JP3658434B2 - Liquid control device - Google Patents

Liquid control device Download PDF

Info

Publication number
JP3658434B2
JP3658434B2 JP25394695A JP25394695A JP3658434B2 JP 3658434 B2 JP3658434 B2 JP 3658434B2 JP 25394695 A JP25394695 A JP 25394695A JP 25394695 A JP25394695 A JP 25394695A JP 3658434 B2 JP3658434 B2 JP 3658434B2
Authority
JP
Japan
Prior art keywords
pilot
flow path
liquid
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25394695A
Other languages
Japanese (ja)
Other versions
JPH0914204A (en
Inventor
義紀 須磨
昌徳 黒部
敦司 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd, Toyooki Kogyo Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP25394695A priority Critical patent/JP3658434B2/en
Publication of JPH0914204A publication Critical patent/JPH0914204A/en
Application granted granted Critical
Publication of JP3658434B2 publication Critical patent/JP3658434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、減圧弁を用いて液体アクチユエータに導入する圧力液体を減圧制御したり減圧制御しないようにする液体制御装置に関する。
【0002】
【従来の技術】
一般に、圧力液体を減圧制御したり減圧制御しないようにする減圧弁は実公平4−38088号公報に示される如きものがある。本出願人は、かかる減圧弁を用いて液体アクチユエータに導入する圧力液体を減圧制御したり減圧制御しないようにする液体制御装置として図4に示す如きものを考えた。
【0003】
この図4に示す液体制御装置は、実公平4−38088号公報の減圧弁に相当する減圧弁46の上に電磁切換弁47を積層配設し、電磁切換弁47は2個の負荷流路A1、B1の中で1個の負荷流路A1を使用しないので閉塞すると共に他の1個の負荷流路B1を液体アクチユエータとしての単動シリンダ1に接続し、負荷流路B1を圧力液体を供給する圧力源Pに接続の供給流路P1と低圧側Tに接続の排出流路Rとに通電非通電操作により切換連通自在に設けている。減圧弁46はパイロツト作動形でパイロツト流路48に、通電非通電操作によりパイロツト流路48を連通遮断するパイロツト電磁弁49とパイロツト圧力制御弁50とを直列に配設し、パイロツト電磁弁49の通電非通電操作により供給流路P1を流れる圧力液体をパイロツト圧力制御弁50で設定した設定圧力に減圧制御したり減圧制御しないよう設けている。
【0004】
次に、作動を説明する。図4は、ワークWのクランプ状態を示し、電磁切換弁47は非通電で負荷流路B1を排出流路Rに連通して供給流路P1を遮断し、減圧弁46はパイロツト電磁弁49が非通電でパイロツト流路48を遮断して供給流路P1の圧力液体を減圧制御せず、単動シリンダ1はばね1A力によりワークWをクランプしている。
【0005】
この状態より、電磁切換弁47を通電操作すると、負荷流路B1を供給流路P1に切換連通して排出流路Rを遮断し、減圧弁46で減圧制御されない供給流路P1の圧力液体は負荷流路B1を流れて単動シリンダ1の作動室1Bに導入し、単動シリンダ1は作動室1Bに導入した圧力液体の圧力に基づく作用力でばね1A力に抗して図4の右方向に移動してワークWをアンクランプとし、ワークWを新たなものと交換する。
【0006】
この状態より、減圧弁46のパイロツト電磁弁49を通電操作すると、供給流路P1の圧力液体は減圧弁46のパイロツト圧力制御弁50で設定した設定圧力に減圧制御され、単動シリンダ1の作動室1Bの圧力液体の圧力に基づく作用力がばね1A力より僅かに低下し、単動シリンダ1は図4の左方向に緩速で漸次移動して新たなワークWに衝撃なく当接する。そして、電磁切換弁47を非通電操作すると、図4に示す原位置に復帰作動して負荷流路B1を排出流路Rに切換連通し、作動室1Bの圧力液体が負荷流路B1より排出流路Rを流れて低圧側Tに導出され、単動シリンダ1はばね1A力により新たなワークWをクランプする。また、減圧弁46は次のアンクランプ作動に備えてパイロツト電磁弁49を非通電操作して図4に示す原位置に復帰作動する。
【0007】
【発明が解決しようとする課題】
ところが、かかる図4に示す液体制御装置では、電磁切換弁47の通電非通電操作により負荷流路B1を供給流路P1と排出流路Rとに切換連通し、減圧弁46のパイロツト電磁弁49の通電非通電操作により供給流路P1の圧力液体を減圧制御したり減圧制御しないようにしているため、電磁切換弁47の通電非通電操作と減圧弁46のパイロツト電磁弁49の通電非通電操作とを必要とし、操作が煩雑になる。
【0008】
【課題を解決するための手段】
本発明は、上記した問題を解決すべくなされたものであって、電磁切換弁の通電非通電操作により流路の切換連通と圧力液体を減圧制御したり減圧制御しないようにすることが得られて、操作が簡単な液体制御装置を提供するものであり、圧力液体を供給する供給流路と、低圧側に接続する排出流路と、液体アクチユエータに接続する負荷流路と、パイロツト液体が流通するパイロツト流路とを設け、負荷流路を排出流路に連通しパイロツト流路を供給流路に連通する第1位置と負荷流路を供給流路に連通しパイロツト流路を排出流路に連通する第2位置とを有して通電非通電操作により第1位置と第2位置とに切換自在に設けた電磁切換弁と、供給流路に配設した減圧弁とを備え、減圧弁は供給流路の二次側圧力を設定するばねを収装する収装室を設け、この収装室を供給流路の一次側に接続するパイロツト分岐流路を設け、このパイロツト分岐流路には絞り部を配設すると共に、絞り部と収装室間に前記パイロツト流路を接続して設け、このパイロツト流路にはパイロツト流路を連通する第1位置とパイロツト流路を遮断する第2位置とを有したパイロツト開閉弁を配設し、このパイロツト開閉弁はばね力に対向作用するパイロツト液体の圧力に基づく作用力の非作用により第1位置に位置すると共に作用により第2位置に位置して設け、ばね力に対向作用するパイロツト液体が流通するパイロツト作動流路を前記パイロツト流路のパイロツト開閉弁より電磁切換弁側に接続して設け、パイロツト作動流路にはパイロツト開閉弁に導入するパイロツト液体を自由流れとすると共に、パイロツト開閉弁から導出するパイロツト液体を絞り制御する一方向絞り弁を配設したことに特徴がある。前記一方向絞り弁の絞り開度を調整自在に設けることも可能である。
【0009】
【発明の作用効果】
本発明による流体制御装置においては、電磁切換弁を通電非通電操作により第1位置に位置すると、負荷流路を排出流路に連通しパイロツト流路を供給流路に連通し、供給流路の圧力液体がパイロツト液体としてパイロツト流路よりパイロツト作動流路を流れ一方向絞り弁を自由流れで流通してパイロツト開閉弁のばね力に対向作用し、パイロツト開閉弁はばね力に対向作用するパイロツト液体の圧力に基づく作用力により第2位置に位置してパイロツト流路を遮断し、供給流路の二次側圧力を設定する減圧弁のばねを収装する収装室に供給流路の一次側の圧力液体の一部がパイロツト液体としてパイロツト分岐流路を流れて導入し、減圧弁は供給流路の二次側に流通する圧力液体を減圧制御せず、液体アクチユエータは負荷流路より排出流路を介して低圧側に連通している。
【0010】
この状態より、電磁切換弁を通電非通電操作により第1位置より第2位置に切換えると、負荷流路を供給流路に連通しパイロツト流路を排出流路に連通し、パイロツト作動流路がパイロツト流路より排出流路に連通するが、パイロツト開閉弁のばね力に対向作用するパイロツト液体は一方向絞り弁により絞り制御されて導出し、パイロツト開閉弁はばね力で第2位置より徐々に第1位置に切換わり、パイロツト開閉弁が第1位置に切換わるまでは減圧弁は前述と同様に収装室にパイロツト液体が導入されて供給流路の二次側に流通する圧力液体を減圧制御せず、この減圧制御しない圧力液体が負荷流路より液体アクチユエータに導入される。
【0011】
そして、パイロツト開閉弁が第1位置に切換わると、パイロツト流路を連通し、減圧弁の収装室のパイロツト液体はパイロツト分岐流路よりパイロツト流路、排出流路を流れて低圧側に導出されると共に、パイロツト分岐流路に配設の絞り部により供給流路の一次側より収装室に導入しようとするパイロツト液体を制限し、減圧弁は供給流路の二次側に流通する圧力液体をばね力による設定圧力に減圧制御し、この減圧制御した圧力液体が負荷流路より液体アクチユエータに導入される。
【0012】
このため、電磁切換弁の通電非通電操作による第2位置への切換えに伴い、パイロツト開閉弁が第2位置より徐々に第1位置に切換わって、減圧弁を減圧制御しない状態から減圧制御する状態に自動的に切換えることができるから、電磁切換弁の通電非通電操作により流路の切換連通と圧力液体を減圧制御したり減圧制御しないようにすることができ、操作を簡単にすることができる。
【0013】
また、本発明による液体制御装置においては、通電非通電する弁は電磁切換弁の1個で良く、通電非通電する弁が電磁切換弁とパイロツト電磁弁との2個を必要とした図4の液体制御装置に比べ、通電非通電操作に伴う誤操作を軽減できて液体アクチユエータの誤作動を良好に抑制することができる。
【0014】
また、本発明による液体制御装置において、一方向絞り弁の絞り開度を調整自在に設けた場合には、パイロツト開閉弁が第2位置から第1位置に切換わる際の第2位置に位置する時間を所望に変更できて、減圧弁を減圧制御しない状態から減圧制御する状態に切換えるタイミングを所望に変更でき、当該装置を広範囲の用途に適用することができる。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。尚、図4の液体制御装置と同一個所には同符号を付す。図1及び図2において、2はパイロツト開閉弁、3は減圧弁、4は電磁切換弁で、パイロツト開閉弁2上に減圧弁3と電磁切換弁4とを順次積層配設している。P2は圧力源Pに接続して圧力液体を供給する供給流路で、パイロツト開閉弁2の開閉弁本体5に貫設の流路6と、減圧弁3の減圧弁本体7に穿設の一次側流路8及び二次側流路9と、電磁切換弁4の切換弁本体10に穿設の流路11とを接続して構成している。R1は低圧側Tに接続する排出流路で、開閉弁本体5に貫設の流路12と、減圧弁本体7に貫設の流路13と、切換弁本体10に穿設の流路14とを接続して構成している。Bは液体アクチユエータとしての単動シリンダ1に接続する負荷流路で、開閉弁本体5に貫設の流路15と、減圧弁本体7に貫設の流路16と、切換弁本体10に穿設の流路17とを接続して構成している。単動シリンダ1は、ワークWをクランプするクランプ装置であり、圧力液体を導入導出する作動室1Bと、作動室1Bと対向してばね1Aを有し、ばね1A力でワークWをクランプして設けている。Aはパイロツト液体が流通するパイロツト流路で、開閉弁本体5に穿設の流路18と、減圧弁本体7に貫設の流路19と、切換弁本体10に穿設の流路20とを接続して構成している。
【0016】
電磁切換弁4はソレノイドSを備え、負荷流路Bを排出流路R1に連通しパイロツト流路Aを供給流路P2に連通する第1位置Xと負荷流路Bを供給流路P2に連通しパイロツト流路Aを排出流路R1に連通する第2位置Yとを有し、ソレノイドSへの通電非通電操作により第1位置Xと第2位置Yとに切換自在に設けている。
【0017】
減圧弁3は供給流路P2に配設し、減圧弁本体7には一次側流路8と二次側流路9とを軸方向に間隙を有して開口した摺動孔21を各流路13、16、19の貫設方向と直角の方向に貫設し、摺動孔21には減圧弁体22を軸方向へ摺動自在に嵌挿している。23は減圧弁本体7の一側面に固設した蓋部材で、摺動孔21の一端開口を閉塞して減圧弁体22の一端に作用室24を区画形成し、作用室24は流路25を介して二次側流路9に接続して設けている。26は減圧弁本体7の他側面に固設した収装部材で、摺動孔21の他端開口を閉塞して減圧弁体22の他端に収装室27を区画形成し、収装室27には二次側流路9の圧力を設定するばね28、29を収装している。30はばね28、29力を変更調整する調整部材で、収装部材26に回動操作自在に螺合して設けている。31は減圧弁体22に穿設の逃し流路で、収装室27に連通して一端を減圧弁体22外周面に開口して設け、この一端開口は通常時には摺動孔21内周面で閉塞されると共にばね28、29力による設定圧力以上への二次側流路9の圧力上昇時に減圧弁体22の図2の右方向への摺動に伴い二次側流路9に連通するよう設けている。
【0018】
そして、減圧弁3は収装室27への後述詳記するパイロツト液体の導入で減圧弁体22が図2の左端に位置して摺動孔21との間に形成の開度Hを最大にして二次側流路9に流通する圧力液体を減圧制御しないと共に、収装室27からのパイロツト液体の導出で減圧弁体22が作用室24の圧力液体の圧力に基づく作用力とばね28、29力との平衡位置へ図2の右方向に摺動して開度Hを減少したり、流路31を二次側流路9に連通したりして二次側流路9に流通する圧力液体をばね28、29力による設定圧力に減圧制御するよう設けている。
【0019】
パイロツト開閉弁2はパイロツト流路Aを連通する第1位置X1とパイロツト流路Aを遮断する第2位置Y1とを有し、開閉弁本体5には供給流路P2を構成する流路6より分岐して減圧弁3の収装室27に接続するパイロツト分岐流路32を穿設し、パイロツト分岐流路32には流通するパイロツト液体を絞り制御する絞り部33を配設している。34は有底の摺動孔で、開閉弁本体5に各流路6、12、15の貫設方向と直角の方向に穿設して一側面に開口して設けている。そして、摺動孔34にはパイロツト流路Aを構成する流路18を開口すると共に、流路18の開口個所より軸方向に間隙を有した個所にパイロツト分岐流路32の絞り部33と収装室27間を開口して設け、これによりパイロツト流路Aをパイロツト分岐流路32の絞り部33と収装室27間に接続することになる。
【0020】
35は摺動孔34に軸方向へ摺動自在に嵌挿した開閉弁体で、パイロツト流路Aを連通遮断自在に設け、ばね36力によりパイロツト流路Aの連通方向に付勢され、その頭部にはピストン部材37を有している。38は開閉弁本体5の一側面に固設した副弁本体で、摺動孔34の一端開口を閉塞して開閉弁体35の一端にピストン部材37とで作用室39を区画形成し、作用室39にはばね36力に対向して開閉弁体35に作用するパイロツト液体を導入可能に設けている。40はばね36力に対向作用するパイロツト液体が流通するパイロツト作動流路で、開閉弁本体5に穿設して摺動孔34のパイロツト流路Aが開口する個所と軸方向に同一の個所に開口してパイロツト流路Aに接続した流路41と、副弁本体38に穿設して作用室39に接続した流路42とを接続して構成している。そして、パイロツト作動流路40は摺動孔34のパイロツト流路Aが開口する個所と軸方向に同一の個所に流路41を開口してパイロツト流路Aに接続することで、図1に示す如き、パイロツト流路Aのパイロツト開閉弁2より電磁切換弁4側に接続することになる。
【0021】
43はパイロツト作動流路40を構成する副弁本体38の流路42に配設した一方向絞り弁で、作用室39に導入するパイロツト液体を自由流れとして作用室39からのパイロツト液体の導出を阻止する逆止め弁44と、作用室39から導出するパイロツト液体を絞り制御する可変絞り弁45とを並列に配設して構成し、可変絞り弁45は回動操作により絞り開度を調整自在に設けている。そして、パイロツト開閉弁2は作用室39へのパイロツト液体の導入によりばね36力に抗して第2位置Y1に位置すると共に、作用室39からのパイロツト液体の導出ではパイロツト液体が一方向絞り弁43で絞り制御されて導出するため第2位置Y1から徐々に切換わって第1位置X1に位置するよう設けている。
【0022】
次にかかる構成の作動を説明する。図1の状態は、供給流路P2に圧力液体が供給されておらず、電磁切換弁4はソレノイドSに非通電で第1位置Xに位置し、パイロツト開閉弁2は作用室39にパイロツト液体が導入されておらずばね36力で第1位置X1に位置し、減圧弁3はばね28、29力で減圧弁体22が図2の左端に位置して開度Hを最大にし、単動シリンダ1は作動室1Bが負荷流路Bより排出流路R1を介して低圧側Tに連通し、ばね1A力でワークWをクランプしている。
【0023】
そして、圧力源Pより供給流路P2に圧力液体を供給すると、供給流路P2の圧力液体は一部がパイロツト液体としてパイロツト分岐流路32を流れて減圧弁3の収装室27に導入されると共に、供給流路P2より第1位置Xに位置する電磁切換弁4を介してパイロツト流路A、パイロツト作動流路40、一方向絞り弁43を流れて作用室39に導入し、パイロツト開閉弁2は作用室39に導入したパイロツト液体の圧力に基づく作用力によりばね36力に抗して第1位置X1から第2位置Y1に切換わり、減圧弁3は収装室27にパイロツト液体が導入されて減圧弁体22が図2に示す左端に位置したままで開度Hを最大にして供給流路P2を流通する圧力液体を減圧制御しない。また、単動シリンダ1は前述と同様にばね1A力でワークWをクランプしている。
【0024】
この状態より、電磁切換弁4のソレノイドSを通電操作して第1位置Xから第2位置Yに切換えると、負荷流路Bを供給流路P2に連通しパイロツト流路Aを排出流路R1に連通し、パイロツト開閉弁2の作用室39はパイロツト作動流路40、パイロツト流路Aより排出流路R1に連通するが、作用室39のパイロツト液体は一方向絞り弁43で絞り制御されて導出するため、パイロツト開閉弁2はばね36力で第2位置Y1より徐々に第1位置X1に切換わり、パイロツト開閉弁2が第1位置X1に切換わるまで(図3に示す時間T1に相当する)減圧弁3は前述と同様に収装室27にパイロツト液体が導入されて供給流路P2を流通する圧力液体を減圧制御せず、この減圧制御しない圧力液体(圧力を図3にP3で示す)は負荷流路Bより単動シリンダ1の作動室1Bに導入し、単動シリンダ1は作動室1Bに導入した減圧制御しない圧力液体の圧力に基づく作用力でばね1A力に抗して図1の右方向に移動してワークWをアンクランプとし、ワークWを新たなものと交換する。
【0025】
そして、図3に示す時間T1が経過して、パイロツト開閉弁2が第1位置X1に切換わると、パイロツト流路Aを連通し、減圧弁3の収装室27のパイロツト液体はパイロツト分岐流路32よりパイロツト流路A、排出流路R1を流れて低圧側Tに導出されると共に、供給流路P2よりパイロツト分岐流路32を流れて収装室27に導入しようとするパイロツト液体は絞り部33で制限され、減圧弁3は減圧弁体22が作用室24の圧力液体の圧力に基づく作用力とばね28、29力との平衡位置へ図2の右方向に摺動して開度Hを0にしつつ流路31が二次側流路9に連通し、二次側流路9の圧力液体を流路31より収装室27を流して低圧側Tに導出したり、開度Hを減少したりして供給流路P2を流通する圧力液体をばね28、29力による設定圧力に減圧制御し、この減圧制御した圧力液体(圧力を図3にP4で示す)は負荷流路Bより単動シリンダ1の作動室1Bに導入し、作動室1Bに導入の減圧制御した圧力液体の圧力に基づく作用力がばね1A力より僅かに低く、単動シリンダ1は図1の左方向に緩速で漸次移動して新たなワークWに衝撃なく当接する。このとき、作動室1Bの圧力液体は二次側流路9への流路31の連通で流路31を流れて徐々に導出される。
【0026】
この状態より、電磁切換弁4のソレノイドSを非通電操作して第2位置Yより図1に示す第1位置Xに切換えると、作動室1Bの圧力液体は負荷流路Bより排出流路R1を流れて低圧側Tに導出され、単動シリンダ1はばね1A力により新たなワークWをクランプする。パイロツト開閉弁2は供給流路P2よりパイロツト流路A、パイロツト作動流路40を流れて作用室39にパイロツト液体が導入して第2位置Y1に切換わり、この後、供給流路P2に圧力液体を供給しなくするとパイロツト開閉弁2はばね36力により図1に示す第1位置X1に復帰作動する。
【0027】
かかる作動で、電磁切換弁4のソレノイドSへの通電操作による第2位置Yへの切換えに伴い、パイロツト開閉弁2が時間T1の間は第2位置Y1に位置してその後第1位置X1に切換わって、減圧弁3を減圧制御しない状態から減圧制御する状態に自動的に切換えることができるため、電磁切換弁4のソレノイドSへの通電非通電操作により流路P2、A、B、R1の切換連通と圧力液体を減圧制御したり減圧制御しないようにすることができ、操作を簡単にすることができる。また、通電非通電する弁は電磁切換弁4の1個で良く、通電非通電する弁が電磁切換弁とパイロツト電磁弁との2個を必要とした図4の液体制御装置に比べ、通電非通電操作に伴う誤操作を軽減できて、単動シリンダ1の誤作動を良好に抑制することができる。さらにまた、一方向絞り弁43の可変絞り弁45を回動操作して絞り開度を調整することで、パイロツト開閉弁2が第2位置Y1から第1位置X1に切換わる際の第2位置Y1に位置する時間T1を所望に変更でき、減圧弁3を減圧制御しない状態から減圧制御する状態に切換えるタイミングを所望に変更できて、当該液体制御装置を広範囲の用途に適用することができる。
【0028】
上記した実施形態においては、ばね1AによりワークWをクランプするクランプ装置である単動シリンダ1に本発明による液体制御装置を実施したが、本発明による液体制御装置は図5に示した工作機械の主軸101をクランプするクランプ装置にも同様に実施することが可能である。図5に示したクランプ装置は、主軸101を軸支する軸受102、103の外周と工作機械の機械本体104に設けたシリンダ内孔間にそれぞれ液密かつ軸方向へ移動可能に組付けられて作動室105、106(機械本体104に設けた流路104aを通して図1に示した液体制御装置の負荷流路Bに接続されている)を形成する筒状のピストン107、108と、軸受102、103及びピストン107、108と主軸101及び機械本体104によって形成される筒状空間111(機械本体104に設けた通気孔104bを通して大気に連通している)に組付けた二対のスリーブ112、113、114、115と、外周のスリーブ112、113間に組付けられて各スリーブ112、113を各ピストン107、108に向けて軸方向に付勢する4枚の皿ばね116によって構成されている。
【0029】
外周の各スリーブ112、113は、内周に各ピストン107、108に向けて拡大するテーパー内周面を有していて、このテーパー内周面にて内周の各スリーブ114、115の外周に形成したテーパー外周面にテーパー嵌合しており、テーパー嵌合部に生じるくさび作用により拡径して機械本体104に圧接固定される。内周の各スリーブ114、115は、外周のスリーブ112、113が離反する軸方向へ移動するとき上記くさび作用により縮径して内周の円筒面にて主軸101を外周からクランプするものであり、各軸受102、103によって離反する軸方向への移動を規制されていて、内周に軸方向の連通溝114a、115aを有している。
【0030】
上記のように構成した図5のクランプ装置においては、作動室105、106に接続した負荷流路Bが図1に示した排出通路R1に連通しているとき、外周の両スリーブ112、113は両ピストン107、108によって押動されず、皿ばね116力で離反する軸方向へ押圧されてくさび作用で拡径すると共に両スリーブ114、115を縮径させる。このため、両スリーブ114、115にて主軸101が外周からクランプされスリーブ112〜115を介して機械本体104に固定される。この状態より、図1及び図2に示した液体制御装置から作動室105、106に図3にP3で示した減圧制御されない圧力液体が導入されると、ピストン107、108がスリーブ112、113に向けて押動されて皿ばね116力に抗してスリーブ112、113を軸方向に移動させるため、上記くさび作用が消失して主軸101はスリーブ112〜115及び皿ばね116による固定を解除されてアンクランプとなる。そして、図3に示す時間T1が経過して、図1及び図2に示した液体制御装置から作動室105、106に供給された圧力液体の圧力が図3にP4で示した減圧制御された圧力になるが、皿ばね116を縮ませ保持する力は残っているので、そのままのアンクランプを維持でき、良好なアンクランプ状態となる。
【0031】
図5のクランプ装置において、上記P3の圧力のまま保持されると、スリーブ(くさび)112〜115から径方向の力が発生し、良好なアンクランプ状態を得ることが容易でないが、上記実施形態においては、上記P3の圧力でアンクランプ後、上記P4の圧力に減圧させることにより、上記径方向の力が低減でき良好なアンクランプ状態の確保が容易に達成できる。
【0032】
尚、図1及び図2に示した上記実施形態では、減圧弁3を直動形としたがパイロツト作動形でも良く、また一方向絞り弁43には絞り開度を調整自在に可変絞り弁45を設けたが絞り開度を一定にした固定絞り弁を設けても良いことは勿論である。また、上記実施形態では、液体アクチュエータがクランプ装置である用途に本発明による液体制御装置を実施したが、本発明による液体制御装置は液体アクチュエータがクランプ装置以外である用途にも同様にまたは適宜変更して実施することが可能である。
【図面の簡単な説明】
【図1】 本発明による液体制御装置の一実施形態を示す回路図である。
【図2】 図1に示した液体制御装置の詳細な構成を示す縦断面図である。
【図3】 図1及び図2に示した液体制御装置における電磁切換弁の作動状態と供給流路の圧力及び経過時間の関係を示した説明図である。
【図4】 従来公知の減圧弁を用いて構成した液体制御装置の一例を示す回路図である。
【図5】 本発明による液体制御装置によって作動を制御される工作機械の主軸クランプ装置の一例を示す断面図である。
【符号の説明】
1…単動シリンダ(液体アクチユエータ)、2…パイロツト開閉弁、3…減圧弁、4…電磁切換弁、27…収装室、28、29…ばね、32…パイロツト分岐流路、33…絞り部、36…ばね、40…パイロツト作動流路、43…一方向絞り弁、P2…供給流路、R1…排出流路、A…パイロツト流路、B…負荷流路、T…低圧側、X…電磁切換弁の第1位置、Y…電磁切換弁の第2位置、X1…パイロット開閉弁の第1位置、Y1…パイロット開閉弁の第2位置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid control apparatus that controls pressure reduction of a pressure liquid introduced into a liquid actuator using a pressure reducing valve, or prevents pressure reduction control.
[0002]
[Prior art]
In general, there is a pressure reducing valve for controlling the pressure liquid to be depressurized or not depressurizing, as shown in Japanese Utility Model Publication No. 4-38088. The applicant of the present application has considered a liquid control apparatus as shown in FIG. 4 to control the pressure of the pressure liquid introduced into the liquid actuator using the pressure reducing valve or not to control the pressure reduction.
[0003]
In the liquid control apparatus shown in FIG. 4, an electromagnetic switching valve 47 is laminated on a pressure reducing valve 46 corresponding to the pressure reducing valve of Japanese Utility Model Publication No. 4-38088, and the electromagnetic switching valve 47 has two load flow paths. Since one load channel A1 is not used in A1 and B1, it is closed and the other one load channel B1 is connected to the single-acting cylinder 1 as a liquid actuator, and the pressure channel is connected to the load channel B1. The supply flow path P1 connected to the pressure source P to be supplied and the discharge flow path R connected to the low pressure side T are provided so as to be able to switch and communicate by an energization / non-energization operation. The pressure reducing valve 46 is a pilot-actuated type, and a pilot solenoid valve 49 and a pilot pressure control valve 50 for connecting and disconnecting the pilot passage 48 by energization / non-energization operation are arranged in series in the pilot passage 48. The pressure liquid flowing through the supply flow path P <b> 1 by the energization / non-energization operation is controlled so as not to be depressurized or set to the set pressure set by the pilot pressure control valve 50.
[0004]
Next, the operation will be described. FIG. 4 shows a clamped state of the workpiece W. The electromagnetic switching valve 47 is not energized, communicates the load flow path B1 to the discharge flow path R and shuts off the supply flow path P1, and the pressure reducing valve 46 is connected to the pilot electromagnetic valve 49. The single-acting cylinder 1 clamps the workpiece W by the force of the spring 1A without shutting off the pilot passage 48 and depressurizing the pressure liquid in the supply passage P1 without being energized.
[0005]
From this state, when the electromagnetic switching valve 47 is energized, the load flow path B1 is switched to the supply flow path P1, the discharge flow path R is shut off, and the pressure liquid in the supply flow path P1 that is not pressure-reduced by the pressure reducing valve 46 is The single-action cylinder 1 flows through the load channel B1 and is introduced into the working chamber 1B of the single-action cylinder 1, and the single-action cylinder 1 resists the force of the spring 1A with the acting force based on the pressure of the pressure liquid introduced into the working chamber 1B. The workpiece W moves in the direction to make the workpiece W unclamped, and the workpiece W is replaced with a new one.
[0006]
In this state, when the pilot solenoid valve 49 of the pressure reducing valve 46 is energized, the pressure liquid in the supply flow path P1 is controlled to be reduced to the set pressure set by the pilot pressure control valve 50 of the pressure reducing valve 46, and the single-acting cylinder 1 is operated. The acting force based on the pressure of the pressure liquid in the chamber 1B is slightly lower than the force of the spring 1A, and the single acting cylinder 1 gradually moves in the left direction in FIG. When the solenoid switching valve 47 is deenergized, the solenoid valve 47 returns to the original position shown in FIG. 4 to switch the load channel B1 to the discharge channel R, and the pressure liquid in the working chamber 1B is discharged from the load channel B1. The single acting cylinder 1 flows through the flow path R and is led out to the low pressure side T, and the new work W is clamped by the force of the spring 1A. Further, the pressure reducing valve 46 returns to the original position shown in FIG. 4 by deenergizing the pilot solenoid valve 49 in preparation for the next unclamping operation.
[0007]
[Problems to be solved by the invention]
However, in the liquid control apparatus shown in FIG. 4, the load flow path B1 is switched and connected to the supply flow path P1 and the discharge flow path R by the energization / non-energization operation of the electromagnetic switching valve 47, and the pilot electromagnetic valve 49 of the pressure reducing valve 46 is connected. Since the pressure liquid in the supply flow path P1 is controlled to be depressurized or not depressurized by the energization / non-energization operation, the energization / non-energization operation of the electromagnetic switching valve 47 and the energization / non-energization operation of the pilot solenoid valve 49 of the pressure reduction valve 46 are performed. And the operation becomes complicated.
[0008]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems, and it is possible to prevent the pressure switch from being controlled to be depressurized or not depressurized by the energization / non-energization operation of the electromagnetic switching valve. Providing a liquid control device that is easy to operate, a supply flow path for supplying pressure liquid, a discharge flow path connected to the low pressure side, a load flow path connected to the liquid actuator, and a pilot liquid in circulation A first flow path that connects the load flow path to the discharge flow path, communicates the pilot flow path to the supply flow path, and connects the load flow path to the supply flow path, and makes the pilot flow path the discharge flow path. An electromagnetic switching valve having a second position communicating with the first position and the second position by an energization / non-energization operation, and a pressure reducing valve disposed in the supply flow path, Storing a spring that sets the secondary pressure of the supply flow path And a pilot branch channel that connects the storage chamber to the primary side of the supply channel. The throttle branch channel is provided with a throttle, and the throttle is disposed between the throttle and the storage chamber. A pilot flow path is connected, and a pilot opening / closing valve having a first position communicating with the pilot flow path and a second position blocking the pilot flow path is disposed in the pilot flow path. Is located at the first position due to the non-action of the action force based on the pressure of the pilot liquid acting against the spring force, and is located at the second position due to the action, and the pilot action through which the pilot liquid acting against the spring force flows. A flow path is provided to be connected to the solenoid switching valve side of the pilot flow path from the pilot on / off valve, and the pilot operating flow path is shared by the pilot liquid introduced into the pilot open / close valve as a free flow. It is characterized in that it has arranged a one-way throttle valve for controlling throttle the pilot liquid derived from pilot-off valve. It is also possible to adjust the throttle opening of the one-way throttle valve.
[0009]
[Effects of the invention]
In the fluid control apparatus according to the present invention, when the electromagnetic switching valve is positioned at the first position by the energization / non-energization operation, the load channel is communicated with the discharge channel, the pilot channel is communicated with the supply channel, The pressure liquid flows as a pilot liquid through the pilot operating flow path from the pilot flow path, flows through the one-way throttle valve in a free flow and opposes the spring force of the pilot on-off valve, and the pilot on-off valve opposes the spring force. The primary side of the supply flow path in the storage chamber which houses the pressure reducing valve spring which is located at the second position by the acting force based on the pressure of the pressure and cuts off the pilot flow path and sets the secondary pressure of the supply flow path Part of the pressure liquid flows through the pilot branch flow path as a pilot liquid, and the pressure reducing valve does not control the pressure liquid flowing in the secondary side of the supply flow path, and the liquid actuator discharges from the load flow path. And communicates with the low pressure side via the.
[0010]
In this state, when the electromagnetic switching valve is switched from the first position to the second position by energization / non-energization operation, the load flow path is connected to the supply flow path, the pilot flow path is connected to the discharge flow path, and the pilot operating flow path is The pilot fluid communicates with the discharge passage from the pilot passage, but the pilot liquid that opposes the spring force of the pilot opening / closing valve is led out by being controlled by the one-way throttle valve. The pressure reducing valve depressurizes the pressure liquid flowing in the secondary side of the supply flow path by introducing the pilot liquid into the storage chamber in the same manner as described above until switching to the first position and the pilot opening / closing valve to the first position. The pressure liquid that is not controlled and that is not pressure-reduced is introduced from the load channel to the liquid actuator.
[0011]
When the pilot on / off valve is switched to the first position, the pilot flow path is communicated, and the pilot liquid in the storage chamber of the pressure reducing valve flows from the pilot branch flow path to the low pressure side through the pilot flow path and the discharge flow path. In addition, the throttle liquid provided in the pilot branch passage restricts the pilot liquid to be introduced into the storage chamber from the primary side of the supply flow path, and the pressure reducing valve is circulated to the secondary side of the supply flow path. The liquid is controlled to be depressurized to a set pressure by a spring force, and the depressurized pressure liquid is introduced into the liquid actuator from the load channel.
[0012]
For this reason, with the switching to the second position by the energization / non-energization operation of the electromagnetic switching valve, the pilot on / off valve is gradually switched from the second position to the first position, and the pressure reducing control is performed from the state where the pressure reducing valve is not pressure controlled. Since it can be automatically switched to the state, the switching switching of the flow path and the pressure liquid can be controlled to be depressurized or not depressurized by the energization / deenergization operation of the electromagnetic switching valve, thus simplifying the operation. it can.
[0013]
Further, in the liquid control apparatus according to the present invention, the energized / deenergized valve may be one electromagnetic switching valve, and the energized / deenergized valve requires two solenoid switching valves and a pilot solenoid valve in FIG. Compared to the liquid control device, it is possible to reduce erroneous operations associated with energization / non-energization operations, and it is possible to favorably suppress malfunctions of the liquid actuator.
[0014]
Further, in the liquid control device according to the present invention, when the throttle opening of the one-way throttle valve is provided to be adjustable, the pilot on-off valve is located at the second position when switching from the second position to the first position. The time can be changed as desired, and the timing for switching the pressure reducing valve from a state where pressure reducing control is not performed to a state where pressure reducing control is performed can be changed as desired, and the apparatus can be applied to a wide range of applications.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The same parts as those in the liquid control apparatus of FIG. In FIGS. 1 and 2, 2 is a pilot on-off valve, 3 is a pressure reducing valve, 4 is an electromagnetic switching valve, and a pressure reducing valve 3 and an electromagnetic switching valve 4 are sequentially stacked on the pilot on / off valve 2. P2 is a supply flow path for supplying pressure liquid connected to the pressure source P. The flow path 6 is provided through the open / close valve body 5 of the pilot open / close valve 2 and the primary drilled through the decompression valve body 7 of the pressure reducer 3. The side flow path 8 and the secondary side flow path 9 are connected to a switching valve body 10 of the electromagnetic switching valve 4 and a perforated flow path 11 is configured. R1 is a discharge flow path connected to the low pressure side T, a flow path 12 penetrating the on-off valve body 5, a flow path 13 penetrating the pressure reducing valve body 7, and a flow path 14 drilled in the switching valve body 10. And connected. B is a load flow path connected to the single acting cylinder 1 as a liquid actuator. The flow path 15 extends through the on-off valve body 5, the flow path 16 extends through the pressure reducing valve body 7, and the switching valve body 10. It is configured by connecting to a predetermined flow path 17. The single-acting cylinder 1 is a clamping device that clamps the workpiece W, and has a working chamber 1B for introducing and leading the pressure liquid, a spring 1A facing the working chamber 1B, and clamping the workpiece W with the force of the spring 1A. Provided. A is a pilot channel through which a pilot liquid flows, and a channel 18 drilled in the on-off valve body 5, a channel 19 penetrating the pressure reducing valve body 7, and a channel 20 drilled in the switching valve body 10. Are connected and configured.
[0016]
The electromagnetic switching valve 4 includes a solenoid S, and communicates the load channel B with the discharge channel R1, the pilot channel A with the supply channel P2, and the load channel B with the first channel X and the supply channel P2. The pilot channel A has a second position Y that communicates with the discharge channel R1, and can be switched between a first position X and a second position Y by energization / non-energization operation to the solenoid S.
[0017]
The pressure reducing valve 3 is disposed in the supply flow path P2, and the pressure reducing valve body 7 is provided with a sliding hole 21 in which the primary side flow path 8 and the secondary side flow path 9 are opened with a gap in the axial direction. The pressure reducing valve body 22 is inserted in the sliding hole 21 so as to be slidable in the axial direction. Reference numeral 23 denotes a lid member fixed to one side surface of the pressure reducing valve body 7, which closes one end opening of the sliding hole 21 to define a working chamber 24 at one end of the pressure reducing valve body 22. And is connected to the secondary side flow path 9. 26 is a housing member fixed on the other side of the pressure reducing valve body 7, the other end opening of the sliding hole 21 is closed, and a housing chamber 27 is defined at the other end of the pressure reducing valve body 22. 27 includes springs 28 and 29 for setting the pressure of the secondary channel 9. Reference numeral 30 denotes an adjustment member that changes and adjusts the forces of the springs 28 and 29, and is provided so as to be screwed to the housing member 26 so as to be rotatable. 31 is a relief passage formed in the pressure reducing valve body 22, which communicates with the housing chamber 27 and has one end opened to the outer peripheral surface of the pressure reducing valve body 22, and this one end opening is normally the inner peripheral surface of the sliding hole 21. 2 and when the pressure of the secondary side flow path 9 rises to the set pressure or higher by the force of the springs 28 and 29, the pressure reducing valve body 22 communicates with the secondary side flow path 9 as it slides to the right in FIG. Is provided.
[0018]
The pressure reducing valve 3 maximizes the opening degree H formed between the pressure reducing valve 22 and the sliding hole 21 by introducing a pilot liquid, which will be described later, into the housing chamber 27 and the pressure reducing valve body 22 is located at the left end of FIG. The pressure liquid flowing through the secondary side flow path 9 is not controlled to be depressurized, and the pressure reducing valve body 22 is operated based on the pressure of the pressure liquid in the working chamber 24 and the spring 28 by derivation of the pilot liquid from the collection chamber 27. 2 is slid rightward in FIG. 2 to an equilibrium position with 29 force to reduce the opening H, or the flow path 31 communicates with the secondary flow path 9 to flow through the secondary flow path 9. The pressure liquid is provided so as to be pressure-reduced to a set pressure by the springs 28 and 29.
[0019]
The pilot open / close valve 2 has a first position X1 that communicates with the pilot flow path A and a second position Y1 that blocks the pilot flow path A, and the open / close valve main body 5 has a flow path 6 constituting the supply flow path P2. A pilot branch channel 32 that branches and connects to the storage chamber 27 of the pressure reducing valve 3 is formed, and a throttle unit 33 that throttles and controls the pilot liquid that flows is provided in the pilot branch channel 32. Reference numeral 34 denotes a bottomed sliding hole, which is provided in the opening / closing valve body 5 in a direction perpendicular to the direction in which each of the flow paths 6, 12, 15 penetrates and opened on one side surface. The sliding hole 34 opens the flow path 18 constituting the pilot flow path A, and is confined to the throttle portion 33 of the pilot branch flow path 32 at a position having a gap in the axial direction from the opening position of the flow path 18. An opening is provided between the chambers 27, whereby the pilot channel A is connected between the throttle 33 of the pilot branch channel 32 and the collection chamber 27.
[0020]
An open / close valve body 35 is inserted into the sliding hole 34 so as to be slidable in the axial direction. The pilot flow path A is provided so as to be able to cut off the communication, and is biased in the communication direction of the pilot flow path A by a spring 36 force. A piston member 37 is provided on the head. 38 is a sub-valve main body fixed on one side of the on-off valve main body 5, the opening of one end of the sliding hole 34 is closed, and a working chamber 39 is defined by a piston member 37 at one end of the on-off valve body 35. The chamber 39 is provided with a pilot liquid that opposes the force of the spring 36 and that acts on the opening / closing valve body 35. Reference numeral 40 denotes a pilot operating flow path through which a pilot liquid that opposes the force of the spring 36 circulates. The pilot operating flow path is formed in the opening / closing valve body 5 at the same position in the axial direction as the position where the pilot flow path A of the sliding hole 34 opens. A flow path 41 that is open and connected to the pilot flow path A is connected to a flow path 42 that is drilled in the sub-valve main body 38 and connected to the working chamber 39. The pilot operating channel 40 is connected to the pilot channel A by opening the channel 41 at the same location in the axial direction as the location of the pilot channel A of the sliding hole 34 as shown in FIG. Thus, the pilot on-off valve 2 in the pilot passage A is connected to the electromagnetic switching valve 4 side.
[0021]
43 is a one-way throttle valve disposed in the flow path 42 of the sub-valve main body 38 that constitutes the pilot operating flow path 40. The pilot liquid introduced into the working chamber 39 is free flow and the pilot liquid is led out from the working chamber 39. A check valve 44 for blocking and a variable throttle valve 45 for throttle-controlling the pilot liquid led out from the working chamber 39 are arranged in parallel, and the variable throttle valve 45 can freely adjust the throttle opening degree by rotating operation. Provided. The pilot opening / closing valve 2 is positioned at the second position Y1 against the force of the spring 36 by introducing the pilot liquid into the working chamber 39, and when the pilot liquid is led out from the working chamber 39, the pilot liquid is one-way throttle valve. Since the aperture is controlled at 43 and derived, it is provided so as to be gradually switched from the second position Y1 to be positioned at the first position X1.
[0022]
Next, the operation of this configuration will be described. In the state of FIG. 1, no pressure liquid is supplied to the supply flow path P2, the electromagnetic switching valve 4 is located at the first position X without energizing the solenoid S, and the pilot opening / closing valve 2 is placed in the working chamber 39 with the pilot liquid. Is not introduced and is located at the first position X1 by the spring 36 force, the pressure reducing valve 3 is located at the left end of FIG. In the cylinder 1, the working chamber 1B communicates with the low pressure side T from the load flow path B through the discharge flow path R1, and the work W is clamped by the force of the spring 1A.
[0023]
When the pressure liquid is supplied from the pressure source P to the supply flow path P2, a part of the pressure liquid in the supply flow path P2 flows as a pilot liquid through the pilot branch flow path 32 and is introduced into the storage chamber 27 of the pressure reducing valve 3. In addition, the pilot channel A, the pilot operating channel 40, and the one-way throttle valve 43 flow through the electromagnetic switching valve 4 located at the first position X from the supply channel P2, and are introduced into the working chamber 39 to open and close the pilot. The valve 2 is switched from the first position X1 to the second position Y1 against the force of the spring 36 by the acting force based on the pressure of the pilot liquid introduced into the working chamber 39, and the pressure reducing valve 3 is supplied with the pilot liquid into the storage chamber 27. While the pressure reducing valve body 22 is introduced and the pressure valve body 22 is positioned at the left end shown in FIG. The single acting cylinder 1 clamps the workpiece W with the spring 1A force as described above.
[0024]
From this state, when the solenoid S of the electromagnetic switching valve 4 is energized to switch from the first position X to the second position Y, the load flow path B is connected to the supply flow path P2 and the pilot flow path A is discharged to the discharge flow path R1. The working chamber 39 of the pilot open / close valve 2 communicates with the discharge operating flow path 40 and the pilot flow path A to the discharge flow path R1, but the pilot liquid in the working chamber 39 is controlled to be throttled by the one-way throttle valve 43. Therefore, the pilot on / off valve 2 is gradually switched from the second position Y1 to the first position X1 by the force of the spring 36 until the pilot on / off valve 2 is switched to the first position X1 (corresponding to the time T1 shown in FIG. 3). In the same manner as described above, the pressure reducing valve 3 does not control pressure reduction of the pressure liquid introduced into the storage chamber 27 and flows through the supply flow path P2, and does not perform pressure reduction control (pressure is set to P3 in FIG. 3). (Shown) is load channel B 1 is introduced into the working chamber 1B of the single acting cylinder 1, and the single acting cylinder 1 moves to the right in FIG. Then, the workpiece W is unclamped, and the workpiece W is replaced with a new one.
[0025]
When the pilot valve 2 is switched to the first position X1 after the time T1 shown in FIG. 3 has elapsed, the pilot liquid in the storage chamber 27 of the pressure reducing valve 3 communicates with the pilot flow path A, and the pilot liquid flows. The pilot liquid flowing through the pilot flow path A and the discharge flow path R1 from the passage 32 is led out to the low pressure side T, and the pilot liquid to be introduced into the storage chamber 27 through the pilot branch flow path 32 from the supply flow path P2 is throttled. The pressure reducing valve 3 is opened by sliding the pressure reducing valve body 22 in the right direction in FIG. 2 to an equilibrium position of the acting force based on the pressure of the pressure liquid in the working chamber 24 and the springs 28 and 29. The flow path 31 communicates with the secondary side flow path 9 while setting H to 0, and the pressure liquid of the secondary side flow path 9 flows from the flow path 31 through the storage chamber 27 to the low pressure side T, The pressure liquid flowing through the supply flow path P2 by reducing H or the force of springs 28 and 29 Then, the pressure liquid under pressure control (the pressure is indicated by P4 in FIG. 3) is introduced into the working chamber 1B of the single-acting cylinder 1 from the load channel B, and is introduced into the working chamber 1B. The acting force based on the pressure of the pressurized liquid is slightly lower than the spring 1A force, and the single-acting cylinder 1 gradually moves in the left direction in FIG. At this time, the pressure liquid in the working chamber 1 </ b> B flows gradually through the flow path 31 through the communication of the flow path 31 to the secondary-side flow path 9.
[0026]
In this state, when the solenoid S of the electromagnetic switching valve 4 is deenergized and switched from the second position Y to the first position X shown in FIG. 1, the pressure liquid in the working chamber 1B is discharged from the load flow path B to the discharge flow path R1. The single-action cylinder 1 clamps a new workpiece W by the force of the spring 1A. The pilot opening / closing valve 2 flows from the supply flow path P2 through the pilot flow path A and the pilot operation flow path 40, and the pilot liquid is introduced into the working chamber 39 to switch to the second position Y1, and then the pressure is applied to the supply flow path P2. When the liquid is not supplied, the pilot on-off valve 2 returns to the first position X1 shown in FIG.
[0027]
With this operation, the pilot on-off valve 2 is positioned at the second position Y1 during the time T1 and then moved to the first position X1 as the solenoid switching valve 4 is switched to the second position Y by energizing the solenoid S. By switching, it is possible to automatically switch the pressure reducing valve 3 from a state where pressure reducing control is not performed to a state where pressure reducing control is performed, so that the flow paths P2, A, B, R1 are controlled by the energization / non-energization operation to the solenoid S of the electromagnetic switching valve 4. The switching communication and the pressure liquid can be controlled to be decompressed or not controlled, and the operation can be simplified. Further, only one solenoid switching valve 4 may be energized and de-energized. Compared to the liquid control device of FIG. 4 which requires two solenoid switching valves and a pilot solenoid valve, the energization / non-energization valve is required. The erroneous operation associated with the energization operation can be reduced, and the malfunction of the single acting cylinder 1 can be satisfactorily suppressed. Furthermore, the second position when the pilot on-off valve 2 is switched from the second position Y1 to the first position X1 by rotating the variable throttle valve 45 of the one-way throttle valve 43 to adjust the throttle opening degree. The time T1 positioned at Y1 can be changed as desired, and the timing of switching the pressure reducing valve 3 from the state where pressure reducing control is not performed to the state where pressure reducing control is performed can be changed as desired, so that the liquid control device can be applied to a wide range of applications.
[0028]
In the above-described embodiment, the liquid control device according to the present invention is applied to the single-acting cylinder 1 that is a clamping device that clamps the workpiece W by the spring 1A. However, the liquid control device according to the present invention is applied to the machine tool shown in FIG. The same can be applied to a clamping device that clamps the main shaft 101. The clamping device shown in FIG. 5 is assembled between the outer periphery of the bearings 102 and 103 supporting the main shaft 101 and the cylinder bore provided in the machine body 104 of the machine tool so as to be liquid-tight and movable in the axial direction. Cylindrical pistons 107 and 108 forming working chambers 105 and 106 (connected to the load flow path B of the liquid control apparatus shown in FIG. 1 through a flow path 104a provided in the machine main body 104), bearings 102, 103 and the pistons 107 and 108, the main shaft 101 and the cylindrical body 111 formed by the machine main body 104 (communicated with the atmosphere through a vent 104b provided in the machine main body 104) and two pairs of sleeves 112 and 113. 114, 115 and the sleeves 112, 113 on the outer periphery, and the sleeves 112, 113 are axially directed toward the pistons 107, 108. It is constituted by four disc springs 116 for biasing.
[0029]
Each of the outer sleeves 112 and 113 has a tapered inner peripheral surface that expands toward the pistons 107 and 108 on the inner periphery, and on the outer periphery of each sleeve 114 and 115 on the inner periphery on the tapered inner peripheral surface. The taper is fitted to the formed outer peripheral surface of the taper, and the diameter is expanded by a wedge action generated in the taper fitting portion, and is fixed to the machine body 104 by pressure contact. The inner sleeves 114 and 115 reduce the diameter by the wedge action when the outer sleeves 112 and 113 move away from each other in the axial direction, and clamp the main shaft 101 from the outer periphery on the inner cylindrical surface. The movement in the axial direction separating from each other by the bearings 102 and 103 is restricted, and axial communication grooves 114a and 115a are provided on the inner periphery.
[0030]
In the clamp device of FIG. 5 configured as described above, when the load flow path B connected to the working chambers 105 and 106 communicates with the discharge passage R1 shown in FIG. It is not pushed by the two pistons 107 and 108 but is pressed in the axial direction away by the force of the disc spring 116 to increase the diameter by the wedge action and to reduce the diameter of the sleeves 114 and 115. For this reason, the main shaft 101 is clamped from the outer periphery by both sleeves 114 and 115 and fixed to the machine main body 104 via the sleeves 112 to 115. In this state, when the pressure liquid not subjected to pressure reduction control indicated by P3 in FIG. 3 is introduced into the working chambers 105 and 106 from the liquid control device shown in FIGS. 1 and 2, the pistons 107 and 108 are moved to the sleeves 112 and 113, respectively. Since the sleeves 112 and 113 are moved in the axial direction against the force of the disc spring 116, the wedge action disappears, and the main shaft 101 is released from being fixed by the sleeves 112 to 115 and the disc spring 116. It becomes unclamping. Then, after the time T1 shown in FIG. 3 has elapsed, the pressure of the pressure liquid supplied from the liquid control device shown in FIGS. 1 and 2 to the working chambers 105 and 106 is controlled to be reduced as indicated by P4 in FIG. Although the pressure becomes a pressure, the force for contracting and holding the disc spring 116 remains, so that the unclamping can be maintained as it is, and a good unclamping state is obtained.
[0031]
In the clamping device of FIG. 5, when the pressure of P3 is maintained, radial forces are generated from the sleeves (wedges) 112 to 115, and it is not easy to obtain a good unclamped state. In this case, after unclamping with the pressure of P3, the pressure in the radial direction can be reduced by reducing the pressure to the pressure of P4, and a good unclamped state can be easily achieved.
[0032]
In the above-described embodiment shown in FIGS. 1 and 2, the pressure reducing valve 3 is a direct acting type, but may be a pilot operated type, and the one-way throttle valve 43 has a variable throttle valve 45 with an adjustable throttle opening. Of course, a fixed throttle valve with a constant throttle opening may be provided. Moreover, in the said embodiment, although the liquid control apparatus by this invention was implemented for the use whose liquid actuator is a clamp apparatus, the liquid control apparatus by this invention is similarly or suitably changed also for the use where a liquid actuator is other than a clamp apparatus. Can be implemented.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a liquid control apparatus according to the present invention.
FIG. 2 is a longitudinal sectional view showing a detailed configuration of the liquid control apparatus shown in FIG.
3 is an explanatory diagram showing the relationship between the operating state of an electromagnetic switching valve, the pressure of a supply flow path, and the elapsed time in the liquid control apparatus shown in FIGS. 1 and 2. FIG.
FIG. 4 is a circuit diagram showing an example of a liquid control apparatus configured using a conventionally known pressure reducing valve.
FIG. 5 is a cross-sectional view showing an example of a spindle clamping device of a machine tool whose operation is controlled by the liquid control device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single acting cylinder (liquid actuator), 2 ... Pilot open / close valve, 3 ... Pressure reducing valve, 4 ... Electromagnetic switching valve, 27 ... Storage chamber, 28, 29 ... Spring, 32 ... Pilot branch flow path, 33 ... Restriction part , 36 ... Spring, 40 ... Pilot operating channel, 43 ... One-way throttle valve, P2 ... Supply channel, R1 ... Discharge channel, A ... Pilot channel, B ... Load channel, T ... Low pressure side, X ... 1st position of electromagnetic switching valve, Y ... 2nd position of electromagnetic switching valve, X1 ... 1st position of pilot on-off valve, Y1 ... 2nd position of pilot on-off valve.

Claims (3)

圧力液体を供給する供給流路と、低圧側に接続する排出流路と、液体アクチユエータに接続する負荷流路と、パイロツト液体が流通するパイロツト流路とを設け、負荷流路を排出流路に連通しパイロツト流路を供給流路に連通する第1位置と負荷流路を供給流路に連通しパイロツト流路を排出流路に連通する第2位置とを有して通電非通電操作により第1位置と第2位置とに切換自在に設けた電磁切換弁と、供給流路に配設した減圧弁とを備え、減圧弁は供給流路の二次側圧力を設定するばねを収装する収装室を設け、この収装室を供給流路の一次側に接続するパイロツト分岐流路を設け、このパイロツト分岐流路には絞り部を配設すると共に、絞り部と収装室間に前記パイロツト流路を接続して設け、このパイロツト流路にはパイロツト流路を連通する第1位置とパイロツト流路を遮断する第2位置とを有したパイロツト開閉弁を配設し、このパイロツト開閉弁はばね力に対向作用するパイロツト液体の圧力に基づく作用力の非作用により第1位置に位置すると共に作用により第2位置に位置して設け、ばね力に対向作用するパイロツト液体が流通するパイロツト作動流路を前記パイロツト流路のパイロツト開閉弁より電磁切換弁側に接続して設け、パイロツト作動流路にはパイロツト開閉弁に導入するパイロツト液体を自由流れとすると共に、パイロツト開閉弁から導出するパイロツト液体を絞り制御する一方向絞り弁を配設して成る液体制御装置。A supply flow path for supplying pressure liquid, a discharge flow path connected to the low pressure side, a load flow path connected to the liquid actuator, and a pilot flow path through which the pilot liquid flows are provided, and the load flow path is used as the discharge flow path. A first position that communicates the pilot channel with the supply channel and a second position that communicates the load channel with the supply channel and communicates the pilot channel with the discharge channel. An electromagnetic switching valve provided to be switchable between a first position and a second position, and a pressure reducing valve disposed in the supply flow path, and the pressure reducing valve accommodates a spring for setting the secondary pressure of the supply flow path. A collection chamber is provided, and a pilot branch channel that connects the collection chamber to the primary side of the supply channel is provided. The throttle branch channel is provided with a throttle, and between the throttle and the collection chamber. The pilot flow path is connected and provided in the pilot flow path. A pilot opening / closing valve having a first position communicating with the pilot passage and a second position blocking the pilot flow path is provided, and the pilot opening / closing valve has no acting force based on the pressure of the pilot liquid acting against the spring force. Is located at the first position and is located at the second position by the action, and connects the pilot operating flow path through which the pilot liquid acting against the spring force flows from the pilot opening / closing valve of the pilot flow path to the electromagnetic switching valve side. A liquid control device is provided in which a one-way throttle valve is provided in the pilot operating channel to allow the pilot liquid introduced into the pilot on-off valve to flow freely and to control the pilot liquid led out from the pilot on-off valve. . 前記一方向絞り弁の絞り開度を調整自在に設けたことを特徴とする請求項1に記載の液体制御装置。The liquid control apparatus according to claim 1, wherein a throttle opening degree of the one-way throttle valve is provided to be adjustable. 前記液体アクチュエータがワークまたは工作機械の主軸をクランプするクランプ装置であることを特徴とする請求項1に記載の液体制御装置。The liquid control device according to claim 1, wherein the liquid actuator is a clamp device that clamps a workpiece or a spindle of a machine tool.
JP25394695A 1994-09-30 1995-09-29 Liquid control device Expired - Lifetime JP3658434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25394695A JP3658434B2 (en) 1994-09-30 1995-09-29 Liquid control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-261692 1994-09-30
JP26169294 1994-09-30
JP25394695A JP3658434B2 (en) 1994-09-30 1995-09-29 Liquid control device

Publications (2)

Publication Number Publication Date
JPH0914204A JPH0914204A (en) 1997-01-14
JP3658434B2 true JP3658434B2 (en) 2005-06-08

Family

ID=26541469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25394695A Expired - Lifetime JP3658434B2 (en) 1994-09-30 1995-09-29 Liquid control device

Country Status (1)

Country Link
JP (1) JP3658434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330714A (en) * 2011-10-18 2012-01-25 常德中联重科液压有限公司 Load feedback control valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492426B1 (en) * 2013-06-21 2015-02-11 하이펙 주식회사 Opening and closing apparatus for hydraulic valve
CN109026861B (en) * 2018-08-24 2019-11-05 浙江海洋大学 A kind of universal decompressor of ship hydraulic system and decompression method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330714A (en) * 2011-10-18 2012-01-25 常德中联重科液压有限公司 Load feedback control valve

Also Published As

Publication number Publication date
JPH0914204A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US4796652A (en) Pressure regulator for hydraulically controlled machine tools
JPH0571832B2 (en)
JPS63225701A (en) Hydraulic pressure controller
JP3658434B2 (en) Liquid control device
JP2000516885A (en) Electro-hydraulic control device
US8061384B2 (en) Pressure control device
JPH05134766A (en) Proportion and pressure regulating valve
US4958548A (en) Hydraulic drive mechanism
JP2784836B2 (en) Solenoid switching valve
JPH06117414A (en) Valve gear
JPH0242289A (en) Safety valve
JPS635044Y2 (en)
JP3634412B2 (en) Fluid control device
JP2016176567A (en) Fluid pressure cylinder
JP2020133695A (en) Solenoid valve and work machine
JPH06229402A (en) Flow rate direction control valve device
JPH02564B2 (en)
JPH0640966Y2 (en) Electro-pneumatic proportional valve
JPH0537057Y2 (en)
JPS6217663Y2 (en)
JPS62194008A (en) Fluid control device
JPS6250682B2 (en)
JPS5920913Y2 (en) Clamp device with built-in pressure increase mechanism
JP2015001949A (en) Pressure reduction valve device
JPH09317915A (en) Pilot operated check valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term