portion, and the gap formed around the liner is small and substantially uniform in the circumferential direction. An object of the present invention is to provide a lining structure for a high-temperature pipe that can keep the heat-retaining performance of an internal heat-retaining material almost uniformly in each part and that does not easily cause cracking or breakage of the heat-retaining material.
[0007]
[Means for Solving the Problems]
According to the present invention, a pressure-resistant outer tube that receives an internal pressure, an inner heat insulating material that is attached to the inner surface of the pressure-resistant outer tube and that keeps high-temperature gas flowing inside to lower the temperature of the pressure-resistant outer tube, and an inner heat insulating material And a liner that prevents scattering and wear of the heat insulating material due to the high-temperature gas, and a support fitting that fixes the liner to the pressure-resistant outer tube, and the bent portion of the pressure-resistant outer tube has at least one end surface with respect to the center line. It consists of a plurality of cylindrical outer tube pieces whose end surfaces inclined at an angle are connected to each other, thereby forming a bent portion of the pressure-resistant outer tube, and the liner is arranged concentrically with each outer tube piece, and each outer tube piece The support metal fitting is joined to one end of an adjacent liner piece and concentrically surrounds the other end so as to be movable in the axial direction. A plurality of support rings and an inner end fixed to the support rings By extending obliquely radially outward, and a plurality of support plates the outer end is fixed to the inner surface of the pressure-resistant outer pipe, made of the lining structure of high-temperature pipe is provided, characterized in that.
[0008]
According to a preferred embodiment of the present invention, the support ring comprises a pair of rings concentrically surrounding the ends of adjacent liner pieces, the rings being joined together. Moreover, it is preferable that the internal heat insulating material is a fibrous material having compressibility.
[0009]
[Action]
According to the configuration of the present invention described above, the bent portion of the pressure-resistant outer tube is formed of a plurality of cylindrical outer tube pieces whose end surfaces inclined obliquely with respect to the center line are connected to each other. Consists of a plurality of cylindrical liner pieces arranged concentrically with the pipe pieces and having both end faces parallel to both end faces of each outer pipe piece, so that both end parts of each liner piece are near the end face of each outer pipe piece Can be positioned.
[0010]
Further, the inner ends of the plurality of support plates are fixed to the respective support rings, the support plates extend obliquely outward in the radial direction, and the outer ends of the support plates are fixed to the inner surface of the pressure-resistant outer tube. The support ring can be positioned at the same distance from the inner surface of the outer tube piece and in the vicinity of the end surface of the outer tube piece while allowing the displacement of the support ring in the radial direction by the bending in the radial direction. Furthermore, since the support plate and each liner piece are at substantially the same temperature, their radial thermal displacement is almost the same, and the liner can be freely thermally deformed in the radial direction without being affected by the bent portion. it can.
[0011]
Also, since the plurality of support rings are joined to one end of each adjacent liner piece and the other end is concentrically surrounded so as to be movable in the axial direction, one end of each liner piece is adjacent to each other during thermal deformation. The other end can be thermally expanded in the axial direction inside the other support ring while being fixed to one support ring, thereby allowing the liner to be freely thermally deformed in the axial direction without being affected by the bent portion. Can be made.
[0012]
Therefore, each support ring is positioned near the end face of the outer tube piece at the same interval from the inner surface of the outer tube piece by a plurality of support plates, so that the gap that can be formed around the liner is small and substantially uniform in the circumferential direction. Yes, the heat retention performance of the internal heat retaining material can be maintained almost uniformly in each part. In addition, since the gaps around the liner are uniform and small, deformation of the heat insulating material can be minimized, and in particular, by using a fibrous internal heat insulating material having compressibility, almost no cracks and breakage are eliminated. be able to.
[0013]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
1A and 1B are diagrams showing a lining structure of a high-temperature pipe according to the present invention, in which FIG. 1A is a side cross-sectional view, and FIG. 1B is a cross-sectional view taken along line CC in FIG. FIG. 2 is an enlarged view of a portion D in FIG.
[0014]
1 and 2, the high-temperature piping lining structure of the present invention has a pressure-resistant outer tube 12 that receives internal pressure, an internal heat retaining material 14 attached to the inner surface of the pressure-resistant outer tube 12, and an inner heat retaining material 14 inside. The liner 16 is configured to prevent the heat insulating material 9 from being scattered and worn by the high-temperature gas 9, and the support fitting 18 is used to fix the liner 16 to the pressure-resistant outer tube 12.
[0015]
The bent portion of the pressure-resistant outer tube 12 is composed of a plurality of cylindrical outer tube pieces 12a, 12b, 12c, and 12d that are connected to each other at the end faces of a, b, and c in FIG. At least one end surface a, b, c of each outer tube piece 12a-d is inclined with respect to the center line ZZ, thereby forming a bent portion of the pressure-resistant outer tube.
[0016]
The internal heat insulating material 14 has a function of keeping the high temperature gas 9 flowing inside to lower the temperature of the pressure resistant outer tube 12. The internal heat insulating material 14 is attached to the inner surface of the pressure-resistant outer tube 12 with a substantially fixed thickness by an appropriate mounting bracket (for example, a stud bolt). The internal heat insulating material 14 is preferably a fibrous material that can withstand a high temperature of, for example, 1000 ° C. or more and has compressibility, and is preferably a ceramic fiber, for example. By using the internal heat insulating material 14, the gap formed around the liner 16 by thermal deformation can be eliminated by the restoring force of the internal heat insulating material 14, and the expansion and damage of the internal heat insulating material 14 due to deformation are almost eliminated. be able to.
[0017]
Further, in FIG. 1, the liner 16 includes a plurality of cylindrical liner pieces 16a, 16b, 16c, and 16d. Each liner piece 16a-d is concentrically arranged corresponding to each outer tube piece 12a-d, and has both end faces 17a, 17b substantially parallel to both end faces of each outer tube piece 12a-d. . With this configuration, both end surfaces 17a and 17b of each liner piece can be positioned near the end surfaces of the outer tube pieces 12a to 12d.
[0018]
The support fitting 18 includes a plurality of support rings 19 and a plurality of support plates 20. As shown in FIG. 2, the support ring 19 is joined to one end portion 17b of the adjacent liner piece by welding or the like, and concentrically surrounds the other end portion 17a of the liner piece so as to be movable in the axial direction. That is, the support ring 19 is composed of a pair of rings 19a and 19b joined to each other by welding, and each ring 19a and 19b concentrically surrounds the end portions 17a and 17b of the adjacent liner pieces. 17b and ring 19b are welded together. With this configuration, one end portion 17b of each liner piece can be thermally expanded in the axial direction inside the other support ring 19 while the one end portion 17b of each liner piece is fixed to the adjacent one support ring 19 during thermal deformation. Thus, the liner pieces 16a to 16d can be freely thermally deformed in the axial direction without being affected by the bent portion.
[0019]
As shown in FIG. 1B, the support plate 20 has an inner end 20a fixed to the support ring 19 and extends obliquely outward in the radial direction, and the outer end 19b is fixed to the inner surface of the pressure-resistant outer tube 12. ing. With this configuration, while allowing the radial displacement of the support ring 19 due to the radial deflection of the support plate 20, the support ring 19 is spaced from the inner surfaces of the outer tube pieces 12a to 12d by the same distance, and the outer tube pieces 12a to 12a. It can be positioned near the end face of d. Further, since the support plate 20 and the liner pieces 16a to 16d are at substantially the same temperature, their radial thermal displacement amounts are almost the same, and the liner pieces 16a to 16d are not affected by the bent portions. It can be thermally deformed freely in the direction.
[0020]
Accordingly, each support ring 19 is positioned in the vicinity of the end face of the outer tube piece at the same interval from the inner surface of the outer tube piece 12a to d by the plurality of support plates 20, so that each liner piece is the outer tube piece 12a to 12a. It only extends in the axial direction while maintaining concentricity with d, and the gaps formed around each of the liner pieces 16a to 16d are small and substantially uniform in the circumferential direction. As a result, the heat insulation performance of the internal heat insulating material 14 can be maintained almost uniformly in each part, and since the gaps formed around the liner 16 are uniform and small, deformation of the heat insulating material can be minimized, and in particular, compression By using a fibrous internal heat insulating material having the property, it is possible to almost eliminate gap expansion and breakage between the heat insulating materials.
[0021]
In the above-described embodiments, the present invention has been described with respect to a bent portion of a high-temperature pipe. However, the present invention is not limited to such a bent portion, and may be applied to a branching / merging portion of a high-temperature pipe such as a T piece portion or a Y piece portion. Can be applied similarly. Therefore, the present invention is not limited to the above-described embodiments, and can of course be changed freely without departing from the gist of the present invention.
[0022]
【The invention's effect】
As described above, the lining structure for a high-temperature pipe according to the present invention can freely deform the liner in the axial direction and the radial direction without being affected by the bent portion, and the gap that can be formed around the liner is small. It is substantially uniform in the circumferential direction, has excellent effects such as being able to keep the heat insulation performance of the internal heat insulating material almost uniformly in each part, and hardly causing gap expansion or breakage between the heat insulating materials.
[Brief description of the drawings]
FIG. 1 is a view showing a lining structure of a high-temperature pipe according to the present invention.
FIG. 2 is an enlarged view of a portion D in FIG.
FIG. 3 is an overall configuration diagram of a conventional pressurized fluidized bed boiler.
FIG. 4 is a view showing a conventional lining structure for high-temperature piping.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler main body 2 Cyclone 3 Ash cooler 4 Bed material storage container 5 Pressure vessel 6a Evaporator 6b Superheater 6c Reheater 7 Exhaust gas pipe 8a Pressure-resistant outer tube 8b Internal heat insulating material 8c Integrated liner 9 Hot gas 12 Pressure-resistant outer tubes 12a-d Outer tube piece 14 Internal heat insulating material 16 Liners 16a to d Liner pieces 17a and 17b End portions (end faces)
18 Support metal fitting 19 Support ring 20 Support plate A Air B Fluidized bed C Coal

Claims (3)

内圧を受ける耐圧外管と、耐圧外管の内面に取付けられ、内側を流れる高温ガスを保温して耐圧外管の温度を下げる内部保温材と、内部保温材の内側に配置され、高温ガスによる保温材の飛散及び摩耗を防止するライナと、ライナを耐圧外管に固定する支持金具と、からなり、
耐圧外管の曲がり部は、少なくとも一端面が中心線に対して斜めに傾斜した端面を互いに接続した複数の円筒形外管片からなり、これにより耐圧外管の曲がり部を形成し、
ライナは、前記各外管片と同心に配置され、かつ各外管片の両端面と平行な両端面を有する複数の円筒形ライナ片からなり、
支持金具は、隣接するライナ片の一方の端部に接合され、他方の端部を軸線方向に移動可能に同心に囲む複数の支持リングと、該支持リングに内端が固定され、半径方向外方に斜めに延び、耐圧外管の内面に外端が固定された複数の支持プレートと、からなる、ことを特徴とする高温配管のライニング構造。
A pressure-resistant outer tube that receives internal pressure, an internal heat-retaining material that is attached to the inner surface of the pressure-resistant outer tube, keeps the high-temperature gas flowing inside and lowers the temperature of the pressure-resistant outer tube, and is placed inside the internal heat-retaining material. It consists of a liner that prevents the insulation material from scattering and wear, and a support fitting that fixes the liner to the pressure-resistant outer tube.
The bent portion of the pressure-resistant outer tube is composed of a plurality of cylindrical outer tube pieces whose end surfaces are inclined with respect to the center line and connected to each other, thereby forming a bent portion of the pressure-resistant outer tube,
The liner is composed of a plurality of cylindrical liner pieces arranged concentrically with each outer tube piece and having both end faces parallel to both end faces of each outer tube piece,
The support bracket is joined to one end of an adjacent liner piece, and a plurality of support rings that concentrically surround the other end so as to be movable in the axial direction, and an inner end is fixed to the support ring, and the outer end in the radial direction. A lining structure for high-temperature piping, characterized by comprising a plurality of support plates extending obliquely in the direction and having outer ends fixed to the inner surface of the pressure-resistant outer tube.
前記支持リングは、隣接するライナ片の端部を同心に囲む1対のリングからなり、該リングは互いに接合されている、ことを特徴とする請求項1に記載の高温配管のライニング構造。The lining structure for high-temperature piping according to claim 1, wherein the support ring includes a pair of rings concentrically surrounding the ends of adjacent liner pieces, and the rings are joined to each other. 前記内部保温材は、圧縮性を有する繊維質である、ことを特徴とする請求項1に記載の高温配管のライニング構造。The lining structure for high-temperature piping according to claim 1, wherein the internal heat insulating material is a fiber having compressibility.
JP16363595A 1995-06-29 1995-06-29 High temperature piping lining structure Expired - Fee Related JP3610561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16363595A JP3610561B2 (en) 1995-06-29 1995-06-29 High temperature piping lining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16363595A JP3610561B2 (en) 1995-06-29 1995-06-29 High temperature piping lining structure

Publications (2)

Publication Number Publication Date
JPH0914577A JPH0914577A (en) 1997-01-17
JP3610561B2 true JP3610561B2 (en) 2005-01-12

Family

ID=15777687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16363595A Expired - Fee Related JP3610561B2 (en) 1995-06-29 1995-06-29 High temperature piping lining structure

Country Status (1)

Country Link
JP (1) JP3610561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599754B2 (en) * 2001-05-17 2010-12-15 株式会社Ihi Dry desulfurization equipment
CN102620138B (en) * 2012-03-31 2014-03-05 贾林祥 Radial cold mass supporting device of liquefied natural gas cylinder
CN103016883B (en) * 2012-12-13 2016-04-13 贵州瓮福蓝天氟化工股份有限公司 The liner PTFE dried shrimp elbow of anti-negative pressure
JP6682420B2 (en) * 2016-11-18 2020-04-15 三菱日立パワーシステムズ株式会社 Piping member, integrated gasification combined cycle generator, and piping member assembling method
CN107606339B (en) * 2017-11-21 2023-06-23 舟山洋旺纳新科技有限公司 Z-shaped steel belt for flexible marine petroleum pipeline

Also Published As

Publication number Publication date
JPH0914577A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
JP5178053B2 (en) Method and apparatus for mounting radial compliant members
US6854738B2 (en) Sealing structure for combustor liner
US4045056A (en) Expansion compensator for pipelines
US5116394A (en) Cyclone separator roof
US2707493A (en) Conduits
JP5478867B2 (en) Fire wall device and heat exchanger
JP3610561B2 (en) High temperature piping lining structure
JP4939980B2 (en) EGR cooler
US5078182A (en) Insulated pipe construction
US20210190319A1 (en) Tubular combustion chamber with ceramic cladding
US11619387B2 (en) Liner for a combustor of a gas turbine engine with metallic corrugated member
JP2016003653A (en) Exhaust gas liner for gas turbine, and gas turbine with such exhaust gas liner
JPH0131118B2 (en)
JP5388280B2 (en) Structure of the expansion / contraction part of the piping for hot gas
CN106194490B (en) Sectional type exhaust manifold gas sealing device
JP2001220612A (en) Hot air outlet pipe for blast furnace
JP2001304464A (en) Duct for high temperature gas
JP3659819B2 (en) High temperature duct connection structure
JP3650801B2 (en) Heat exchanger water chamber
JP6653186B2 (en) Refractory structures
JP3659715B2 (en) Internal liner for T-type or L-type hot gas piping
JP3659714B2 (en) High temperature gas pipe inner liner mounting device
JP3550463B2 (en) Gas piping
JPH09144993A (en) Pipeline for high-temperature fluid
Ward et al. Ceramic tube heat exchanger technology development for indirect-fired gas turbine cycle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041010

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees