JP3658816B2 - Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method - Google Patents

Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method Download PDF

Info

Publication number
JP3658816B2
JP3658816B2 JP29908795A JP29908795A JP3658816B2 JP 3658816 B2 JP3658816 B2 JP 3658816B2 JP 29908795 A JP29908795 A JP 29908795A JP 29908795 A JP29908795 A JP 29908795A JP 3658816 B2 JP3658816 B2 JP 3658816B2
Authority
JP
Japan
Prior art keywords
electrode plate
strip
current collecting
collecting rod
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29908795A
Other languages
Japanese (ja)
Other versions
JPH09120823A (en
Inventor
瑩三 安居院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP29908795A priority Critical patent/JP3658816B2/en
Publication of JPH09120823A publication Critical patent/JPH09120823A/en
Application granted granted Critical
Publication of JP3658816B2 publication Critical patent/JP3658816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極群、特に、渦巻型の電極群に関する。
【0002】
【従来の技術とその課題】
リチウム電池などの分野では、渦巻型の電極群を備えたものが知られている。ここで、渦巻型の電極群とは、一般に、円柱状の芯棒体を中心として、帯状の一方の極板(例えば、正極板)および帯状の他方の極板(例えば、負極板)がセパレーターを挟んで絶縁状態で重ね合わされながら渦巻状に巻き込まれた電極群をいう。
【0003】
上述のような渦巻状の電極群は、一般に円柱状に形成されるため、それを備えた電池も通常は円柱状に形成される。このような円柱状の電池は、体積効率が良好でなく、それを搭載するための空間の効率的な利用を妨げる場合が多い。
【0004】
本発明の目的は、渦巻型の電極群について、それを備えた電池がそれを搭載するための空間を効率的に利用できるようにすることにある。
【0005】
【課題を解決するための手段】
本発明に係る電極群は、横断面が四角形状の集電棒と、一端が集電棒に固定された、集電棒を中心として横断面が四角形状になるよう集電棒に渦巻状に巻き込まれた帯状の一方の極板と、集電棒および一方の極板と絶縁状態を保ちつつ、一方の極板と重ね合わされながら横断面が四角形状になるよう集電棒に渦巻状に巻き込まれた帯状の他方の極板とを備えている。
【0006】
このような本発明の電極群は、集電棒として横断面が四角形状のものを用い、また、帯状の一方の極板と帯状の他方の極板とを横断面が四角形状になるよう集電棒に渦巻状に巻き込んでいるので、全体として角柱状に形成される。このような角柱状の電極群によれば、それを採用した電池を角柱状に形成することができる。角柱状に形成された電池は、それを搭載するための空間を効率的に利用することができる。
【0007】
本発明に係る電極群の製造装置は、横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群を製造するための製造装置である。この製造装置は、集電棒をその軸心を中心として回転させて、帯状の一方の極板および帯状の他方の極板を重ね合わせながら集電棒に巻き込むための巻き込み手段と、巻き込み手段により回転される集電棒の回転角度を検出するための回転角度検出手段と、回転角度検出手段により検出された集電棒の回転角度に従って、集電棒の軸心から外周面までの最短距離と軸心から外周面までの最長距離との差の範囲内で、集電棒に対して接離方向に往復移動することにより集電棒に巻き込まれる帯状の一方の極板および帯状の他方の極板を案内するための案内手段とを備えている。
【0008】
このような本発明に係る電極群の製造装置によれば、帯状の一方の極板および帯状の他方の極板は、巻き込み手段により回転される集電棒に対して互いに重ね合わされながら巻き込まれる。この際、案内手段は、回転角度検出手段により検出された集電棒の回転角度に従って、集電棒に対して接離方向に往復移動する。このため、帯状の一方の極板および帯状の他方の極板は、案内手段により案内されて集電棒の外周面形状に従って巻き込まれ得る。このようにして集電棒に巻き込まれた帯状の一方の極板および帯状の他方の極板は、全体として、集電棒の形状に対応した角柱状の電極群を形成し得る。
【0009】
なお、本発明に係る電極群の製造装置は、例えば、案内手段を集電棒方向に付勢するための付勢手段をさらに備えていてもよい。この場合、集電棒に巻き込まれる帯状の一方の極板および帯状の他方の極板は、案内手段により案内されると共に付勢手段により集電棒方向に付勢されるので、集電棒の外周面形状に従ってより確実に巻き込まれ得る。
【0010】
本発明に係る他の電極群の製造装置は、横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群を製造するための製造装置である。この製造装置は、集電棒をその軸心を中心として回転させて、帯状の一方の極板および帯状の他方の極板を重ね合わせながら集電棒に巻き込むための巻き込み手段と、巻き込み手段により集電棒に巻き込まれる帯状の一方の極板および帯状の他方の極板を集電棒方向に付勢するための付勢手段とを備えている。
【0011】
このような製造装置によれば、帯状の一方の極板および帯状の他方の極板は、巻き込み手段により回転される集電棒に対して互いに重ね合わされながら巻き込まれる。この際、集電棒に巻き込まれる帯状の一方の極板および帯状の他方の極板は、付勢手段により集電棒方向に付勢される。このため、両極板は、集電棒の外周面形状に従って巻き込まれ得る。このようにして集電棒に巻き込まれた両極板は、全体として、集電棒の形状に対応した角柱状の電極群を形成し得る。
【0012】
本発明に係る電極群の製造方法は、横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群の製造方法である。この製造方法は、集電棒をその軸心を中心として回転させ、帯状の一方の極板と帯状の他方の極板とを重ね合わせながらかつ集電棒の外周面形状に沿って帯状の一方の極板と帯状の他方の極板とを案内しながら集電棒に渦巻状に巻き込む工程を含んでいる。
【0013】
このような電極群の製造方法によれば、帯状の一方の極板および帯状の他方の極板は、互いに重ね合わされながら集電棒に巻き込まれる。この際、帯状の一方の極板および帯状の他方の極板は、集電棒の外周面形状に沿って案内されながら巻き込まれ得る。したがって、集電棒に巻き込まれた帯状の一方の極板および帯状の他方の極板は、全体として、集電棒の形状に対応した角柱状の電極群を形成し得る
【0014】
【実施例】
図1に、本発明の一実施例に係る電極群を示す。なお、図1は、電極群の横断面図である。図において、電極群1は、芯棒体2、並びにその芯棒体2を中心として巻き込まれた陰極集電体3,陽極集電体4およびセパレーター5を主に備えている。
【0015】
芯棒体2は、陰極集電棒として機能し得る部材からなり、中心部2aが開口した、横断面が正方形の角筒状に形成されている。
【0016】
陰極集電体3は、例えば、銅箔に陰極用活物質層を配置したものからなり、帯状に形成されている。なお、陰極用活物質層には、例えばカーボンなどの陰極用活物質が含まれている。このような陰極集電体3は、一端3aが芯棒体2にスポット溶接されており、時計回りに渦巻状に巻き込まれている。
【0017】
陽極集電体4は、例えば、アルミニウム箔に陽極用活物質層を配置したものからなり、帯状に形成されている。なお、陽極用活物質層には、例えばLiCoO2 やLiNiO2 などの陽極用活物質が含まれている。このような陽極集電体4は、一端4aが芯棒体2の近傍に配置されており、陰極集電体3と平行に時計回りに渦巻状に巻き込まれている。
【0018】
セパレーター5は、電池用に通常用いられる電気絶縁材料からなる帯状に形成されている。このようなセパレーター5は、二つ折りにされており、その折り返し部5aが芯棒体2に当接するよう配置されている。また、二つ折りにされたセパレーター5は、陰極集電体3と陽極集電体4との間に配置され、両集電体3,4間を絶縁しながら陰極集電体3および陽極集電体4と平行に時計回りに渦巻状に巻き込まれている。なお、陽極集電体4の一端4aは、このようなセパレーター5により、芯棒体2との絶縁性が保たれている。
【0019】
上述の電極群1において、芯棒体2を中心として巻き込まれた陰極集電体3、陽極集電体4およびセパレーター5は、いずれも芯棒体2の外周面形状に対応した角状に巻き込まれている。このため、電極群1は、全体として角柱状に形成されている。
【0020】
このような電極群1は、例えば、電槽内に収容され、電池を形成し得る。この際、電極群1が角柱状に形成されているため、電槽として角型のものをもちいることができる。この結果、本実施例の電極群1を備えた電池は、全体として角型に構成することができるので、それを搭載するための空間に無駄なスペースを形成しにくく、当該空間を効率的に利用することができる。
【0021】
次に、上述の電極群1を製造するための製造装置について説明する。図2は、製造装置10の概略構成を示す図である。図において、製造装置10は、巻き込み装置11と、一対の案内装置12,12とから主に構成されている。
【0022】
巻き込み装置11は、モーター13と、モーター13に回転可能に取り付けられたギヤ14と、ギヤ14に噛み合わされた減速ギヤ15と、減速ギヤ15により回転されかつ一対の案内装置12,12間に延びる回転軸16とを主に備えている。なお、回転軸16は、上述の芯棒体2の中心部2aに挿入することができるよう、角柱状に形成されている。このような巻き込み装置11は、モーター13の回転力をギヤ14および減速ギヤ15を介して回転軸16に伝達し、回転軸16を図3(図2のIII−III断面図)の反時計回り(図の矢印方向)に回転し得る。
【0023】
上述の巻き込み装置11において、減速ギヤ15には、回転軸16の回転角度θ(図3)を検出するためのエンコーダー17が装備されている。このエンコーダー17は、アンプ18を介して演算器19に接続されており、演算器19に回転軸16の回転角度θを伝達し得る。
【0024】
一対の案内装置12,12は、回転軸16を挟んで上下に配置されている。各案内装置12は、回転軸16と平行に延びるローラー20と、エアシリンダー21と、ローラー20を自由回転可能に支持しかつエアシリンダー21の付勢力によりローラ20を回転軸16方向に付勢するための支持体22とを備えている。
【0025】
エアシリンダー21は、サーボ23に接続されている。このサーボ23は、演算器19に接続されており、演算器19による演算結果に従って、エアシリンダー21全体を図2の上下方向に移動させ得る。
【0026】
次に、演算器19での演算内容について説明する。演算器19には、エンコーダー17により検出された回転軸16の回転角度θが入力される。ここで云う回転軸16の回転角度θとは、図3に示すように、回転軸16の軸心cを中心として、回転軸16が図の反時計回りに回転する場合の回転角度を云う。演算器19は、このような回転軸16の回転角度θに従って、エアシリンダー21全体の移動量(X)を算出する。ここで算出されるエアシリンダー21全体の移動量は、図3に示すように、回転軸16の軸心cから回転軸16に装着された芯棒体2の外周面までの距離rと、回転軸16の軸心cから芯棒体2の外周面までの最短距離raとの差(r−ra)である。なお、距離rは、回転軸16の軸心cから芯棒体2の外周面までの最短距離raと、軸心cから芯棒体2の外周面までの最長距離(軸心cから芯棒体2の角部までの距離)rbとの差の範囲内になり、下記の計算式により算出される。
【0027】
r=ra/cosθ
【0028】
このようにして演算されるエアシリンダー21全体の移動量(X)は、具体的には、0(回転軸16の回転角度θが例えば0°の場合)からrb−ra(回転軸16の回転角度θが例えば45°の場合)の範囲となる。回転軸16の回転角度θと移動量(X)との関係を図4に示す。図に示すように、回転軸16が一回転する間に、移動量(X)は0からrb−raの範囲を4往復することになる。
【0029】
このようにして演算器19により算出された移動量(X)は、サーボ23に伝達される。サーボ23は、この情報に従ってエアシリンダー21全体を図2の上下方向に往復移動させる。具体的には、図3に示すような回転軸16の回転角度θが0°の場合から回転軸16が図の反時計回りに回転し始めると、サーボ23は、エアシリンダー21を演算器19で算出された移動量(X)分だけ回転軸16から離れる方向に移動させる。そして、回転角度θが45°になったときを境にして、図4に示すように移動量(X)は減少し始めるので、サーボ23は、エアシリンダー21を回転軸16方向に移動させる。このように、エアシリンダー21は、図4に示す周期に従って移動し、回転軸16が一回転する間に、移動量(X)の範囲で4往復することになる。
【0030】
次に、上述の製造装置10を用いて電極群1を製造する方法について説明する。先ず、図5に示すように、芯棒体2に陰極集電体3の一端3aをスポット溶接する。そして、このように陰極集電体3が溶接された芯棒体2を、図2および図3に示すように製造装置10の回転軸16に装着する。
【0031】
このようにして回転軸16に装着された芯棒体2に対して、図6に示すようにセパレーター5を配置する。ここでは、帯状のセパレーター5の一端側51が芯棒体2に溶接された陰極集電体3上に重なり得るように、セパレーター5を芯棒体2と上側の案内装置12のローラー20との間に配置する。そして、このセパレーター5の他端側を芯棒体2の図左側面から下側面に沿わせ、当該下側面で折り返す。こうして形成されたセパレーター5の折り返し部5aには、陽極集電体4の一端4aを挟み込む。このように、製造装置10に対して陰極集電体3、陽極集電体4およびセパレーター5を配置した状態では、エアシリンダー21の付勢力により各案内装置12のローラー20がセパレーター5を芯棒体2方向に付勢している。
【0032】
次に、製造装置10を作動させ、回転軸16を図6の反時計回り(図の矢印方向)に回転させ始める。これにより、陰極集電体3および陽極集電体4は、セパレーター5間に挟まれながら、図7および図8に示すように芯棒体2に徐々に巻き込まれる。
【0033】
芯棒体2に対する陰極集電体3、陽極集電体4およびセパレーター5のこのような巻き込み工程において、エンコーダー17は回転軸16の回転角度θを常時検出し、その情報をアンプ18を介して演算器19に伝達する。演算器19は、上述の計算式に基づいてエアシリンダー21の移動量(X)を算出する。この算出結果に基づいて、サーボ23はエアシリンダー21を上下に往復移動させる。例えば、図7に示すように回転軸16が45°回転した場合、エアシリンダー21は、図6に示す場合(回転角度θ=0°の場合)よりもX(ここでは、X=rb−ra)だけ回転軸16から離れた位置に移動する。さらに、図8に示すように、回転軸が45°回転すると(回転角度θ=90°の場合)、エアシリンダー21は、図7の場合の位置からX(ここでは、X=rb−ra)だけ回転軸16に近づいた位置に移動する。
【0034】
このように、本実施例の製造装置10では、回転軸16の回転角度に従ってエアシリンダー21が往復移動し、しかも支持体22はエアシリンダー21により回転軸16方向に付勢されるので、支持体22に支持されたローラー20は、常にセパレーター5に密接しながら図6,7および8に矢印で示す方向に自由回転する。このため、芯棒体2に巻き込まれる陰極集電体3、陽極集電体4およびセパレーター5は、ローラー20により案内されながら芯棒体2の外周面に沿った角柱状に確実に巻き込まれ、最終的には角柱状の電極群1を形成し得る。
【0035】
なお、このような巻き込み工程では、各支持体22は、エアシリンダー21の付勢力に逆らって、芯棒体2に巻き込まれた陰極集電体3、陽極集電体4およびセパレーター5の厚さの分だけ回転軸16から離れる方向に徐々に移動する。
【0036】
〔他の実施例〕
(1)前記実施例では、陰極集電体3と陽極集電体4との絶縁性、芯棒体2と陽極集電体4との絶縁性を確保するためにセパレーター5を用いたが、本発明はこれに限定されない。例えば、陰極集電体3および陽極集電体4のそれぞれの活物質層上に固体電解質層を重ねて形成した場合は、当該固体電解質層がセパレーターとして機能し得るため、別途セパレーターを用いることなく本発明に係る電極群を構成することができる。なお、陰極集電体3と陽極集電体4とがこのような固体電解質層を備えている場合は、電槽に電解液を注入することなく電池を構成することができる。
【0037】
(2)前記実施例では、陰極集電体3を芯棒体2にスポット溶接し、陽極集電体4を芯棒体2と絶縁させたが、本発明はこれに限定されない。すなわち、陽極集電体4を芯棒体2にスポット溶接し、陰極集電体3を芯棒体2と絶縁させた場合も本発明を同様に実施することができる。但し、この場合、芯棒体2としては、陽極集電棒として機能するものを用いる必要がある。
【0038】
(3)上述の製造装置10では、エアシリンダー21全体が回転軸16の回転角度に従って往復移動するように構成したが、このような構成無しに電極群1を製造することもできる。すなわち、上述の製造装置10において、エアシリンダー21によりローラ20が回転軸16方向に付勢されるように構成されていれば、陰極集電体3、陽極集電体4およびセパレーター5は、当該付勢装置の付勢力のために、常にローラー20により芯棒体2方向に押圧されながら巻き込まれることになるので、芯棒体2の外周面に沿った角柱状に確実に巻き込まれ、最終的には角柱状の電極群1を形成し得る。
【0039】
(4)上述の製造装置10では、ローラ20を回転軸16方向に付勢するための手段としてエアシリンダー21を用いたが、エアシリンダー21に代えてバネを用いた場合も本発明を同様に実施することができる。
【0040】
【発明の効果】
本発明に係る電極群は、全体として角柱状に形成されている。このため、このような角柱状の電極群を利用すれば、電池を角柱状に形成することができるため、当該電池を搭載するための空間を効率的に利用することができる。
【0041】
本発明に係る電極群の製造装置は、帯状の一方の極板および帯状の他方の極板を、案内手段により案内しながら集電棒の外周面形状に従って巻き込むことができるので、集電棒の形状に対応した角柱状の電極群を形成し得る。
【0042】
本発明に係る他の電極群の製造装置は、集電棒に巻き込まれる帯状の一方の極板および帯状の他方の極板を集電棒方向に付勢するための付勢手段を備えているため、両極板は、集電棒の外周面形状に従って巻き込まれ得る。このため、この製造装置は、集電棒の形状に対応した角柱状の電極群を形成し得る。
【0043】
本発明に係る電極群の製造方法は、帯状の一方の極板および帯状の他方の極板を集電棒の外周面形状に沿って案内しながら巻き込んでいるので、集電棒の形状に対応した角柱状の電極群を形成し得る。
【図面の簡単な説明】
【図1】本発明の一実施例に係る電極群の横断面図。
【図2】本発明の一実施例に係る電極群の製造装置の概略図。
【図3】図2のIII−III断面図。
【図4】前記製造装置における、回転軸の回転角度(θ)と支持体の移動量(X)との関係を示す図。
【図5】前記製造装置により前記電極群を製造する場合の一工程を示す図。
【図6】前記製造装置により前記電極群を製造する場合の他の工程を示す図。
【図7】前記製造装置により前記電極群を製造する場合のさらに他の工程を示す図。
【図8】前記製造装置により前記電極群を製造する場合のさらに他の工程を示す図。
【符号の説明】
1 電極群
2 芯棒体
3 陰極集電体
4 陽極集電体
5 セパレーター
10 製造装置
11 巻き込み装置
12 案内装置
16 回転軸
17 エンコーダー
21 エアシリンダー
23 サーボ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode group, and more particularly to a spiral electrode group.
[0002]
[Prior art and its problems]
In the field of lithium batteries and the like, those having a spiral electrode group are known. Here, the spiral electrode group generally includes a strip-shaped electrode plate (for example, a positive electrode plate) and a strip-shaped electrode plate (for example, a negative electrode plate) that are separated from each other around a cylindrical core rod body. A group of electrodes wound in a spiral while being overlapped in an insulating state.
[0003]
Since the spiral electrode group as described above is generally formed in a cylindrical shape, a battery including the same is usually formed in a cylindrical shape. Such a cylindrical battery is not good in volumetric efficiency and often hinders efficient use of the space for mounting it.
[0004]
An object of the present invention is to enable a battery equipped with a spiral electrode group to efficiently use a space for mounting it.
[0005]
[Means for Solving the Problems]
Electrodes according to the present invention, a rectangular current collecting rod cross-section, one end of which is fixed to the collector bar, strip-shaped cross section around the collector bar is involved in a spiral as collector bars made in a rectangular shape while the electrode plate of, while maintaining the current collector bars and the one electrode plate with insulated, strip the other that cross section while overlapped with one pole plate is incorporated wound spirally as collector bars made in a rectangular shape And the electrode plate.
[0006]
The electrode group of the present invention as described above, cross-section used as a square shape as a current collector bars, also strip-shaped one plate and strip other plate and as current collector rod cross-section is square-shaped with since crowded wound spirally is formed in a prismatic shape as a whole. According to such a prismatic electrode group, a battery using the electrode group can be formed in a prismatic shape. A battery formed in a prismatic shape can efficiently use a space for mounting the battery.
[0007]
The electrode group manufacturing apparatus according to the present invention has a rectangular cross section while a strip-shaped electrode plate and the other strip-shaped electrode plate are overlapped in an insulating state with a current collecting rod having a rectangular cross section as the center. It is a manufacturing apparatus for manufacturing the electrode group wound in the shape of a spiral. This manufacturing apparatus is rotated by a winding means for rotating the current collecting rod around its axis, and winding the current collecting rod around the current collecting rod while superposing one belt-like electrode plate and the other belt-like electrode plate. a rotation angle detecting means for detecting the rotation angle of that collector bars according to the detected rotation angle of the by the rotation angle detecting means collector rod, the shortest distance and the shaft center outer peripheral surface to the axial center the outer peripheral surface of the collector bar Guide for guiding one strip-shaped electrode plate and the other strip-shaped electrode plate that are wound around the current collector rod by reciprocating in the direction of contact with the current collector rod within the range of the maximum distance to Means.
[0008]
According to such an apparatus for manufacturing an electrode group according to the present invention, one strip-shaped electrode plate and the other strip-shaped electrode plate are wound while being superimposed on each other on a current collecting rod rotated by a winding means. At this time, the guide means reciprocates in the contact / separation direction with respect to the current collecting rod in accordance with the rotation angle of the current collecting rod detected by the rotation angle detecting means. For this reason, one strip-shaped electrode plate and the other strip-shaped electrode plate can be guided by the guiding means and wound according to the outer peripheral surface shape of the current collecting rod . In this way, the one plate of the strip caught in the collector bar and strip other plate, as a whole, may form a prismatic electrode group corresponding to the shape of the current collector bars.
[0009]
Note that the electrode group manufacturing apparatus according to the present invention may further include, for example, an urging unit for urging the guide unit in the direction of the current collecting rod . In this case, one plate and strip other plate of the strip to be caught up in the collector bar, because it is biased to the collector rod direction by biasing means while being guided by the guide means, the outer peripheral surface of the collector bar shape Can be more reliably involved.
[0010]
Another electrode group manufacturing apparatus according to the present invention has a rectangular cross section with a current collector rod having a square cross section as a center and one strip-shaped electrode plate and the other strip-shaped electrode plate stacked in an insulated state. It is a manufacturing apparatus for manufacturing the electrode group wound up in the shape of a spiral. The manufacturing apparatus rotates the collector rod around its axis, collector bars and entrainment means for involving the collector bar while superimposing a strip of one plate and strip other plate, by entrainment means And an urging means for urging one of the belt-shaped electrode plates wound around and the other of the belt-shaped electrode plates in the direction of the current collecting rod .
[0011]
According to such a manufacturing apparatus, one strip-shaped electrode plate and the other strip-shaped electrode plate are wound while being overlapped with each other on the current collecting rod rotated by the winding means. In this case, one plate and strip other plate of the strip to be caught up in the collector bar is biased to the collector rod direction by biasing means. For this reason, the bipolar plate can be wound according to the outer peripheral surface shape of the current collector rod . Thus, the bipolar plate wound around the current collecting rod can form a prismatic electrode group corresponding to the shape of the current collecting rod as a whole.
[0012]
The electrode group manufacturing method according to the present invention has a rectangular cross section with a current collector rod having a square cross section as a center and one strip-shaped electrode plate and the other strip-shaped electrode plate stacked in an insulated state. It is a manufacturing method of the electrode group wound in the shape of a spiral. In this manufacturing method, the current collecting rod is rotated around its axial center, and the belt-like one electrode plate and the other belt-like electrode plate are overlapped with each other and along the outer peripheral surface shape of the current collecting rod. The method includes a step of spirally winding the current collecting rod while guiding the plate and the other strip-shaped electrode plate.
[0013]
According to such a method for manufacturing an electrode group, one strip-shaped electrode plate and the other strip-shaped electrode plate are wound around the current collecting rod while being superimposed on each other. At this time, the one strip-shaped electrode plate and the other strip-shaped electrode plate can be wound while being guided along the outer peripheral surface shape of the current collector rod . Thus, one plate and strip other plate of the strip that was involved in the collector bar, as a whole, may form a prismatic electrode group corresponding to the shape of the current collector bars [0014]
【Example】
FIG. 1 shows an electrode group according to an embodiment of the present invention. FIG. 1 is a cross-sectional view of the electrode group. In the figure, the electrode group 1 mainly includes a core rod body 2, and a cathode current collector 3, an anode current collector 4, and a separator 5 wound around the core rod body 2.
[0015]
The core rod body 2 is made of a member that can function as a cathode current collector rod, and is formed in a square tube shape having a square cross section with an open center portion 2a.
[0016]
The cathode current collector 3 is made of, for example, a copper foil having a cathode active material layer disposed thereon, and is formed in a strip shape. The cathode active material layer contains a cathode active material such as carbon. One end 3a of such a cathode current collector 3 is spot welded to the core rod body 2, and is wound in a spiral shape in a clockwise direction.
[0017]
The anode current collector 4 is made of, for example, an aluminum foil provided with an anode active material layer, and is formed in a strip shape. The anode active material layer contains an anode active material such as LiCoO 2 or LiNiO 2 . One end 4 a of the anode current collector 4 is disposed in the vicinity of the core rod body 2, and is wound in a spiral shape in parallel with the cathode current collector 3.
[0018]
The separator 5 is formed in a strip shape made of an electrically insulating material that is usually used for batteries. Such a separator 5 is folded in two, and the folded portion 5 a is disposed so as to contact the core rod body 2. The separator 5 folded in two is disposed between the cathode current collector 3 and the anode current collector 4, and insulates the current collectors 3 and 4 from each other while insulating the cathode current collector 3 and the anode current collector 4. It is wound in a spiral shape in parallel with the body 4 in a clockwise direction. Note that the one end 4 a of the anode current collector 4 is kept insulated from the core rod body 2 by such a separator 5.
[0019]
In the electrode group 1, the cathode current collector 3, the anode current collector 4, and the separator 5 that are wound around the core rod body 2 are all wound into a square shape corresponding to the outer peripheral surface shape of the core rod body 2. It is. For this reason, the electrode group 1 is formed in a prismatic shape as a whole.
[0020]
Such an electrode group 1 can be housed in, for example, a battery case to form a battery. At this time, since the electrode group 1 is formed in a prismatic shape, a rectangular battery case can be used. As a result, since the battery including the electrode group 1 of the present embodiment can be configured as a square as a whole, it is difficult to form a useless space in the space for mounting it, and the space can be efficiently formed. Can be used.
[0021]
Next, a manufacturing apparatus for manufacturing the above-described electrode group 1 will be described. FIG. 2 is a diagram illustrating a schematic configuration of the manufacturing apparatus 10. In the figure, the manufacturing apparatus 10 is mainly composed of a winding device 11 and a pair of guide devices 12 and 12.
[0022]
The entraining device 11 includes a motor 13, a gear 14 rotatably attached to the motor 13, a reduction gear 15 meshed with the gear 14, and a rotation of the reduction gear 15 and extends between the pair of guide devices 12 and 12. The rotary shaft 16 is mainly provided. The rotating shaft 16 is formed in a prismatic shape so that it can be inserted into the central portion 2a of the core rod body 2 described above. Such a winding device 11 transmits the rotational force of the motor 13 to the rotating shaft 16 via the gear 14 and the reduction gear 15, and the rotating shaft 16 is rotated counterclockwise in FIG. 3 (III-III sectional view of FIG. 2). It can rotate in the direction of the arrow in the figure.
[0023]
In the above-described winding device 11, the reduction gear 15 is equipped with an encoder 17 for detecting the rotation angle θ (FIG. 3) of the rotating shaft 16. The encoder 17 is connected to a calculator 19 via an amplifier 18 and can transmit the rotation angle θ of the rotary shaft 16 to the calculator 19.
[0024]
The pair of guide devices 12, 12 are arranged above and below with the rotation shaft 16 interposed therebetween. Each guide device 12 supports a roller 20 extending in parallel with the rotation shaft 16, an air cylinder 21, and the roller 20 so as to be freely rotatable, and biases the roller 20 toward the rotation shaft 16 by the biasing force of the air cylinder 21. And a support 22 for the purpose.
[0025]
The air cylinder 21 is connected to the servo 23. The servo 23 is connected to the calculator 19 and can move the entire air cylinder 21 in the vertical direction in FIG. 2 according to the calculation result of the calculator 19.
[0026]
Next, the calculation contents in the calculator 19 will be described. The calculator 19 receives the rotation angle θ of the rotating shaft 16 detected by the encoder 17. The rotation angle θ of the rotating shaft 16 here refers to a rotation angle when the rotating shaft 16 rotates counterclockwise in the drawing with the axis c of the rotating shaft 16 as the center, as shown in FIG. The computing unit 19 calculates the movement amount (X) of the entire air cylinder 21 according to the rotation angle θ of the rotating shaft 16. As shown in FIG. 3, the movement amount of the entire air cylinder 21 calculated here is the distance r from the axis c of the rotating shaft 16 to the outer peripheral surface of the core rod body 2 attached to the rotating shaft 16 and the rotation. This is the difference (r−ra) from the shortest distance ra from the axis c of the shaft 16 to the outer peripheral surface of the core rod body 2. The distance r is the shortest distance ra from the axis c of the rotating shaft 16 to the outer peripheral surface of the core rod body 2 and the longest distance from the axis c to the outer peripheral surface of the core rod body 2 (from the axis c to the core rod). The distance to the corner of the body 2 is within the range of the difference rb, and is calculated by the following formula.
[0027]
r = ra / cos θ
[0028]
Specifically, the movement amount (X) of the entire air cylinder 21 calculated in this way is from 0 (when the rotation angle θ of the rotating shaft 16 is 0 °, for example) to rb-ra (rotation of the rotating shaft 16). For example, the angle θ is 45 °. FIG. 4 shows the relationship between the rotation angle θ of the rotation shaft 16 and the movement amount (X). As shown in the figure, the movement amount (X) reciprocates four times in the range from 0 to rb-ra while the rotating shaft 16 makes one rotation.
[0029]
Thus, the movement amount (X) calculated by the calculator 19 is transmitted to the servo 23. The servo 23 reciprocates the entire air cylinder 21 in the vertical direction of FIG. 2 according to this information. Specifically, when the rotation shaft 16 starts to rotate counterclockwise in the figure from the case where the rotation angle θ of the rotation shaft 16 is 0 ° as shown in FIG. Is moved in a direction away from the rotating shaft 16 by the amount of movement (X) calculated in (1). Then, when the rotation angle θ reaches 45 °, the movement amount (X) starts to decrease as shown in FIG. 4, so the servo 23 moves the air cylinder 21 in the direction of the rotation axis 16. As described above, the air cylinder 21 moves according to the cycle shown in FIG. 4 and reciprocates four times within the range of the moving amount (X) while the rotating shaft 16 makes one rotation.
[0030]
Next, a method for manufacturing the electrode group 1 using the manufacturing apparatus 10 described above will be described. First, as shown in FIG. 5, one end 3 a of the cathode current collector 3 is spot welded to the core rod body 2. Then, the core rod body 2 to which the cathode current collector 3 is welded in this way is attached to the rotating shaft 16 of the manufacturing apparatus 10 as shown in FIGS.
[0031]
The separator 5 is arranged as shown in FIG. 6 with respect to the core rod body 2 mounted on the rotating shaft 16 in this way. Here, the separator 5 is placed between the core rod body 2 and the roller 20 of the upper guide device 12 so that one end side 51 of the strip-shaped separator 5 can overlap the cathode current collector 3 welded to the core rod body 2. Place between. And the other end side of this separator 5 is made to follow a lower surface from the figure left side surface of the core rod body 2, and it folds in the said lower surface. One end 4a of the anode current collector 4 is sandwiched between the folded portions 5a of the separator 5 thus formed. Thus, in the state where the cathode current collector 3, the anode current collector 4, and the separator 5 are arranged with respect to the manufacturing apparatus 10, the roller 20 of each guide device 12 causes the separator 5 to be a core rod by the urging force of the air cylinder 21. It is energized in the body 2 direction.
[0032]
Next, the manufacturing apparatus 10 is operated, and the rotating shaft 16 starts to rotate counterclockwise in FIG. 6 (in the direction of the arrow in the figure). Thereby, the cathode current collector 3 and the anode current collector 4 are gradually wound around the core rod body 2 as shown in FIGS. 7 and 8 while being sandwiched between the separators 5.
[0033]
In such a winding process of the cathode current collector 3, the anode current collector 4, and the separator 5 with respect to the core rod body 2, the encoder 17 always detects the rotation angle θ of the rotating shaft 16, and the information is sent via the amplifier 18. This is transmitted to the calculator 19. The computing unit 19 calculates the movement amount (X) of the air cylinder 21 based on the above calculation formula. Based on this calculation result, the servo 23 reciprocates the air cylinder 21 up and down. For example, when the rotary shaft 16 rotates 45 ° as shown in FIG. 7, the air cylinder 21 has X (here, X = rb−ra) rather than the case shown in FIG. 6 (when the rotation angle θ = 0 °). ) To a position away from the rotary shaft 16. Further, as shown in FIG. 8, when the rotation axis rotates 45 ° (when the rotation angle θ = 90 °), the air cylinder 21 moves from the position in the case of FIG. 7 to X (here, X = rb-ra). Only the position closer to the rotating shaft 16 is moved.
[0034]
As described above, in the manufacturing apparatus 10 of the present embodiment, the air cylinder 21 reciprocates according to the rotation angle of the rotation shaft 16, and the support body 22 is biased in the direction of the rotation shaft 16 by the air cylinder 21. The roller 20 supported by 22 rotates freely in the direction indicated by the arrows in FIGS. 6, 7 and 8 while being always in close contact with the separator 5. Therefore, the cathode current collector 3, the anode current collector 4, and the separator 5 that are wound around the core rod body 2 are reliably wound into a prismatic shape along the outer peripheral surface of the core rod body 2 while being guided by the roller 20. Ultimately, a prismatic electrode group 1 can be formed.
[0035]
In such a winding process, each support member 22 has a thickness of the cathode current collector 3, the anode current collector 4, and the separator 5 wound around the core rod body 2 against the urging force of the air cylinder 21. Is gradually moved away from the rotary shaft 16 by the amount of.
[0036]
[Other Examples]
(1) In the above embodiment, the separator 5 was used to ensure the insulation between the cathode current collector 3 and the anode current collector 4 and the insulation between the core rod body 2 and the anode current collector 4. The present invention is not limited to this. For example, when a solid electrolyte layer is formed on each of the active material layers of the cathode current collector 3 and the anode current collector 4, the solid electrolyte layer can function as a separator, so that a separate separator is not used. The electrode group which concerns on this invention can be comprised. When the cathode current collector 3 and the anode current collector 4 are provided with such a solid electrolyte layer, a battery can be configured without injecting an electrolyte into the battery case.
[0037]
(2) Although the cathode current collector 3 is spot welded to the core rod body 2 and the anode current collector 4 is insulated from the core rod body 2 in the above embodiment, the present invention is not limited to this. That is, the present invention can be similarly implemented even when the anode current collector 4 is spot-welded to the core rod body 2 and the cathode current collector 3 is insulated from the core rod body 2. However, in this case, it is necessary to use a core rod body 2 that functions as an anode current collector rod.
[0038]
(3) In the manufacturing apparatus 10 described above, the entire air cylinder 21 is configured to reciprocate according to the rotation angle of the rotating shaft 16, but the electrode group 1 can also be manufactured without such a configuration. That is, in the manufacturing apparatus 10 described above, if the roller 20 is biased in the direction of the rotation axis 16 by the air cylinder 21, the cathode current collector 3, the anode current collector 4 and the separator 5 Because of the urging force of the urging device, the roller 20 is always wound while being pressed in the direction of the core rod body 2, so that it is reliably wound into a prismatic shape along the outer peripheral surface of the core rod body 2. The prismatic electrode group 1 can be formed.
[0039]
(4) In the manufacturing apparatus 10 described above, the air cylinder 21 is used as a means for urging the roller 20 in the direction of the rotation axis 16, but the present invention is similarly applied when a spring is used instead of the air cylinder 21. Can be implemented.
[0040]
【The invention's effect】
The electrode group according to the present invention is formed in a prismatic shape as a whole. For this reason, if such a prismatic electrode group is used, the battery can be formed in a prismatic shape, so that the space for mounting the battery can be used efficiently.
[0041]
Apparatus for manufacturing electrodes according to the present invention, the strip of one plate and a strip of the other electrode plate, while guided by the guide means it is possible to involve accordance outer peripheral surface shape of the collector bar, the shape of the current collector bars Corresponding prismatic electrode groups can be formed.
[0042]
Since the manufacturing apparatus of another electrode group according to the present invention is provided with biasing means for biasing one plate of the strip to be caught up in the collector bar and the strip of the other electrode plate to the current collector bar direction, The bipolar plates can be wound according to the outer peripheral surface shape of the current collector rod . For this reason, this manufacturing apparatus can form a prismatic electrode group corresponding to the shape of the current collector rod .
[0043]
Method of manufacturing an electrode group according to the present invention, since the strip of one electrode plate and a strip of the other electrode plate and involving while guiding along the outer peripheral surface shape of the current collector bars, the corner corresponding to the shape of the current collector bars Columnar electrode groups can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrode group according to an embodiment of the present invention.
FIG. 2 is a schematic view of an electrode group manufacturing apparatus according to an embodiment of the present invention.
3 is a cross-sectional view taken along the line III-III in FIG.
FIG. 4 is a view showing a relationship between a rotation angle (θ) of a rotation shaft and a moving amount (X) of a support in the manufacturing apparatus.
FIG. 5 is a diagram showing one process when the electrode group is manufactured by the manufacturing apparatus.
FIG. 6 is a view showing another process when the electrode group is manufactured by the manufacturing apparatus.
FIG. 7 is a view showing still another process when the electrode group is manufactured by the manufacturing apparatus.
FIG. 8 is a view showing still another process when the electrode group is manufactured by the manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Core rod body 3 Cathode collector 4 Anode collector 5 Separator 10 Manufacturing apparatus 11 Entrainment apparatus 12 Guide apparatus 16 Rotating shaft 17 Encoder 21 Air cylinder 23 Servo

Claims (5)

横断面が四角形状の集電棒と、
一端が前記集電棒に固定された、前記集電棒を中心として横断面が四角形状になるよう前記集電棒に渦巻状に巻き込まれた帯状の一方の極板と、
前記集電棒および前記一方の極板と絶縁状態を保ちつつ、前記一方の極板と重ね合わされながら横断面が四角形状になるよう前記集電棒に渦巻状に巻き込まれた帯状の他方の極板と、
を備えた電極群。
A current collecting rod having a rectangular cross section;
One end plate fixed to the current collecting rod, one strip-shaped electrode plate wound in a spiral shape around the current collecting rod so as to have a square cross section around the current collecting rod,
The other electrode plate in the form of a spiral wound around the current collecting rod so as to have a quadrangular cross section while being overlapped with the one electrode plate while maintaining insulation with the current collecting rod and the one electrode plate ,
An electrode group comprising:
横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群を製造するための製造装置であって、
前記集電棒をその軸心を中心として回転させて、前記帯状の一方の極板および前記帯状の他方の極板を重ね合わせながら前記集電棒に巻き込むための巻き込み手段と、
前記巻き込み手段により回転される前記集電棒の回転角度を検出するための回転角度検出手段と、
前記回転角度検出手段により検出された前記集電棒の回転角度に従って、前記集電棒の軸心から外周面までの最短距離と前記軸心から前記外周面までの最長距離との差の範囲内で、前記集電棒に対して接離方向に往復移動することにより前記集電棒に巻き込まれる前記帯状の一方の極板および前記帯状の他方の極板を案内するための案内手段と、
を備えた電極群の製造装置。
Around the collector bar cross section is quadrangular, produce one plate and strip the other electrode plate electrode group superimposed with cross-section is involved in a spiral so as to be in a square shape in an insulated state of the strip A manufacturing device for
A winding means for rotating the current collecting rod around its axial center, and winding the current collecting rod around the current collecting rod while superposing the one belt-like electrode plate and the other belt-like electrode plate;
A rotation angle detecting means for detecting a rotation angle of the current collecting rod rotated by the winding means;
According to the rotation angle of the current collecting rod detected by the rotation angle detecting means, within the range of the difference between the shortest distance from the axial center to the outer peripheral surface of the current collecting rod and the longest distance from the axial center to the outer peripheral surface, and guide means for guiding the one plate and the strip of the other electrode plate of the strip to be caught up in the collector bar by reciprocating in and away direction with respect to the collector bars,
An apparatus for manufacturing an electrode group.
前記案内手段を前記集電棒方向に付勢するための付勢手段をさらに備えた、請求項2に記載の電極群の製造装置。The electrode group manufacturing apparatus according to claim 2, further comprising biasing means for biasing the guide means in the direction of the current collector rod . 横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群を製造するための製造装置であって、
前記集電棒をその軸心を中心として回転させて、前記帯状の一方の極板および前記帯状の他方の極板を重ね合わせながら前記集電棒に巻き込むための巻き込み手段と、
前記巻き込み手段により前記集電棒に巻き込まれる前記帯状の一方の極板および前記帯状の他方の極板を前記集電棒方向に付勢するための付勢手段と、
を備えた電極群の製造装置。
Manufactures a group of electrodes wound in a spiral shape with a rectangular cross-section and a strip-shaped electrode plate and the other strip-shaped electrode plate overlapped in an insulating state with a rectangular cross-section as the center. A manufacturing device for
A winding means for rotating the current collecting rod around its axial center, and winding the current collecting rod around the current collecting rod while superposing the one belt-like electrode plate and the other belt-like electrode plate;
An energizing means for energizing the strip-shaped one electrode plate and the other strip-shaped electrode plate that are wound around the current collecting rod by the winding means in the direction of the current collecting rod;
An apparatus for manufacturing an electrode group.
横断面が四角形状の集電棒を中心として、帯状の一方の極板および帯状の他方の極板が絶縁状態で重ね合わされながら横断面が四角形状になるよう渦巻状に巻き込まれた電極群の製造方法であって、
前記集電棒をその軸心を中心として回転させ、前記帯状の一方の極板と前記帯状の他方の極板とを重ね合わせながらかつ前記集電棒の外周面形状に沿って前記帯状の一方の極板と前記帯状の他方の極板とを案内しながら前記集電棒に渦巻状に巻き込む工程を含む、
電極群の製造方法。
Manufacture of an electrode group wound in a spiral shape so that the cross-section becomes a quadrangle while the strip-shaped electrode plate and the other strip-shaped electrode plate are overlapped in an insulating state with a current collector rod having a square cross-section as the center A method,
The current collector rod is rotated about its axis, and the belt-like one pole plate is superposed on the belt-like electrode plate and the other belt-like electrode plate and along the outer peripheral surface shape of the current collector rod. Including a step of spirally winding the current collector rod while guiding the plate and the other electrode plate in the band shape,
Manufacturing method of electrode group.
JP29908795A 1995-10-24 1995-10-24 Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method Expired - Fee Related JP3658816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29908795A JP3658816B2 (en) 1995-10-24 1995-10-24 Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29908795A JP3658816B2 (en) 1995-10-24 1995-10-24 Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method

Publications (2)

Publication Number Publication Date
JPH09120823A JPH09120823A (en) 1997-05-06
JP3658816B2 true JP3658816B2 (en) 2005-06-08

Family

ID=17868009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29908795A Expired - Fee Related JP3658816B2 (en) 1995-10-24 1995-10-24 Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method

Country Status (1)

Country Link
JP (1) JP3658816B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482965B2 (en) * 1999-08-17 2010-06-16 ソニー株式会社 Winding device and winding method
GB0324582D0 (en) * 2003-10-22 2003-11-26 Qinetiq Ltd Pouch battery
KR101285977B1 (en) * 2006-04-10 2013-07-12 삼성에스디아이 주식회사 Eletrode assembly and secondary battery having the same
JP5005990B2 (en) * 2006-09-07 2012-08-22 日立ビークルエナジー株式会社 Winding battery
JP5380663B2 (en) * 2009-06-18 2014-01-08 ハイメカ株式会社 Bag forming method and bag forming apparatus for sheet-like secondary battery
JP2012009499A (en) * 2010-06-22 2012-01-12 Toyota Motor Corp Vehicle capacitor

Also Published As

Publication number Publication date
JPH09120823A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP5737289B2 (en) battery
JP6505859B2 (en) Nonaqueous electrolyte secondary battery
JP6751154B2 (en) Electrode assembly manufacturing apparatus and method, and electrode assembly manufactured using the same
JP5776446B2 (en) Battery electrode manufacturing method and battery electrode
JP2013187077A (en) Wound type and stack type electrode battery
US20090253038A1 (en) Bipolar battery and method of manufacturing same
JP7086605B2 (en) Electrode plate for power storage device and power storage device
EP3626356A1 (en) Cleaner head, removing apparatus, and removing method
JP3658816B2 (en) Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method
EP2930772B1 (en) Electrical device separator conveyance method
JP2009181812A (en) Wound battery, and manufacturing method thereof
EP0910131A1 (en) Lithium secondary battery
JP5341091B2 (en) Method and apparatus for manufacturing electrical energy storage
JP2000228182A (en) Electrode-wound type battery and its manufacture
JP2000012390A5 (en) Manufacturing method and manufacturing equipment for electrochemical devices
JP6474329B2 (en) Secondary battery
JP2007281194A (en) Manufacturing method of capacitor
JP4714952B2 (en) Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof
JP2000021436A (en) Cylindrical battery
KR20230076745A (en) Electrode Assembly, Method and Apparatus for Manufacturing the same, Cylindrical battery including the Electrode Assembly, and Battery pack and Vehicle including the Cylindrical batter
US20230002183A1 (en) Apparatus for manufacturing electrode assembly, electrode assembly manufactured therethrough, and secondary battery
JP7341123B2 (en) Cylindrical battery and its manufacturing method
JP2014220196A (en) Method and device for manufacturing electrode
JP2021051924A (en) Manufacturing method of power storage device, and power storage device
WO2015162746A1 (en) Rolled sheet-material holding device and battery laminate body manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees