JP3658550B2 - Deck plate and concrete slab - Google Patents

Deck plate and concrete slab Download PDF

Info

Publication number
JP3658550B2
JP3658550B2 JP2001214676A JP2001214676A JP3658550B2 JP 3658550 B2 JP3658550 B2 JP 3658550B2 JP 2001214676 A JP2001214676 A JP 2001214676A JP 2001214676 A JP2001214676 A JP 2001214676A JP 3658550 B2 JP3658550 B2 JP 3658550B2
Authority
JP
Japan
Prior art keywords
truss
embedded
embedded member
bar
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001214676A
Other languages
Japanese (ja)
Other versions
JP2003027647A (en
Inventor
弘 日下部
Original Assignee
株式会社富士昭技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士昭技研 filed Critical 株式会社富士昭技研
Priority to JP2001214676A priority Critical patent/JP3658550B2/en
Publication of JP2003027647A publication Critical patent/JP2003027647A/en
Application granted granted Critical
Publication of JP3658550B2 publication Critical patent/JP3658550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、コンクリートスラブを施工するためのデッキプレート及びコンクリートスラブに関するものである。
【0002】
【従来の技術】
コンクリートスラブにおいては、軽量化及び重量衝撃音の軽減が要求されており、そのための構造として打設コンクリート内に中空管又は発泡合成樹脂体を埋設した構造が提案されている。
ところで、鉄筋を現場で配筋する施工方法においては、中空管又は発泡合成樹脂体の大きさを勘案して主鉄筋の強度、間隔を選定することが可能であり、個別の強度設計によって中空管等により得られる中空率を比較的自由に選定することができる。
【0003】
しかしながら、工場において基板上にトラスを固着したデッキプレートにおいては、トラスの間隔が予め定まっている。そのために、予め定まったトラスの間隔という制約の下で中空率を向上させることが要求される。
そして、コンクリートスラブの強度を保持するためには、中空管などにより得られる中空部の上方と下方とのコンクリート厚をほぼ同等とすることが好ましい。
【0004】
従来主鉄筋となるトラスの間隔が固定されたデッキプレートにおいて、中空率を高めるための提案として、特開2000−120203号の発明が提案されている。
この発明は、主筋、配力筋、ラチス筋を接合した立体トラス内に中空管などの軽量化部材を配設するものであるが、予め規定されたトラス間隔という制約の中で中空率を増大させることについては配慮されていない。
また、中空管などの位置の保持については、トラスの各筋を支点とすることが提案されているが、下部配力筋を支点とすれば中空管等はコンクリートの下部に位置し、上部配力筋を支点とすればコンクリートの上部に位置することとなり、上方又は下方の何れかに偏ってしまい、上下中央部に位置させることができない。更に、上下中央部に位置させるべくトラスのラチス筋を支点とすると、トラス間の中央部に位置させることはできない。
【0005】
【発明が解決しようとする課題】
この発明は、予めトラス間隔が決められた工場生産されるトラス付きのデッキプレートにおいて、トラス間に存在する限られた断面積を最大限に活用して、中空部(コンクリートの存在しない部分)を可及的に大きく得ることを第一の課題とするものである。
そして第二の課題は、埋設部材をコンクリート厚の中央に位置させること、第三の課題は、トラス間の中央部に位置させることである。
【0006】
【課題を解決するための手段】
請求項1の発明は、基板上に所定間隔で上下方向に逆V字状に屈曲した吊り筋を複数等間隔で配設し、前記吊り筋の頂部下側にトラスの上端筋を固着し、トラスの下端筋を基板の上方に所定間隔を隔てて位置させると共に、前記隣接するトラス間中央部かつコンクリート厚のほぼ中央部に断面扁平形状とした埋設部材を配設してデッキプレートを構成するものである。前記断面扁平形状とした埋設部材の具体的な配設態様は、埋設部材の配設位置における埋設部材の中心から吊り筋までの距離が前記中心からトラスの上端筋間に配設した上部配力筋までの距離よりも長い場合は、埋設部材の断面形状は横長として配設し(請求項2)、埋設部材の配設位置における埋設部材の中心から吊り筋までの距離が前記中心からトラスの上端筋間に配設した上部配力筋までの距離よりも短かい場合は、埋設部材の断面形状は縦長として配設する(請求項3)。前記断面扁平形状としては、断面楕円状、長方形状その他の扁平多角形状、実施例に示すような中央部を直線縁、両側部を円弧縁としたものなどが考えられる。また、材質は金属管や、発泡ポリスチレン、発泡スチロールなどの発泡合成樹脂を用いることができる。
【0007】
前記埋設部材の位置を規制する具体的な構成としては、トラスの上端筋間に配設した上部配力筋と、トラスの下端筋間に配設した下部配力筋の間に埋設部材を配設し、前記両配力筋によって埋設部材の上下位置を保持するようにするもの、上部保持部材及び下部保持部材をトラス間に配設し、各保持部材をトラスの上端筋又は下端筋に固定し、上下の保持部材で埋設部材を挟み込んでその上下位置を保持するようにするもの(請求項4)などがある。そして、前記上部保持部材には凸弧状をなす屈曲部を設け、下部保持部材には凹弧状をなす屈曲部を設けると埋設部材の横位置も確実に保持される(請求項5)。前記上部保持部材はトラスの下端筋に係止し、下部保持部材はトラスの上端筋に係止するとよい(請求項6)。請求項7の発明は、請求項1ないし6の何れかに記載のデッキプレートにコンクリートを打設してなるコンクリートスラブである。
【0008】
【作用】
この発明において、埋設部材は断面扁平形状であるからトラス間隔が規定され、かつ吊り筋によって中空部を得るために活用できる断面積がきわめて限られたデッキプレートにおいても、可及的に大きな中空率が得られる。そして、中空部を得るために埋設部材を用いているので、軽量であり作業性がよい。
請求項4ないし6の発明においては、配力筋又は保持部材によってコンクリート打設時における埋設部材の浮力による上昇が抑えられ、上下位置が規制される。したがって、埋設部材はコンクリート厚の上下中央部に位置することとなる。また、請求項6の発明においては埋設部材は上下の保持部材の屈曲部に挟まれるので、横方向の移動も阻止され、横位置も規制される。
【0009】
【発明の実施の形態】
図において、鉄板又はステンレス板などで構成された基板1の上面に、所定間隔で逆V字状に屈曲させた立ち上がり部2を有する吊り筋3が、多数平行に配設してある。この吊り筋3の前記立ち上がり部2の頂部下側に、ラチス筋4の上下に上端筋5及び下端筋6を固着してなるトラス7の前記上端筋5が固着してある。前記下端筋6は、基板1の上方に所定間隔を隔てて位置しており、スペーサを用いずに下端筋が配設されるようになっている。
【0010】
前記トラス7の上端筋5間には上部配力筋8が、下端筋6間には下部配力筋9が配設してあり、上下の配力筋の間に埋設部材10が配設してある。
【0011】
図1、図2の実施形態において、上部保持部材11と下部保持部材14によって埋設部材10の上下位置を規制するようにしてある。
前記上部保持部材11は鉄筋を埋設部材上部の周縁形状に対応した凸弧状に屈曲してあり、凸弧状部を埋設部材10の上面に当接させ、両端に設けた係止部12をトラスの下端筋5に係止させて固定してある。また、前記下部保持部材14は鉄筋を埋設部材下部の周縁形状に対応した凹弧状に屈曲してあり、凹弧状部を埋設部材10の下面に当接させ、両端に設けた係止部を上端筋に係止させて固定してある。
【0012】
この実施形態は、トラス間に下部保持部材14を取り付けた後、その上に中空部材10を配設し、次いで上部保持部材11を取り付けて製造する。
ここで、前記下部保持部材14は凹弧状部を連続して設け複数のトラスに亘り1本の下部保持部材を配設した構成、又は隣接するトラス間毎に1本の下部保持部材を配設した構成の何れとすることもできる。他方上部保持部材11は、隣接するトラス間毎に1本の上部保持部材を配設する。
【0013】
この実施形態によれば、埋設部材10は上下の保持部材11,14によって上下位置が規制されるので、コンクリート打設時における埋設部材の浮き上がりが生じることがなく、埋設部材の上下位置が規制される。また上下の保持部材11,14は弧状に屈曲して埋設部材の上面及び下面に当接しているので、埋設部材は横方向に移動することがなく、埋設部材の横位置も規制される。
したがって、埋設部材10は必ず設計通りの位置に位置することとなり、施工の信頼性が向上する。
【0014】
ところで、埋設部材の配設に当たっては、埋設部材がコンクリートスラブ厚の中心に位置することが求められるが、横位置は厳格に規制する必要のない場合もある。そのような場合には上下の保持部材に屈曲部を設けず、直線状とすることも可能である。
また、上記実施形態では上部保持部材11を下端筋6に、下部保持部材を上端筋5にそれぞれ固定したが、上下の保持部材の固定位置はトラスの間隔、トラスの高さと埋設部材の大きさとの相対関係を考慮し、適宜選択することができる。そして、保持部材は鉄筋製に限られることなくプラスチック成型品を使用することもでき、下部保持部材は可撓性のワイヤ、プラスチック紐などを用いることも可能である。
【0015】
図2に示す実施形態では、上部配力筋8と下部配力筋9との中間位置における吊り筋の立ち上がり部2間の距離L1よりも、前記両配力筋の距離L2が長い。そこで、前記埋設部材10は縦長扁平形状としてある。
前記埋設部材10の具体的な形状、大きさは以下のとおりである。
断面形状は陸上競技のトラック型であって、中央部に直線縁部101を有し、両側は半円形縁部102としてあり、前記直線縁部101の長さを変更して左右寸法を調整することにより中空率を変更することができ、可及的にコンクリート強度を阻害することなく大きな中空率が得られるようにしてある。
図中、符号13はコンクリートである。
【0016】
上記実施形態において、
L1=140mm
L2=188mm
トラスピッチ(P)=200mm
コンクリート厚(D)=300mm
直線縁部の長さ(a)=40mm
半円形縁部の直径(b)=120mm
としたとき、平均板厚219.5mm、中空率26.83%となる。この中空率はトラスピッチ300mmとして、直径175mmの真円の軽量化部材を埋め込んだ場合の数値、平均板厚219.8mm、中空率26.73%に匹敵する。
上記実施形態の条件設定においてL1=140mm、L2=188mmであるから、直径175mmの真円は埋設することができず、真円を用いた場合にはこのように高い中空率を得ることはできない。
【0017】
図3に示す実施形態では、上部配力筋8と下部配力筋9との中間位置における吊り筋の立ち上がり部2間の距離L1が、前記両配力筋の距離L2よりも長い。そこで、前記埋設部材10は横長扁平形状としてある。
前記埋設部材10の具体的な形状、大きさは以下のとおりである。
断面形状は陸上競技のトラック型であって、中央部に直線縁部101を有し、両側は半円形縁部102としてあり、可及的にコンクリート強度を阻害することなく大きな中空率が得られるようにしてある。
上下寸法は、前記上下の配力筋8、9の距離L2よりもわずかに(数ミリないし10ミリ程度)小さくしてあり、配力筋間への挿入が容易なようにしてある。左右寸法は前記吊り筋の立ち上がり部2間の距離L1よりも小さくしてある。
この実施形態では、上下の配力筋によって埋設部材の上下位置を規制するもので、上下の保持部材は用いていない。
なお、埋設部材の下部を配力筋9で保持し、埋設部材の上部は上部保持部材によって保持したり、逆に埋設部材の下部は下部保持部材で保持し、上部は配力筋8で保持するような構造も可能である。
【0018】
上記実施形態において、
L1=140mm
L2=118mm
トラスピッチ(P)=200mm
コンクリート厚(D)=225mm
直線縁部の長さ(a)=30mm
半円形縁部の直径(b)=110mm
としたとき、平均板厚161.0mm、中空率28.44%となる。この中空率はトラスピッチ225mmとして直径125mmの真円の軽量化部材を埋め込んだ場合の数値、平均板厚170.4mm、中空率24.27%を凌ぐものである。
上記実施形態の条件設定においてL2=118mmであるから、直径125mmの真円は埋設することができず、真円を用いた場合にはこのように高い中空率を得ることはできない。
【0019】
図4に示す実施形態では、上部配力筋8と下部配力筋9との距離L2が、良配力筋の中間位置における吊り筋の立ち上がり部2間の距離L1よりも長い。そこで、前記埋設部材10は縦長扁平形状としてある。
【0020】
上記実施形態において、
L1=140mm
L2=168mm
トラスピッチ(P)=200mm
コンクリート厚(D)=275mm
直線縁部の長さ(a)=40mm
半円形縁部の直径(b)=120mm
としたとき、平均板厚194.5mm、中空率29.27%となる。この中空率はトラスピッチ275mmとして直径175mmの真円の軽量化部材を埋め込んだ場合の数値、平均板厚187.5mm、中空率31.81%に匹敵し、直径150mmの真円の軽量化部材を埋め込んだ場合の数値、平均板厚保210.7mm、中空率23.38%を凌ぐものである。
上記実施形態の条件設定においてL1=140mm、L2=168mmであるから、直径175mmや直径150mmの真円は埋設することができず、真円を用いた場合にはこのように高い中空率を得ることはできない。
【0021】
【発明の効果】
この発明によれば、埋設部材を扁平形状としたので、トラス間隔を変更することなく、大きな断面積を持つ埋設部材を用いることができる。したがって、トラス間隔の変更による強度の低下をもたらすことなく、予め規定されたトラス間隔そして上下の配力筋の間隔の中で、可及的に大きな断面積の中空部を得ることができる。
そして、埋設部材を断面扁平であるから、扁平率を適宜変更することにより、同一の断面積でありながらその上下寸法を上下の配力筋間の距離に対応させることができる。したがって、埋設部材の上下位置を配力筋によって規制することが可能となり、コンクリート厚の中央部に自動的に位置させることができる。
また、埋設部材を保持部材で保持するようにすれば、埋設部材の上下寸法を自由に定めつつ、埋設位置を規制することができる。
【図面の簡単な説明】
【図1】 この発明実施形態の斜視図である。
【図2】 埋設部材を保持部材で保持した実施形態の正面図である。
【図3】 埋設部材を横長扁平体とした実施形態の正面図である。
【図4】 埋設部材を縦長扁平体とした実施形態の正面図である。
【図5】 寸法符号を示す説明図である。
【符号の説明】
1 基板
2 立ち上がり部
3. 吊り筋
4 ラチス筋
5 上端筋
6 下端筋
7 トラス
8 上部配力筋
9 下部配力筋
10 埋設部材
11 上部保持部材
13 コンクリート
14 下部保持部材
[0001]
[Industrial application fields]
The present invention relates to a deck plate and a concrete slab for constructing a concrete slab.
[0002]
[Prior art]
In concrete slabs, weight reduction and reduction of weight impact sound are required, and a structure in which a hollow tube or a foamed synthetic resin body is embedded in cast concrete has been proposed as a structure for that purpose.
By the way, in the construction method that arranges reinforcing bars on site, it is possible to select the strength and interval of the main reinforcing bars in consideration of the size of the hollow pipe or the foamed synthetic resin body, and it is The hollow ratio obtained by an empty tube or the like can be selected relatively freely.
[0003]
However, in a deck plate in which trusses are fixed on a substrate in a factory, the space between the trusses is predetermined. Therefore, it is required to improve the hollow ratio under the restriction of a predetermined truss interval.
And in order to hold | maintain the intensity | strength of concrete slab, it is preferable that the concrete thickness of the upper part of a hollow part obtained by a hollow tube etc. and the downward direction is substantially equivalent.
[0004]
Conventionally, the invention of Japanese Patent Application Laid-Open No. 2000-120203 has been proposed as a proposal for increasing the hollow ratio in a deck plate in which the distance between trusses serving as main reinforcing bars is fixed.
In the present invention, a lightweight member such as a hollow tube is arranged in a solid truss joined with main bars, distribution bars and lattice bars. There is no consideration for increasing it.
In addition, for the maintenance of the position of the hollow tube, etc., it has been proposed to use each truss bar as a fulcrum, but if the lower force distribution bar is used as a fulcrum, the hollow pipe etc. is located at the lower part of the concrete, If the upper reinforcement bar is used as a fulcrum, it will be located in the upper part of the concrete and will be biased either upward or downward, and cannot be positioned in the vertical center. Furthermore, if the lattice muscle of the truss is used as a fulcrum so as to be positioned at the center in the vertical direction, it cannot be positioned at the center between the trusses.
[0005]
[Problems to be solved by the invention]
This invention makes it possible to maximize the limited cross-sectional area existing between trusses in a factory-produced deck plate with trusses whose truss spacing is determined in advance, and to create hollow parts (parts where no concrete exists). The first problem is to obtain as large as possible.
The second problem is to position the buried member at the center of the concrete thickness, and the third problem is to position it at the center between the trusses.
[0006]
[Means for Solving the Problems]
In the first aspect of the present invention, a plurality of suspending bars bent in an inverted V shape in the vertical direction at predetermined intervals are arranged on the substrate at a plurality of equal intervals, and the upper end of the truss is fixed to the lower side of the top of the suspending bars, The bottom plate of the truss is positioned above the substrate at a predetermined interval, and the deck plate is configured by arranging a buried member having a flat cross section in the central portion between the adjacent trusses and the substantially central portion of the concrete thickness. Is. The specific arrangement of the embedded member having a flat cross-sectional shape is that the distance from the center of the embedded member to the suspension bar at the position of the embedded member is the upper power distribution between the center and the upper end of the truss If the distance is longer than the distance to the line, the cross-sectional shape of the embedded member is horizontally long (Claim 2), and the distance from the center of the embedded member to the suspension bar at the position where the embedded member is disposed is from the center to the truss. When the distance is shorter than the distance to the upper power distribution bar arranged between the upper end bars, the cross-sectional shape of the buried member is arranged as being vertically long (Claim 3). Examples of the flat cross-sectional shape include an elliptical cross-sectional shape, a rectangular shape, and other flat polygonal shapes, as shown in the embodiments, a central portion having a straight edge, and both side portions having arc edges. The material may be a metal tube, or a foamed synthetic resin such as expanded polystyrene or expanded polystyrene.
[0007]
As a specific configuration for regulating the position of the embedded member, an embedded member is arranged between an upper reinforcing bar disposed between upper truss bars of the truss and a lower reinforcing bar disposed between lower bar bars of the truss. The upper and lower holding members are arranged between the trusses, and the holding members are fixed to the upper or lower bar of the truss. In addition, there is one that holds the embedded member between the upper and lower holding members to hold the upper and lower positions (Claim 4). Further, if the upper holding member is provided with a bent portion having a convex arc shape and the lower holding member is provided with a bent portion having a concave arc shape, the lateral position of the embedded member is also reliably held (Claim 5). The upper holding member may be locked to the lower end of the truss, and the lower holding member may be locked to the upper end of the truss. A seventh aspect of the invention is a concrete slab formed by placing concrete on the deck plate according to any one of the first to sixth aspects.
[0008]
[Action]
In this invention, since the embedded member has a flat cross-sectional shape, even in a deck plate in which the truss interval is specified and the cross-sectional area that can be utilized to obtain a hollow portion by the hanging bar is extremely limited, Is obtained. And since the embedded member is used in order to obtain a hollow part, it is lightweight and workability | operativity is good.
In the inventions according to claims 4 to 6, an increase in the buoyancy of the buried member at the time of placing concrete is suppressed by the distribution bar or the holding member, and the vertical position is regulated. Therefore, the buried member is positioned at the upper and lower central portions of the concrete thickness. In the invention of claim 6, since the embedded member is sandwiched between the bent portions of the upper and lower holding members, the lateral movement is also prevented and the lateral position is also restricted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the figure, a plurality of suspension bars 3 having rising portions 2 bent in an inverted V shape at predetermined intervals are arranged in parallel on the upper surface of a substrate 1 made of an iron plate or stainless steel plate. The upper end muscle 5 of the truss 7 formed by fixing the upper end muscle 5 and the lower end muscle 6 to the upper and lower sides of the lattice muscle 4 is fixed to the lower side of the top of the rising portion 2 of the hanging muscle 3. The lower end stripes 6 are located above the substrate 1 at a predetermined interval, and the lower end stripes are arranged without using spacers.
[0010]
An upper force distribution bar 8 is disposed between the upper end bars 5 of the truss 7, a lower force distribution line 9 is disposed between the lower end lines 6, and an embedded member 10 is disposed between the upper and lower force distribution bars. It is.
[0011]
In the embodiment of FIGS. 1 and 2, the upper and lower positions of the embedded member 10 are regulated by the upper holding member 11 and the lower holding member 14.
The upper holding member 11 has a reinforcing bar bent in a convex arc shape corresponding to the peripheral shape of the upper portion of the embedded member, the convex arc-shaped portion is brought into contact with the upper surface of the embedded member 10, and the locking portions 12 provided at both ends are provided on the truss. The lower end muscle 5 is locked and fixed. Further, the lower holding member 14 has a reinforcing bar bent in a concave arc shape corresponding to the peripheral shape of the lower portion of the embedded member, the concave arc-shaped portion is brought into contact with the lower surface of the embedded member 10, and the locking portions provided at both ends are at the upper end. It is locked to the muscle and fixed.
[0012]
In this embodiment, after the lower holding member 14 is attached between the trusses, the hollow member 10 is disposed thereon, and then the upper holding member 11 is attached.
Here, the lower holding member 14 has a configuration in which a concave arc-shaped portion is continuously provided and one lower holding member is provided across a plurality of trusses, or one lower holding member is provided between adjacent trusses. Any of the configurations described above can be used. On the other hand, the upper holding member 11 is provided with one upper holding member between adjacent trusses.
[0013]
According to this embodiment, since the vertical position of the embedded member 10 is restricted by the upper and lower holding members 11, 14, the embedded member is not lifted during concrete placement, and the vertical position of the embedded member is restricted. The Further, since the upper and lower holding members 11 and 14 are bent in an arc shape and are in contact with the upper surface and the lower surface of the embedded member, the embedded member does not move in the lateral direction and the lateral position of the embedded member is also restricted.
Therefore, the embedded member 10 is always located at the position as designed, and the construction reliability is improved.
[0014]
By the way, when the embedded member is disposed, the embedded member is required to be positioned at the center of the concrete slab thickness, but the lateral position may not be strictly regulated. In such a case, it is possible to make the upper and lower holding members straight without providing bent portions.
In the above-described embodiment, the upper holding member 11 is fixed to the lower end stripe 6 and the lower holding member is fixed to the upper end stripe 5. However, the fixing positions of the upper and lower holding members are the distance between the truss, the height of the truss and the size of the embedded member. Can be selected as appropriate in consideration of the relative relationship. The holding member is not limited to a reinforcing bar, and a plastic molded product can be used, and the lower holding member can be a flexible wire, a plastic string, or the like.
[0015]
In the embodiment shown in FIG. 2, the distance L <b> 2 between the two strength bars is longer than the distance L <b> 1 between the rising portions 2 of the suspension bars at the intermediate position between the upper strength muscle 8 and the lower strength muscle 9. Therefore, the embedded member 10 has a vertically long flat shape.
Specific shapes and sizes of the embedded member 10 are as follows.
The cross-sectional shape is a track type for athletics, and has a straight edge 101 at the center and semicircular edges 102 on both sides. The length of the straight edge 101 is changed to adjust the left and right dimensions. Therefore, the hollow ratio can be changed, and a large hollow ratio can be obtained without hindering the concrete strength as much as possible.
In the figure, reference numeral 13 is concrete.
[0016]
In the above embodiment,
L1 = 140mm
L2 = 188mm
Truss pitch (P) = 200mm
Concrete thickness (D) = 300mm
Length of straight edge (a) = 40mm
Semicircular edge diameter (b) = 120 mm
The average plate thickness is 219.5 mm and the hollowness is 26.83%. This hollow ratio is comparable to the numerical value when the truss pitch is 300 mm and a lightweight member having a diameter of 175 mm is embedded, the average plate thickness is 219.8 mm, and the hollow ratio is 26.73%.
Since L1 = 140 mm and L2 = 188 mm in the condition settings of the above embodiment, a perfect circle with a diameter of 175 mm cannot be embedded, and when using a perfect circle, such a high hollow ratio cannot be obtained. .
[0017]
In the embodiment shown in FIG. 3, a distance L1 between the rising portions 2 of the suspension bars at an intermediate position between the upper strength bar 8 and the lower strength bar 9 is longer than the distance L2 between the both strength bars. Therefore, the embedded member 10 has a horizontally long flat shape.
Specific shapes and sizes of the embedded member 10 are as follows.
The cross-sectional shape is a track type for athletics, and has a straight edge 101 at the center and semicircular edges 102 on both sides, so that a large hollow ratio can be obtained without hindering concrete strength as much as possible. It is like that.
The vertical dimension is slightly smaller (several millimeters to 10 mm) than the distance L2 between the upper and lower force distribution bars 8 and 9, so that insertion between the force distribution lines is easy. The left and right dimensions are smaller than the distance L1 between the rising portions 2 of the suspension bars.
In this embodiment, the vertical position of the embedded member is regulated by the upper and lower distribution bars, and the upper and lower holding members are not used.
The lower part of the embedded member is held by the distribution bar 9 and the upper part of the embedded member is held by the upper holding member. Conversely, the lower part of the embedded member is held by the lower holding member and the upper part is held by the distribution bar 8. Such a structure is also possible.
[0018]
In the above embodiment,
L1 = 140mm
L2 = 118mm
Truss pitch (P) = 200mm
Concrete thickness (D) = 225mm
Length of straight edge (a) = 30mm
Semicircular edge diameter (b) = 110 mm
The average plate thickness is 161.0 mm and the hollowness is 28.44%. This hollowness is a numerical value when a round lightening member having a diameter of 125 mm is embedded with a truss pitch of 225 mm, an average plate thickness of 170.4 mm, and a hollowness of 24.27%.
Since L2 = 118 mm in the condition setting of the above embodiment, a perfect circle having a diameter of 125 mm cannot be embedded, and such a high hollow ratio cannot be obtained when a perfect circle is used.
[0019]
In the embodiment shown in FIG. 4, the distance L <b> 2 between the upper strength bar 8 and the lower strength bar 9 is longer than the distance L <b> 1 between the rising portions 2 of the suspension bars at the middle position of the good strength muscle. Therefore, the embedded member 10 has a vertically long flat shape.
[0020]
In the above embodiment,
L1 = 140mm
L2 = 168mm
Truss pitch (P) = 200mm
Concrete thickness (D) = 275mm
Length of straight edge (a) = 40mm
Semicircular edge diameter (b) = 120 mm
The average plate thickness is 194.5 mm and the hollowness is 29.27%. This hollowness is equivalent to the value when a round member with a truss pitch of 275 mm and a diameter of 175 mm is embedded, the average thickness is 187.5 mm, and the hollowness is 31.81%. When the thickness is embedded, the average plate thickness is 210.7 mm, and the hollowness exceeds 23.38%.
Since L1 = 140 mm and L2 = 168 mm in the condition settings of the above embodiment, a perfect circle with a diameter of 175 mm or a diameter of 150 mm cannot be embedded, and such a high hollow ratio is obtained when a perfect circle is used. It is not possible.
[0021]
【The invention's effect】
According to this invention, since the embedded member has a flat shape, the embedded member having a large cross-sectional area can be used without changing the truss interval. Therefore, it is possible to obtain a hollow portion having as large a cross-sectional area as possible within the predetermined truss spacing and the upper and lower spacing bars without causing a reduction in strength due to the truss spacing change.
Since the embedded member has a flat cross-section, the vertical dimension can be made to correspond to the distance between the upper and lower force distribution bars with the same cross-sectional area by appropriately changing the flatness ratio. Therefore, the vertical position of the buried member can be regulated by the distribution bar, and can be automatically positioned at the center of the concrete thickness.
Further, if the embedded member is held by the holding member, the embedded position can be regulated while the vertical dimension of the embedded member is freely determined.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of the present invention.
FIG. 2 is a front view of an embodiment in which an embedded member is held by a holding member.
FIG. 3 is a front view of an embodiment in which the embedded member is a horizontally long flat body.
FIG. 4 is a front view of an embodiment in which the embedded member is a vertically long flat body.
FIG. 5 is an explanatory diagram showing dimension codes.
[Explanation of symbols]
1 Substrate 2 Rising part Suspension bar 4 Lattice bar 5 Upper bar 6 Lower bar 7 Truss 8 Upper bar 9 Lower bar 10 Embedded member 11 Upper holding member 13 Concrete 14 Lower holding member

Claims (7)

基板上に所定間隔で上下方向に逆V字状に屈曲した吊り筋を複数等間隔で配設し、前記吊り筋の頂部下側にトラスの上端筋を固着し、トラスの下端筋を基板の上方に所定間隔を隔てて位置させると共に、前記隣接するトラス間中央部かつコンクリート厚のほぼ中央部に断面扁平形状とした埋設部材を配設した、デッキプレートA plurality of suspending bars bent in a reverse V shape in the vertical direction at predetermined intervals are arranged on the substrate at equal intervals, the upper end of the truss is fixed to the lower side of the top of the suspending bar , and the lower end of the truss is attached to the substrate. A deck plate that is located at a predetermined interval above and has an embedded member having a flat cross section at the center between the adjacent trusses and substantially at the center of the concrete thickness. 埋設部材の配設位置における埋設部材の中心から吊り筋までの距離を前記中心からトラスの上端筋間に配設した上部配力筋までの距離よりも長くし、埋設部材の断面形状は横長とした、請求項1記載のデッキプレート The distance from the center of the embedded member to the hanger bar at the position where the embedded member is disposed is longer than the distance from the center to the upper force distribution bar disposed between the upper end bars of the truss, and the cross-sectional shape of the embedded member is horizontally long. The deck plate according to claim 1. 埋設部材の配設位置における埋設部材の中心から吊り筋までの距離を、前記中心からトラスの上端筋間に配設した上部配力筋までの距離よりも短くし、埋設部材の断面形状は縦長とした、請求項1記載のデッキプレート The distance from the center of the embedded member to the suspension bar at the position where the embedded member is disposed is shorter than the distance from the center to the upper force distribution bar disposed between the upper end bars of the truss, and the cross-sectional shape of the embedded member is vertically long The deck plate according to claim 1. トラスの上端筋及び/又はトラスの下端筋に、これらと直角に埋設部材の上部保持部材及び下部保持部材を配設し、上部保持部材と下部保持部材との間に埋設部材を配設し、前記上下の保持部材によって埋設部材の上下位置を保持するようにした、請求項1ないし3の何れかに記載のデッキプレート An upper holding member and a lower holding member of the embedded member are disposed at right angles to the upper and lower bars of the truss, and the embedded member is disposed between the upper holding member and the lower holding member. The deck plate according to any one of claims 1 to 3, wherein the vertical position of the embedded member is held by the upper and lower holding members. 上部保持部材は凸弧状の屈曲部を有するものとし、下部保持部材は凹弧状の屈曲部を有するものとした、請求項4に記載のデッキプレート The deck plate according to claim 4, wherein the upper holding member has a convex arc-shaped bent portion, and the lower holding member has a concave arc-shaped bent portion. 上部保持部材の端部はトラスの下端筋に係止し、下部保持部材の端部はトラスの上端筋に係止した、請求項5記載のデッキプレートThe deck plate according to claim 5, wherein an end of the upper holding member is locked to a lower bar of the truss and an end of the lower holding member is locked to an upper bar of the truss. 請求項1ないし6の何れかに記載のデッキプレートにコンクリートを打設してなるコンクリートスラブ埋設部材の配設位置における In the arrangement | positioning position of the concrete slab embedding member formed by placing concrete in the deck plate in any one of Claim 1 thru | or 6.
JP2001214676A 2001-07-16 2001-07-16 Deck plate and concrete slab Expired - Fee Related JP3658550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214676A JP3658550B2 (en) 2001-07-16 2001-07-16 Deck plate and concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214676A JP3658550B2 (en) 2001-07-16 2001-07-16 Deck plate and concrete slab

Publications (2)

Publication Number Publication Date
JP2003027647A JP2003027647A (en) 2003-01-29
JP3658550B2 true JP3658550B2 (en) 2005-06-08

Family

ID=19049449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214676A Expired - Fee Related JP3658550B2 (en) 2001-07-16 2001-07-16 Deck plate and concrete slab

Country Status (1)

Country Link
JP (1) JP3658550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914966A (en) * 2010-07-21 2010-12-15 李林 Light ribbed floor and light ribbed floor system construction and forming method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736752B1 (en) * 2006-05-18 2007-07-09 삼성중공업 주식회사 Connection structure of i-slabs and asymmetric slimflor beam
KR100687133B1 (en) 2006-05-18 2007-02-27 삼성중공업 주식회사 I-slab using slim precast composite slab deck
JP4943168B2 (en) * 2006-08-07 2012-05-30 昭子 高橋 How to build a void slab
KR101151066B1 (en) * 2008-12-30 2012-06-01 경희대학교 산학협력단 Deck Plate Unit for Constructing Concrete Slab and Concrete Slab Having the Same
KR101019587B1 (en) * 2010-03-30 2011-03-07 주식회사 티브이에스포럼 Light weight body for hollow slab
GB201200033D0 (en) 2012-01-04 2012-02-15 Miller Fergus R Improvements in or relating to concrete flooring
CN104695604B (en) * 2015-02-16 2016-08-31 中建城市建设发展有限公司 Cassette ceiling high intensity thinner tube hollow pipe anti-floating stopping means and prepare instrument
KR101718050B1 (en) * 2015-06-02 2017-03-20 이기장 The hollowcore slab type-deck plate structure without anti-floating devices and the construction method thereof
JP7011965B2 (en) * 2017-03-31 2022-01-27 日鉄建材株式会社 Hardware and support structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914966A (en) * 2010-07-21 2010-12-15 李林 Light ribbed floor and light ribbed floor system construction and forming method

Also Published As

Publication number Publication date
JP2003027647A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP3658550B2 (en) Deck plate and concrete slab
KR20130092370A (en) Material for building slab
KR20200045061A (en) Corrugated Deck Having Integrated Shear Connector
JP4323226B2 (en) Synthetic ribbed slab
JP2010275739A (en) Reinforced structure and reinforced construction method
US20070039278A1 (en) Rebar positioner for masonry construction
KR20120028762A (en) Composite beam of precast concrete beam and deck plate
JP2010275740A (en) Reinforced structure
KR20180008206A (en) Concrete Precast Slab
JP2005016078A (en) Cast-in-place hollow concrete slab, its construction method and spacer-cum-support used therefor
JP2003227200A (en) Embedded material unit, hollow slab using the same, its construction method, and precast concrete slab
RU2554364C2 (en) Supporting device of anchor for concrete elements lifting
KR101120360B1 (en) Light weight assembly for hollow and light slab using the same
JP3689376B2 (en) Void holding device
JP2006322137A (en) Hollow concrete slab and its forming method
JP2005105586A (en) Deck plate and concrete slab
KR102267643B1 (en) Inverse Tee PSC Girder Prefabricated With Top Saddle PC blocks And Slab Construction Method Using Thereof
JP2005213852A (en) Foundation block for guardrail
JPH10102660A (en) Precast concrete board and manufacture thereof
KR200478204Y1 (en) Rise preventing device of hollow materials for hollow core slab
KR102113252B1 (en) Deck Plate and End-Reinforced Deck Connection Structure using it
KR102280675B1 (en) Libbed half PC slab
KR200163869Y1 (en) A composite metal deckplate
JP4303398B2 (en) Reinforcing bar-shaped steel plate and floor slab and holding member for hollow cylindrical member for reinforcing bar-shaped steel plate
JPH0732712Y2 (en) Jig for rebar positioning

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees