JP3659388B2 - Lactic acid polymer biaxially stretched film - Google Patents

Lactic acid polymer biaxially stretched film Download PDF

Info

Publication number
JP3659388B2
JP3659388B2 JP21108898A JP21108898A JP3659388B2 JP 3659388 B2 JP3659388 B2 JP 3659388B2 JP 21108898 A JP21108898 A JP 21108898A JP 21108898 A JP21108898 A JP 21108898A JP 3659388 B2 JP3659388 B2 JP 3659388B2
Authority
JP
Japan
Prior art keywords
film
lactic acid
biaxially stretched
stretched film
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21108898A
Other languages
Japanese (ja)
Other versions
JP2000044702A (en
Inventor
啓治 森
久人 小林
尚伸 小田
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21108898A priority Critical patent/JP3659388B2/en
Publication of JP2000044702A publication Critical patent/JP2000044702A/en
Application granted granted Critical
Publication of JP3659388B2 publication Critical patent/JP3659388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は乳酸系ポリマー二軸延伸フィルム、特に包装用途などに好適な走行性、耐削れ性、透明性および接着性に優れた乳酸系ポリマー二軸延伸フィルムに関する。
【0002】
【従来の技術】
近年の環境保護に関する社会的な認識の高まりから、プラスチック加工品全般に対し、自然環境のなかに廃棄されたとき、経時的に分解・消失し自然環境に悪影響を及ぼさないプラスチック製品が求められている。
【0003】
従来、食品をはじめ各種商品を包装するフィルムには、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートに代表される芳香族ポリエステル、ポリアミドの各種プラスチックが使用されている。これらの包装材用フィルムは、使用後回収され、焼却廃棄されるか或いは土中に埋められるかのいずれか手段により処理されている。しかし、その回収には多大の労力を要する故に、現実には回収しきれずに放置され環境公害等の様々な問題を引き起こしていることは周知の通りである。また、焼却の場合、火力が強すぎて炉の損傷が激しいうえに大量の燃料を必要としコスト高となる。一方、土中に埋められる場合は、廃棄物が生分解性を有しておらず、土中に半永久的に残存してしまうという問題点があった。このような状況から、良好な生分解性を有する各種包装用フィルムの要求が高まっている。
【0004】
上記問題の根本的解決策として、ポリマー自身が生分解性を有する各種生分解性高分子素材が検討されている。中でもポリ乳酸は従来より、加水分解性ポリマーとして広く知られており、医薬用の成型品として(特公昭41-2734 号、特公昭63-68155号等)また、医薬用途以外の使い捨て用途の分解性汎用材料の基本原料として応用が種々検討されている。
【0005】
その中でも、乳酸系ポリマー二軸延伸フィルムは透明性、生分解性、汎用フィルムと同等の優れた機械的性質を有することから、一般包装材をはじめ幅広い用途に, 応用が期待されている。
一般にフィルムは、成形加工時の巻取り性、及び製品使用時の滑り性が要求される。この滑り性が不十分な場合、フィルムの製造時及び加工時のハンドリング性の不良が生じ、フィルムの走行時のガイドロール等との接触において滑り性不良により、張力が増大し、フィルム表面に擦り傷を発生すると言う走向性の悪化が見られる。
【0006】
この走行性の改良のため、フィルムに、脂肪酸エステル系や、脂肪酸系および脂肪酸アマイド系などの有機系滑剤および、シリカ、炭酸カルシウムなどの無機の微粒子のアンチブロッキング剤などを添加することにより滑り性を改善し、ハンドリング性を改善した適用例が、特開平8−34913号、特開平9−278997号に開示されている。そこで、走行性の改良のために特開平8−34913および特開平9−278997に記載の滑剤を添加したところ、走行性は改善されたが、包装用の袋とするにあたり、ポリオレフィン等からなるシーラントフィルムとラミネートする必要があるが、その接着強度が有機系滑剤の添加により不十分となった。上記の滑剤や、アンチブロッキング剤の添加により、フィルムの加工適性や包装用途に要求される、走行性と接着性を両立する事は困難であった。
【0007】
【発明が解決しようとする課題】
本発明は、包装用途などに好適な走行性、耐削れ性、透明性および接着性に優れた乳酸系ポリマー二軸延伸フィルムを提供するものである。
【0008】
【課題を解決するための手段】
上記目標を達成するために鋭意検討した結果、本発明に達した。すなわち本発明は、主たる繰り返し単位が一般式−O−CHR−CO−(RはHまたは、炭素数1〜3のアルキル基を示す。)である脂肪族ポリエステルを主成分とし、平均粒子径が0.5μm以上、5μm以下のシリカ粒子滑剤を0.02重量%以上、0.5重量%以下含有した乳酸系ポリマーからなるフィルムにおいて、少なくとも片面の三次元表面粗さSΔa(三次元平均傾斜勾配)が0.01以上、0.04以下であり、かつ実質的に表面の突起高さが1.89μm以上の突起がなく、かつフィルムのヘイズが8%以下であることを特徴とする乳酸系ポリマー二軸延伸フィルムである。
【0009】
本発明における乳酸系ポリマー二軸延伸フィルムにおいて、三次元表面粗さ SΔa (三次元平均傾斜勾配)が0.01以上であることが必要である。 SΔa が0.01未満では走向性が不良となる。また、 SΔa が0.04より大きいと透明性や耐削れ性が不良となる。
【0010】
更に、本発明における乳酸系ポリマー二軸延伸フィルムにおいて、実質的に表面の突起高さが1.89μm以上の突起がないことが必要である。1.89μm以上の突起があると透明性が不良になるだけでなく、耐削れ性不良のため発生した白紛や突起自身が原因となり印刷抜けが発生する。
【0011】
包装用途などの透明性が要求される用途に本発明の乳酸系ポリマー二軸延伸フィルムを使用する場合、上記の三次元表面粗さSΔaおよび突起高さを所定の範囲内にすることにより良好なものとなるが、ヘイズを8%以下にする必要がある
【0012】
本発明に用いる一般式 −O−CHR−CO−(RはHまたは炭素数1〜3のアルキル基を示す。)を主たる繰り返し単位とする脂肪族ポリエステルを主成分とした乳酸系ポリマーとは、例えばポリ乳酸、ポリグリコール酸、ポリ(2−オキシ酪酸)等を挙げることができるが、これらに限定されるものではない。また、場合によっては、これらの単独でも良く、或いは混合物、共重合体を使用してもかまわない。ポリマー中不斉炭素を有する物は、L−体、DL−体、D−体といった光学異性体が存在するが、それらのいずれでも良く、また、それら異性体の混合物でも良い。
これらフィルムの素材となる上述したポリマーは、対応するα−オキシ酸の脱水環状エステル化合物の開環重合等公知の方法で製造される。
【0013】
本発明において、用いられる生分解性脂肪族ポリエステルは、粘度平均分子量で、5000以上50万以下である。粘度平均分子量が5000未満であると、得られたフィルムの物性が著しく劣り、且つ、分解速度が速すぎ本発明の目的を達成するのに好ましくない。また、フィルム製造時の押出性、二軸延伸機での2軸延伸性も十分確保するためには、粘度平均分子量は1万以上であることが好ましい。一方、粘度平均分子量が50万以上の高粘度重合体になると溶融押出しが困難になるという問題がある。これらのことから、好ましい粘度平均分子量の範囲は、4万から30万である。
【0014】
また、本発明の乳酸系ポリマー二軸延伸フィルムは滑剤として無機粒子、有機塩粒子や架橋高分子粒子を添加することが出来る。
【0015】
無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウム等が挙げられる。
【0016】
特に、良好なハンドリング性を得たうえに更にヘイズの低いフィルムを得るためには無機粒子としては一次粒子が凝集してできた凝集体のシリカ粒子が好ましい。
【0017】
有機塩粒子としては、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等が挙げられる。
【0018】
架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体が挙げられる。その他ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機粒子を用いても良い。
【0019】
上記滑剤の本発明の乳酸系ポリマーへの添加方法は特に限定しないが、滑剤を所定の溶媒に分散あるいは溶解させ、その系に上記滑剤を分散させる方法、または合成重合反応中に該滑剤を分散する方法がある。
【0020】
前記の三次元表面粗さ SΔa および突起高さは、フィルムの製膜条件及び滑剤粒子によって調整される。滑剤粒子の種類及び添加量三次元表面粗さ SΔa および突起高さが所定の範囲内に入るならば特に限定されるものではないが、滑剤の平均粒子系は0.01μm以上4μm以下、特に0.05μm以上3μm以下が好ましく、添加量としてはの滑剤を0.02重量%以上 0.5重量%、特に好ましくは0.03重量%以上 0.5重量%以下である。
【0021】
滑剤の平均粒子径が0.01μm未満では三次元表面粗さ SΔa を0.01以上にすることが難しく、4μmより大きいと実質的に突起高さ1.89μm以上の突起を無くすことが困難となる。また添加量は0.02重量%未満では三次元表面粗さ SΔa を0.01以上にすることが難しく、 0.5重量%より大きいと三次元表面粗さ SΔa を0.04以下にすることが困難となる。
【0022】
本発明の乳酸系ポリマー二軸延伸フィルムは、その用途に応じて結晶核剤、酸化防止剤、着色防止剤、顔料、染料、紫外線吸収剤、離型剤、易滑剤、難燃剤、帯電防止剤を配合しても良い。
【0023】
有機系滑剤としては、炭化水素樹脂、脂肪酸エステル、パラフィン、高級脂肪酸、脂肪族ケトン、および脂肪酸アミド等が知られている。本発明においては、フィルムの表面形態を、請求項1記載の形態とすることにより、滑り性の特性付与が可能であるため、必ずしも、有機系滑剤を添加する必要は無い。また、これら有機滑剤を添加すると、有機滑剤がフィルム表面にブリードアウトしてくるためポリオレフィン等とのシーラントフィルムとラミネートした後の接着強度が、不十分となるため、有機滑剤の添加を実施しない方が好ましい。
【0024】
本発明に用い得る乳酸系ポリマー二軸延伸フィルムは、公知のフィルム製膜法によって形成し得る。フィルム製膜法としては縦方向又は横方向に延伸する一軸延伸法やインフレーション法、同時二軸延伸法、逐次二軸延伸法などの二軸延伸法を用い得る。例えば、逐次二軸延伸法としては縦延伸及び横延伸または横延伸及び縦延伸を順に行なう方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法などの延伸方法を採用することができる。なお、必要に応じて、熱固定処理、縦弛緩処理、横弛緩処理などを施してもよい。
【0025】
滑剤の平均粒子径が0.01μm未満では三次元表面粗さ SΔa を0.01以上にすることが難しく、4μmより大きいと実質的に突起高さ1.89μm以上の突起を無くすことが困難となる。
延伸条件については添加する滑剤によっても変化し、その組合せによって三次元表面粗さ SΔa 、及び突起高さが所定の範囲内に入るならば特に限定されるものではないが、縦方向に1段以上延伸した後横方向に延伸する方法の場合、縦方向の延伸が終了した後の縦方向の屈折率(Nx)が1.555 以下にしておくことが好ましい。Nxを1.555 より大きくすると製造工程中で表面突起の形成が不十分となり走行性が不良となりやすい。
【0026】
接着改質層に、さらに本発明の効果を損なわない範囲で、帯電防止剤、無機滑剤、紫外線吸収剤、有機滑剤、抗菌剤、光酸化触媒などの添加剤を含有させることができ、これらは塗布剤中に含有させて、基材表面に付与される。
【0027】
接着改質層を形成するために、グラフト共重合体を含む塗布液を乳酸系ポリマー二軸延伸フィルム基材に塗布する方法としては、グラビア方式、リバース方式、ダイ方式、バー方式、ディップ方式などの公知の塗布方式を用い得る。
【0028】
塗布液の塗布量は、固形分として0.005〜10g/m2 、好ましくは、0.02〜0.5g/m2 である。塗布量が0.005g/m2 以下になると、接着改質層との十分な接着強度が得られない。10g/m2 以上になるとブロッキングが発生し、実用上問題がある。
【0029】
接着改質層は、二軸延伸乳酸系ポリマー二軸延伸フィルム基材に上記塗布液を塗布しても良いし、未延伸あるは一軸延伸後の乳酸系ポリマー二軸延伸フィルム基材に上記塗布液を塗布した後、乾燥し、必要に応じて、さらに一軸延伸あるいは二軸延伸後熱固定を行っても良い。
二軸延伸乳酸系ポリマー二軸延伸フィルム上に塗布する場合、乳酸系ポリマー二軸延伸フィルムと接着改質層との接着性をさらに良くする為、乳酸系ポリマー二軸延伸フィルムにコロナ処理、火炎処理、電子線照射等による表面処理をしてもよい。下記塗布後延伸する場合でも同様の処理により効果が得られる。
未延伸あるは一軸延伸後の乳酸系ポリマー二軸延伸フィルム基材に上記塗布液を塗布した後、乾燥、延伸する場合、塗布後の乾燥温度はその後の延伸に影響しない範囲の条件で乾燥し、延伸後 140℃以上で熱固定を行うことにより塗膜が強固になり、接着改質層と乳酸系ポリマー二軸延伸フィルム基材との接着性が飛躍的に向上する。
【0030】
本発明で得られた易接着乳酸系ポリマー二軸延伸フィルムは広範囲の用途で良好な接着強度が得られる。具体的には写真感光層、ジアゾ感光層、マット層、磁性層、インクジェットインキ受容層、ハードコート層、印刷インキやUVインキ、ドライラミネートや押し出しラミネート等の接着剤、金属あるいは無機物またはそれらの酸化物の真空蒸着、電子ビーム蒸着、スパッタリング、イオンプレーティング、CVD、プラズマ重合等で得られる薄膜層、有機バリアー層、等があげられる。
【0031】
本発明の易接着乳酸系ポリマー二軸延伸フィルムの接着改質層は各種材料と良好な接着性を有するが、さらに接着性や印刷性をよくするために、該接着改質層にさらにコロナ処理、火炎処理、電子線照射等による表面処理をすることができる。
【0032】
実施例
以下に実施例にて本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
なお、フィルムの評価方法を以下に示す。
(1)三次元表面粗さ SΔa
フィルム表面を触針式3次元表面粗さ計(SE-3AK, 株式会社小坂研究所社製)を用いて、針の半径2μm、荷重30mgの条件化に、フィルムの長手方向にカットオフ値0.25mmで、測定長1mmにわたって測定し、2μm ピッチで 500点に分割し、各点の高さを3次元粗さ解析装置(SPA-11) に取り込ませた。これと同様の操作をフィルムの幅方向について2μm 間隔で連続的に 150回、即ちフィルムの幅方向0.3mm にわたって行ない、解析装置にデータを取り込ませた。次に、解析装置を用いて、 SΔa を求めた。ここで、 SΔa は三次元平均傾斜勾配で、以下のように定義する。表面形状の(平均面基準による)
の各切断平面により切断して求まるパーティクルの面積と個数の平均円半径rの変化をΔrとしてΔZ/Δrを各レベルの切断平面で求め、各値を平均して三次元平均傾斜勾配とする。
【0033】
(2)フィルム表面の突起数
フィルム表面に真空下でアルミ蒸着を施し、二光束干渉顕微鏡に波長0.54μmのフィルターを装着して観察される突起の周りに出来た7重リング以上(突起高さ1.89μm以上に相当)のリングの数1.3mm2にわたって計測し、単位面積あたりの個数として求めた。
【0034】
(3)ヘイズ
ヘイズをJIS-K6714 に準じ、日本精密光学(株)製300Aを用いて測定した。
(4)屈折率
アタゴ光学社製アッベ屈折計1T を用い、フィルムの長手方向の屈折率を求めた。
【0035】
(5)フィルムの走行性、耐削れ性
フィルムを細幅にスリットしたテープ状とし、これを金属製ガイドロールにこすり付けて高速でかつ長時間走行させ、このガイドロール擦過後のテープ張力の大小およびガイドロールの表面に発生する白紛量の多少を、それぞれ以下に示すように5段階評価し、ランク付けした。
(イ)走行性
1級;張力大(擦り傷多い)
2級;張力やや大(擦り傷かなり多い)
3級;張力中(擦り傷ややあり)
4級;張力やや小(擦り傷ほとんどなし)
5級;張力小(擦り傷発生なし)
(ロ)耐削れ性
1級;白紛の発生非常に多い
2級;白紛に発生多い
3級;白紛の発生ややあり
4級;白紛の発生ほぼなし
5級;白紛の発生なし
【0036】
(6)接着性評価
各実施例、比較例で得られた乳酸系ポリマー二軸延伸フィルムのコロナ処理面上に接着剤AD585/CAT−10(東洋モートン社製)を2g/m2 塗布した後、常法に従って未延伸ポリプロピレンフィルム、60μm(P1120、東洋紡績製)をドライラミネート法にて貼り合わせシーラント層を設け、乳酸系ポリマー二軸延伸フィルム積層体を得た。乾燥時および湿潤時の剥離強度を測定した。測定条件は、引張速度100mm/分での90°剥離試験結果である。
【0037】
実施例1、2、比較例1、2
Lラクチド 100重量部に触媒としてオクチル酸スズ0.03重量部を、反応缶に仕込み缶内の温度を190℃で1時間反応を行い、反応終了後、得られた反応系を減圧にして、残留するLラクチドを留去した。得られたポリマーの極限粘度は1.8であった。滑剤はLラクチドのスラリーにして平均粒子系 1.8μmの凝集体シリカ粒子(富士シリシア化学株式会社製SYLYSIA350)をLラクチド重合反応開始前に添加量を変え添加した。
【0038】
上記乳酸系ポリマーを常法により110℃で4時間真空乾燥させた後、200℃でTダイから押し出し、静電荷により16℃のキャスティングドラムに密着させ急冷固化し、キャストフィルムを得た。該キャストフィルムを72℃に加熱したロールで加温後長手方向に3.3倍延伸後、テンター内で60℃に予熱し75℃に昇温しながら幅方向に 4.0倍延伸し、 150℃で熱固定し、さらに 150℃で幅方向に3%リラックスさせ横弛緩処理後、厚みが12μmの乳酸系ポリマー二軸延伸フィルムを得た。これらの延伸フィルムの特性値を表1に示す。ここで、縦延伸終了後の縦方向の屈折率Nxは1.468 であった。また、実施例1、2および比較例1で得られたフィルムは透明性良好であったが、比較例2で得られたフィルムの透明性は不良であった。
【0039】
実施例3、4
添加した滑剤を球状シリカ粒子(水澤化学工業株式会社製AMT-シリカ#100B、AMT-シリカ#300B)を0.13重量部添加した以外は実施例1と同様にしてフィルムを作成し、得られた結果を表1に示す。縦延伸終了後の縦方向の屈折率Nxは1.486 であった。また、得られたフィルムの透明性は良好であった。
【0040】
比較例3
添加した滑剤を球状シリカ粒子(水澤化学工業株式会社製AMT-シリカ#500B)を0.13重量部添加した以外は実施例1と同様にしてフィルムを作成し、得られた結果を表1に示す。縦延伸終了後の縦方向の屈折率Nxは1.486 であった。また、得られたフィルムの透明性は不良であった。
【0041】
比較例4
添加した滑剤として、無機滑剤として、平均粒径7nmのシリカ粒子(日本アエロジル株式会社製、商品名アエロジル300)を用い、有機系滑剤としてニュートロンS(日本精化株式会社製)を用いた以外は、実施例1と同様にしてフィルムを作成し、得られた結果を表1に示す。
比較例5
添加した滑剤として、有機滑剤の添加量をゼロとした以外は、比較例4と同様にしてフィルムを作成し、得られた結果を表1に示す。
【0042】
【表1】

Figure 0003659388
【0043】
【発明の効果】
本発明によれば、包装用途などに好適な走行性、耐削れ性、透明性及び接着性に優れた乳酸系ポリマー二軸延伸フィルムを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lactic acid-based polymer biaxially stretched film, and more particularly to a lactic acid-based polymer biaxially stretched film excellent in running property, abrasion resistance, transparency and adhesiveness suitable for packaging applications.
[0002]
[Prior art]
In recent years, due to the increasing social awareness of environmental protection, plastic products that do not have an adverse effect on the natural environment when they are disposed of in the natural environment are destroyed over time. Yes.
[0003]
2. Description of the Related Art Conventionally, various plastics such as polyethylene, polypropylene, and aromatic polyester represented by polyethylene terephthalate and polyamide are used for films for packaging various products including food. These films for packaging materials are collected after use and treated by either incineration or disposal in the soil. However, since it takes a lot of labor for the collection, it is well known that it is actually left uncollected and causes various problems such as environmental pollution. Further, incineration is too strong and the furnace is severely damaged, and a large amount of fuel is required, resulting in high costs. On the other hand, when buried in the soil, there is a problem that the waste does not have biodegradability and remains semi-permanently in the soil. Under such circumstances, there is an increasing demand for various packaging films having good biodegradability.
[0004]
As a fundamental solution to the above problem, various biodegradable polymer materials in which the polymer itself is biodegradable have been studied. Among them, polylactic acid has been widely known as a hydrolyzable polymer, and has been widely used as a molded product for medicine (Japanese Patent Publication No. 41-2734, Japanese Patent Publication No. 63-68155, etc.). Various applications have been studied as basic raw materials for functional general-purpose materials.
[0005]
Among them, lactic acid-based polymer biaxially stretched films have transparency, biodegradability, and excellent mechanical properties equivalent to general-purpose films, and therefore are expected to be applied to a wide range of applications including general packaging materials.
In general, a film is required to have a winding property at the time of molding and a slip property at the time of use of a product. Insufficient slipperiness results in poor handling during film production and processing, and due to slipperiness in contact with the guide roll during film travel, the tension increases and the film surface is scratched. Deterioration of running tendency is seen.
[0006]
To improve the running performance, slipperiness is achieved by adding organic lubricants such as fatty acid esters, fatty acids and fatty acid amides, and anti-blocking agents of inorganic fine particles such as silica and calcium carbonate to the film. JP-A-8-34913 and JP-A-9-278997 disclose application examples that improve the handling property. Therefore, when the lubricant described in JP-A-8-34913 and JP-A-9-278997 was added to improve the running property, the running property was improved. Although it is necessary to laminate with a film, the adhesive strength becomes insufficient due to the addition of an organic lubricant. By adding the above-mentioned lubricant and anti-blocking agent, it has been difficult to achieve both runnability and adhesiveness required for film processing suitability and packaging applications.
[0007]
[Problems to be solved by the invention]
The present invention provides a lactic acid-based polymer biaxially stretched film excellent in running property, abrasion resistance, transparency and adhesiveness suitable for packaging applications and the like.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned goal, the present invention has been achieved. That is, the present invention mainly comprises an aliphatic polyester whose main repeating unit is the general formula —O—CHR—CO— (R represents H or an alkyl group having 1 to 3 carbon atoms), and the average particle size is In a film made of a lactic acid-based polymer containing a silica particle lubricant of 0.5 μm or more and 5 μm or less in an amount of 0.02 wt% or more and 0.5 wt% or less , at least one-sided three-dimensional surface roughness SΔa (three-dimensional average gradient) ) Is 0.01 or more and 0.04 or less, and there is substantially no protrusion with a surface protrusion height of 1.89 μm or more, and the haze of the film is 8% or less. It is a polymer biaxially stretched film.
[0009]
In the lactic acid-based polymer biaxially stretched film in the present invention, the three-dimensional surface roughness SΔa (three-dimensional average gradient) needs to be 0.01 or more. If SΔa is less than 0.01, the running property becomes poor. On the other hand, when SΔa is larger than 0.04, transparency and abrasion resistance are poor.
[0010]
Furthermore, in the lactic acid-based polymer biaxially stretched film of the present invention, it is necessary that the surface protrusion height is substantially free of protrusions of 1.89 μm or more. If there are protrusions of 1.89 μm or more, not only the transparency will be poor, but also white defects and protrusions themselves due to poor abrasion resistance will cause printing failure.
[0011]
When the lactic acid-based polymer biaxially stretched film of the present invention is used for applications requiring transparency such as packaging applications, it is preferable that the above three-dimensional surface roughness SΔa and projection height be within a predetermined range. However, the haze needs to be 8% or less.
[0012]
The lactic acid-based polymer mainly composed of an aliphatic polyester having the general formula —O—CHR—CO— (R represents H or an alkyl group having 1 to 3 carbon atoms) as a main repeating unit used in the present invention, Examples include polylactic acid, polyglycolic acid, poly (2-oxybutyric acid) and the like, but are not limited thereto. In some cases, these may be used alone, or a mixture or a copolymer may be used. The polymer having an asymmetric carbon has optical isomers such as L-form, DL-form and D-form, and any of them may be used, or a mixture of these isomers may be used.
The above-mentioned polymer as the raw material for these films is produced by a known method such as ring-opening polymerization of the corresponding α-oxyacid dehydrated cyclic ester compound.
[0013]
In the present invention, the biodegradable aliphatic polyester used has a viscosity average molecular weight of 5,000 to 500,000. When the viscosity average molecular weight is less than 5000, the physical properties of the obtained film are remarkably inferior, and the decomposition rate is too high, which is not preferable for achieving the object of the present invention. Further, in order to sufficiently ensure extrudability during film production and biaxial stretchability with a biaxial stretching machine, the viscosity average molecular weight is preferably 10,000 or more. On the other hand, when a high viscosity polymer having a viscosity average molecular weight of 500,000 or more is used, there is a problem that melt extrusion becomes difficult. From these facts, the preferred viscosity average molecular weight range is 40,000 to 300,000.
[0014]
The lactic acid polymer biaxially stretched film of the present invention can contain inorganic particles, organic salt particles and crosslinked polymer particles as a lubricant.
[0015]
Inorganic particles include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, lithium fluoride, etc. Is mentioned.
[0016]
In particular, in order to obtain a film having a low haze after obtaining good handling properties, the silica particles are preferably aggregated silica particles formed by agglomerating primary particles.
[0017]
Examples of the organic salt particles include terephthalate such as calcium oxalate, calcium, barium, zinc, manganese, and magnesium.
[0018]
Examples of the crosslinked polymer particles include homopolymers or copolymers of vinyl monomers of divinylbenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or methacrylic acid. In addition, organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.
[0019]
The method of adding the lubricant to the lactic acid-based polymer of the present invention is not particularly limited, but the lubricant is dispersed or dissolved in a predetermined solvent and the lubricant is dispersed in the system, or the lubricant is dispersed during the synthetic polymerization reaction. There is a way to do it.
[0020]
The three-dimensional surface roughness SΔa and the protrusion height are adjusted by the film forming conditions and the lubricant particles. Type and amount of lubricant particles Three-dimensional surface roughness SΔa and protrusion height are not particularly limited as long as they fall within the prescribed ranges, but the average particle system of the lubricant is 0.01 μm to 4 μm, particularly 0.05 μm. The amount added is preferably 3 μm or less, and the added amount of the lubricant is 0.02 wt% or more and 0.5 wt%, particularly preferably 0.03 wt% or more and 0.5 wt% or less.
[0021]
If the average particle size of the lubricant is less than 0.01 μm, it is difficult to make the three-dimensional surface roughness SΔa 0.01 or more, and if it is more than 4 μm, it becomes difficult to substantially eliminate the projection having a projection height of 1.89 μm or more. If the addition amount is less than 0.02% by weight, it is difficult to make the three-dimensional surface roughness SΔa 0.01 or more. If the addition amount is more than 0.5% by weight, it is difficult to make the three-dimensional surface roughness SΔa 0.04 or less.
[0022]
The lactic acid-based polymer biaxially stretched film of the present invention has a crystal nucleating agent, an antioxidant, an anti-coloring agent, a pigment, a dye, an ultraviolet absorber, a mold release agent, a lubricant, a flame retardant, and an antistatic agent depending on the application. May be blended.
[0023]
Known organic lubricants include hydrocarbon resins, fatty acid esters, paraffin, higher fatty acids, aliphatic ketones, fatty acid amides, and the like. In the present invention, it is not always necessary to add an organic lubricant because the surface form of the film can be imparted with slippery characteristics by adopting the form described in claim 1. In addition, when these organic lubricants are added, the organic lubricants bleed out to the film surface, so the adhesive strength after laminating with a sealant film such as polyolefin becomes insufficient, so the organic lubricant is not added. Is preferred.
[0024]
The lactic acid polymer biaxially stretched film that can be used in the present invention can be formed by a known film forming method. As the film forming method, a biaxial stretching method such as a uniaxial stretching method, an inflation method, a simultaneous biaxial stretching method, or a sequential biaxial stretching method that stretches in the longitudinal direction or the transverse direction can be used. For example, sequential biaxial stretching methods include longitudinal stretching and lateral stretching or lateral stretching and longitudinal stretching in order, lateral / longitudinal / longitudinal stretching method, longitudinal / transverse / longitudinal stretching method, longitudinal / longitudinal / lateral stretching method. The extending | stretching methods, such as, can be employ | adopted. In addition, you may perform a heat setting process, a longitudinal relaxation process, a lateral relaxation process, etc. as needed.
[0025]
If the average particle size of the lubricant is less than 0.01 μm, it is difficult to make the three-dimensional surface roughness SΔa 0.01 or more, and if it is more than 4 μm, it becomes difficult to substantially eliminate the projection having a projection height of 1.89 μm or more.
The stretching conditions vary depending on the lubricant to be added, and are not particularly limited as long as the three-dimensional surface roughness SΔa and the projection height are within a predetermined range depending on the combination, but one or more steps in the longitudinal direction. In the case of the method of stretching in the transverse direction after stretching, it is preferable that the longitudinal refractive index (Nx) after the stretching in the longitudinal direction is 1.555 or less. If Nx is larger than 1.555, the formation of surface protrusions is insufficient during the manufacturing process and the running performance tends to be poor.
[0026]
The adhesive modification layer may further contain additives such as an antistatic agent, an inorganic lubricant, an ultraviolet absorber, an organic lubricant, an antibacterial agent, and a photooxidation catalyst, as long as the effects of the present invention are not impaired. It is made to contain in a coating agent and is provided to the base-material surface.
[0027]
Gravure method, reverse method, die method, bar method, dip method, etc. for applying a coating solution containing a graft copolymer to a lactic acid polymer biaxially stretched film substrate to form an adhesion modified layer The known coating method can be used.
[0028]
The coating amount of the coating solution, 0.005~10g / m 2 as solids, preferably from 0.02 to 0.5 g / m 2. When the coating amount is 0.005 g / m 2 or less, sufficient adhesive strength with the adhesion modified layer cannot be obtained. When it is 10 g / m 2 or more, blocking occurs, which causes a practical problem.
[0029]
The adhesion-modified layer may be applied to the biaxially stretched lactic acid polymer biaxially stretched film substrate, or may be unstretched or uniaxially stretched to the lactic acid polymer biaxially stretched film substrate. After applying the liquid, it may be dried, and if necessary, it may be further heat-fixed after uniaxial stretching or biaxial stretching.
Biaxially stretched lactic acid-based polymer When coated on a biaxially-stretched film, in order to further improve the adhesion between the lactic acid-based polymer biaxially-stretched film and the adhesion modified layer, the lactic acid-based polymer biaxially stretched film is treated with corona, flame Surface treatment by treatment, electron beam irradiation or the like may be performed. The effect can be obtained by the same treatment even when the film is stretched after the application.
In the case of unstretched or uniaxially stretched lactic acid-based polymer biaxially stretched film substrate after drying and stretching after applying the above coating solution, the drying temperature after coating is dried under conditions that do not affect the subsequent stretching. When the film is heat-set at 140 ° C. or higher after stretching, the coating film becomes strong, and the adhesion between the adhesion-modified layer and the lactic acid-based polymer biaxially stretched film substrate is dramatically improved.
[0030]
The easily adhesive lactic acid-based polymer biaxially stretched film obtained in the present invention can provide good adhesive strength in a wide range of applications. Specifically, a photographic photosensitive layer, a diazo photosensitive layer, a matte layer, a magnetic layer, an ink-jet ink receiving layer, a hard coat layer, an adhesive such as printing ink or UV ink, dry laminate or extrusion laminate, metal or inorganic substance, or oxidation thereof Examples thereof include a thin film layer, an organic barrier layer, and the like obtained by vacuum vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, plasma polymerization and the like.
[0031]
The adhesion-modified layer of the easy-adhering lactic acid-based polymer biaxially stretched film of the present invention has good adhesion to various materials, but in order to further improve adhesion and printability, the adhesion-modified layer is further subjected to corona treatment. Surface treatment by flame treatment, electron beam irradiation or the like can be performed.
[0032]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, the evaluation method of a film is shown below.
(1) Three-dimensional surface roughness SΔa
Using a stylus type three-dimensional surface roughness meter (SE-3AK, manufactured by Kosaka Laboratory Ltd.), the film surface was conditioned with a needle radius of 2 μm and a load of 30 mg, and a cut-off value of 0.25 in the longitudinal direction of the film. The measurement length was 1 mm, and the measurement length was 1 mm, and was divided into 500 points at a pitch of 2 μm. The height of each point was taken into a three-dimensional roughness analyzer (SPA-11). The same operation was carried out 150 times continuously at intervals of 2 μm in the width direction of the film, that is, 0.3 mm in the width direction of the film, and the data was taken into the analyzer. Next, SΔa was determined using an analyzer. Here, SΔa is a three-dimensional average gradient and is defined as follows. Surface shape (based on average surface)
A change in the average circle radius r of the particle area and the number of particles obtained by cutting with each cutting plane is Δr, ΔZ / Δr is obtained with each level of cutting plane, and each value is averaged to obtain a three-dimensional average gradient.
[0033]
(2) Number of protrusions on the film surface Seven or more rings (protrusion height) made around the protrusions observed by applying aluminum vapor deposition to the film surface under vacuum and attaching a filter with a wavelength of 0.54 μm to the two-beam interference microscope. The number of rings (corresponding to 1.89 μm or more) was measured over 1.3 mm 2 and determined as the number per unit area.
[0034]
(3) Haze haze was measured according to JIS-K6714 using a 300A manufactured by Nippon Seimitsu Optical Co., Ltd.
(4) Refractive index The refractive index in the longitudinal direction of the film was determined using an Abbe refractometer 1T manufactured by Atago Optical Co., Ltd.
[0035]
(5) Film runability and abrasion resistance The tape is formed by slitting the film into thin slits, which are rubbed against a metal guide roll and run at a high speed for a long time. The magnitude of the tape tension after rubbing this guide roll The amount of white dust generated on the surface of the guide roll was evaluated and ranked according to five levels as shown below.
(B) Running performance grade 1; high tension (many scratches)
2nd grade: Slightly large tension (a lot of scratches)
Grade 3; in tension (slightly scratched)
4th grade: Slightly small tension (almost no scratches)
Grade 5: Low tension (no scratches)
(B) Abrasion resistance grade 1; generation of white dust 2nd grade; white powder generation 3rd grade; white dust generation 4th grade; white dust generation almost 5th grade; [0036]
(6) Adhesive evaluation After applying the adhesive AD585 / CAT-10 (manufactured by Toyo Morton) on the corona-treated surface of the lactic acid polymer biaxially stretched film obtained in each Example and Comparative Example, 2 g / m 2 was applied. According to a conventional method, an unstretched polypropylene film, 60 μm (P1120, manufactured by Toyobo Co., Ltd.) was bonded by a dry laminating method to provide a sealant layer to obtain a lactic acid polymer biaxially stretched film laminate. The peel strength when dry and wet was measured. The measurement conditions are 90 ° peel test results at a tensile speed of 100 mm / min.
[0037]
Examples 1 and 2 and Comparative Examples 1 and 2
0.03 parts by weight of tin octylate as a catalyst is added to 100 parts by weight of L-lactide, charged in a reaction can and reacted at 190 ° C. for 1 hour. After the reaction is completed, the resulting reaction system is reduced in pressure and remains. L-lactide was distilled off. The intrinsic viscosity of the obtained polymer was 1.8. The lubricant was a slurry of L-lactide, and aggregated silica particles having an average particle size of 1.8 μm (SYLYSIA 350 manufactured by Fuji Silysia Chemical Co., Ltd.) were added at different addition amounts before the start of the L-lactide polymerization reaction.
[0038]
The lactic acid polymer was vacuum-dried at 110 ° C. for 4 hours by a conventional method, then extruded from a T-die at 200 ° C., and brought into close contact with a casting drum at 16 ° C. by an electrostatic charge, and rapidly cooled and solidified to obtain a cast film. The cast film is heated with a roll heated to 72 ° C and stretched 3.3 times in the longitudinal direction, then preheated to 60 ° C in a tenter and stretched 4.0 times in the width direction while raising the temperature to 75 ° C. The film was heat-set, further relaxed by 3% in the width direction at 150 ° C., and subjected to a lateral relaxation treatment to obtain a lactic acid polymer biaxially stretched film having a thickness of 12 μm. The characteristic values of these stretched films are shown in Table 1. Here, the longitudinal refractive index Nx after the longitudinal stretching was 1.468. The films obtained in Examples 1 and 2 and Comparative Example 1 had good transparency, but the film obtained in Comparative Example 2 had poor transparency.
[0039]
Examples 3 and 4
A film was produced in the same manner as in Example 1 except that 0.13 part by weight of the added lubricant was added in the form of spherical silica particles (AMT-silica # 100B, AMT-silica # 300B manufactured by Mizusawa Chemical Co., Ltd.). Is shown in Table 1. The longitudinal refractive index Nx after the longitudinal stretching was 1.486. Moreover, the transparency of the obtained film was favorable.
[0040]
Comparative Example 3
A film was prepared in the same manner as in Example 1 except that 0.13 part by weight of spherical silica particles (AMT-silica # 500B manufactured by Mizusawa Chemical Co., Ltd.) was added as the added lubricant, and the results obtained are shown in Table 1. The longitudinal refractive index Nx after the longitudinal stretching was 1.486. Moreover, the transparency of the obtained film was poor.
[0041]
Comparative Example 4
As the added lubricant, silica particles having an average particle diameter of 7 nm (made by Nippon Aerosil Co., Ltd., trade name Aerosil 300) were used as the inorganic lubricant, and Neutron S (made by Nippon Seika Co., Ltd.) was used as the organic lubricant. The film was prepared in the same manner as in Example 1, and the obtained results are shown in Table 1.
Comparative Example 5
As the added lubricant, a film was prepared in the same manner as in Comparative Example 4 except that the amount of organic lubricant added was zero, and the results obtained are shown in Table 1.
[0042]
[Table 1]
Figure 0003659388
[0043]
【The invention's effect】
According to the present invention, it is possible to obtain a lactic acid polymer biaxially stretched film excellent in running property, abrasion resistance, transparency and adhesiveness suitable for packaging applications and the like.

Claims (2)

主たる繰り返し単位が一般式−O−CHR−CO−(RはHまたは、炭素数1〜3のアルキル基を示す。)である脂肪族ポリエステルを主成分とし、平均粒子径が0.5μm以上、5μm以下のシリカ粒子滑剤を0.02重量%以上、0.5重量%以下含有した乳酸系ポリマーからなるフィルムにおいて、少なくとも片面の三次元表面粗さSΔa(三次元平均傾斜勾配)が0.01以上、0.04以下であり、かつ実質的に表面の突起高さが1.89μm以上の突起がなく、かつフィルムのヘイズが8%以下であることを特徴とする乳酸系ポリマー二軸延伸フィルム。The main repeating unit is composed mainly of an aliphatic polyester having the general formula —O—CHR—CO— (R represents H or an alkyl group having 1 to 3 carbon atoms), and the average particle size is 0.5 μm or more. In a film made of a lactic acid-based polymer containing a silica particle lubricant of 5 μm or less in an amount of 0.02 wt% or more and 0.5 wt% or less , at least one side of the three-dimensional surface roughness SΔa (three-dimensional average gradient) is 0.01. A lactic acid-based polymer biaxially stretched film characterized in that it is 0.04 or less, has substantially no protrusions having a surface protrusion height of 1.89 μm, and has a film haze of 8% or less. . 請求項1記載の脂肪族ポリエステルがポリ乳酸であることを特徴とする乳酸系ポリマー二軸延伸フィルム。A lactic acid polymer biaxially stretched film, wherein the aliphatic polyester according to claim 1 is polylactic acid.
JP21108898A 1998-07-27 1998-07-27 Lactic acid polymer biaxially stretched film Expired - Fee Related JP3659388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21108898A JP3659388B2 (en) 1998-07-27 1998-07-27 Lactic acid polymer biaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21108898A JP3659388B2 (en) 1998-07-27 1998-07-27 Lactic acid polymer biaxially stretched film

Publications (2)

Publication Number Publication Date
JP2000044702A JP2000044702A (en) 2000-02-15
JP3659388B2 true JP3659388B2 (en) 2005-06-15

Family

ID=16600226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21108898A Expired - Fee Related JP3659388B2 (en) 1998-07-27 1998-07-27 Lactic acid polymer biaxially stretched film

Country Status (1)

Country Link
JP (1) JP3659388B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192478A (en) * 2000-01-12 2001-07-17 Mitsubishi Plastics Ind Ltd Biodegradable film
JP2001059029A (en) * 1999-08-23 2001-03-06 Mitsubishi Plastics Ind Ltd Biaxially oriented aliphatic polyester-based film and its production

Also Published As

Publication number Publication date
JP2000044702A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
EP0974615A1 (en) Aliphatic polyester film and gas barrier film
WO2004085524A1 (en) Antistatic layered polyester film
KR100433383B1 (en) Polyester Compositions and Films Made therefrom
JP3659388B2 (en) Lactic acid polymer biaxially stretched film
JP2000044701A (en) Lactic acid-based polymer biaxially oriented film
JPH09141797A (en) Biaxially oriented laminated polyester film
JP3196895B2 (en) Biaxially stretched aliphatic polyester film
CA2103840A1 (en) Biaxially oriented film
JP3309933B2 (en) Polystyrene film
JPH06192451A (en) Fluoropolyester molding and its production
JP3275971B2 (en) Laminated polyester film and method for producing the same
JP2000281816A (en) Aliphatic polyester-based resin oriented film
JPH07117187A (en) Polystyrene laminated film
KR100291984B1 (en) White polymer film and its manufacturing method
JPS63120646A (en) Composite polyester film
JP2000273212A (en) Aliphatic polyester-based oriented film
JP3763158B2 (en) Biaxially oriented polyester film
JPH0420369B2 (en)
JPH11152351A (en) Polypropylene terephthalate-based film
JP2000108202A (en) Aliphatic polyester film
JP3132590B2 (en) Void-containing polyester film
JPH11152350A (en) Polypropylene terephthalate-based film
KR0130609B1 (en) Process for making biaxial oriented polyester film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP3085460B2 (en) Gas barrier aliphatic polyester film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees