JP3656317B2 - Work cutting method and apparatus using wire saw - Google Patents

Work cutting method and apparatus using wire saw Download PDF

Info

Publication number
JP3656317B2
JP3656317B2 JP9770296A JP9770296A JP3656317B2 JP 3656317 B2 JP3656317 B2 JP 3656317B2 JP 9770296 A JP9770296 A JP 9770296A JP 9770296 A JP9770296 A JP 9770296A JP 3656317 B2 JP3656317 B2 JP 3656317B2
Authority
JP
Japan
Prior art keywords
wire
cutting
workpiece
new line
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9770296A
Other languages
Japanese (ja)
Other versions
JPH09262826A (en
Inventor
弘 大石
盛江 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP9770296A priority Critical patent/JP3656317B2/en
Publication of JPH09262826A publication Critical patent/JPH09262826A/en
Application granted granted Critical
Publication of JP3656317B2 publication Critical patent/JP3656317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体シリコンインゴットをウェーハに切断する技術の改良に関する。
【0002】
【従来の技術】
従来、例えば半導体シリコンインゴットからウェーハを切出すようなワーク切断方法において、一対のローラ間を長手方向に一定幅間隔で同時に移動する複数の細い鋼線ワイヤにインゴットを圧接し、この圧接部に微細な砥粒を油性又は水溶性のクーラントで懸濁した砥粒スラリーを供給しながら複数のウェーハを同時に切出すワイヤソーのような切断方法が知られている。そしてこの方法は、同時に多数のウェーハを切出すことが出来るため、従来の内周刃スライサー等に代って多用されるようになっている。
【0003】
この際、ワイヤの移動方法として、ワイヤ送り出し部からワイヤ受け取り部に向けてワイヤを一定の線速度で移動させて切断する方法(ワイヤの一方向送り切断)と、ワイヤの線速度を一定に保持したままワイヤの移動方向を所定のタイミングで逆転させて切断する方法(ワイヤの往復動切断)とがあり、後者の場合は、例えばワイヤ線速度を500m/min とした時に、順方向に36sec 移動させた後、逆方向に24sec 移動させ、これを繰り返すことで、実質100m/min (500m/min ×(36−24)/(36+24))の速度で順方向に移動させるような方式で、この実質の送り速度を新線供給速度と呼び、一般にこれを一定に保持するようにしている。
因みに、前者のようなワイヤの一方向送り切断では、ワイヤの線速度がそのまま新線供給速度になるが、この方式では新線の消費量が激しくコスト高になるため、通常、後者の往復動切断方式が一般的である。
【0004】
【発明が解決しようとする課題】
ところが、従来の方法で切断すると、切断方向に沿って切断表面がテーパ状に変化し、切出したウェーハの厚みが切断方向に沿って変化するという問題があった。
そしてこのウェーハの厚みが異なる傾向は、特にワイヤソーで切断した場合の方が従来の内周刃スライサー等で切断した場合に較べて顕著であり、例えば1枚のウェーハで10μm以上にも達するため、後工程でのラップ取代が大きくなる等の不具合があった。
【0005】
そしてこのようにウェーハの厚みが変化する要因として、ワイヤ自体の摩耗量の変化が考えられた。すなわち、ワイヤ自体も砥粒の作用によって摩耗し、このワイヤの摩耗量が図9に示すような切断幅dに影響を与え、切断幅dの広狭によって切断面又は厚みがテーパ状に変化するのではないかということである。そして一般的にワイヤの摩耗量が多くてワイヤ径が細くなれば、切断幅dが狭くなってウェーハの厚みは厚くなりがちであり、ワイヤの摩耗量が少なければ、切断幅dが広がってウェーハの厚みは薄くなりがちになると思われる。
【0006】
そこでこのようなワイヤの摩耗量の変化は、特にワイヤにかかる切断負荷(ワーク切断長×ワーク加工送り速度)によって大きく左右されるものと考えられるため、ワイヤにかかる切断負荷を一定に保つよう、例えばワークの加工送り速度を制御して切断負荷を一定に保持して加工すれば、ワイヤの摩耗量が一定になると考えられる。そこで、例えば切断負荷を一定にするよう加工送り速度を調整しながら加工すると、例えば図8の典型例に示すように、切断開始部および終了部のテーパ急変部分を除いても厚みの差が8〜10μmにも達するテーパ形状で切出され、依然テーパ形状を改善することが出来なかった。そしてこのテーパ形状は砥粒の減耗による影響ではないかと考えられた。
尚、図8は、縦軸がウェーハの厚みであり、横軸が切断深さ(左方が切り始めで右方が切り終わり)である。
【0007】
そこで、ワイヤソーを用いた切断において、ワークの厚みとか切断面が切断方向に沿ってテーパ状に変化するような不具合を是正する手段が望まれていた。
【0008】
【課題を解決するための手段】
上記課題を解決するため本発明はワイヤ送り出し側からワイヤ受け取り側に向けて所定の速度で新線が供給されるワイヤにワークを圧接し、この圧接部に砥粒スラリーを供給しつつワークを切断するようにしたワークの切断方法において、ワイヤの新線供給速度をワイヤの摩耗量と砥粒の減耗度によって制御し、この制御によってワイヤの摩耗量が砥粒の減耗分を補償しつつ直線的に変化するようにした。
またこの装置としてワイヤ送り出し側からワイヤ受け取り側に向けて所定の速度で新線を供給するワイヤ供給駆動手段と、このワイヤにワークを圧接するワーク圧接手段と、圧接部に砥粒スラリーを供給するスラリー供給手段と、前記ワイヤ供給駆動手段を制御する制御手段を設け、この制御手段によって新線供給速度を制御するようにした。
【0009】
すなわち、例えば切断負荷を一定にすることでワイヤの摩耗量を一定にしただけでは、図8に示すように、加工の進行に連れてウェーハの厚みが増えており、これは、切断幅が狭く(加工取代が少なく)なっていくことを示している。そしてこの原因として砥粒の減耗等が考えられた。すなわち、一般的に砥粒の径が大きいうちは、切断幅が広く(加工取代が多く)、逆に砥粒が潰れて砥粒の径が小さくなれば切断幅が狭まる(加工取代が少なくなる)ものと考えられる。また、加工の進行に連れてワイヤに粘性付着する砥粒スラリーの切断溝内への持込み量が減少することも考えられる。
【0010】
そこで、この切断幅(加工取代)に大きく影響を与えるワイヤの摩耗量と砥粒の減耗度によって新線供給速度を制御し、切断幅(加工取代)を一定に保つ。
ここで、新線供給速度を一定に保つ方法は、例えばワイヤの往復動切断の場合であれば、一定の往復動サイクルの内で順方向と逆方向の時間の比率を変化させる。
【0011】
また本発明の切断方法及び切断装置では、前記新線供給速度を、
ワイヤ摩耗量=k×(切断負荷/新線供給速度)
の関係式に基づいて制御するようにした。
ここで、切断負荷=(ワークの切断長)×(ワークの加工送り速度)、kは係数である。
【0012】
そして上記の関係式は本発明者が見出したものであり、この式は、ワイヤ摩耗量は、切断負荷が大きくなるとこれに比例して増大し、新線供給速度が高まるとこれに反比例して減少することを示している。
従って、切断負荷が定まり、また砥粒の減耗分を補償した理想的なワイヤ摩耗量が求まれば、上記関係式から理想的な新線供給速度を求めることが出来る。そしてこの理想的な新線供給速度に近似させて新線供給速度を制御すれば、切断幅(加工取代)を一定に保つことが出来る。
【0013】
また、本発明の切断方法及び切断装置では、新線の供給方式として、ワイヤを所定のタイミングで往復動させつつ供給する往復動供給方式とした。
そして、このような往復動方式によってワイヤの消費を効率的に抑えることが出来る。
【0014】
【発明の実施の形態】
本発明の実施の形態について添付した図面に基づき説明する。ここで図1はワイヤソーによる切断装置の構成概要図、図2は理想的なワーク切断方法を説明する説明図、図3はワーク切断方法の実施例の説明図、図4は切断負荷を説明するための説明図、図5は新線供給速度を説明するための説明図である。
【0015】
本発明のワイヤソーによるワーク切断装置は、例えば単結晶引上法によって製造されたシリコンインゴットからウェーハを切出す装置として構成され、図1に示すように、ワイヤ送り出し部Aから延出する1本の鋼線ワイヤ1を3本のローラ2、3、4の周囲に所定ピッチで螺旋状に巻き付けた後、ワイヤ受け取り部Bに向けて延出させるようにしており、下方のローラ2を駆動ローラとしてワイヤ1を所定の線速度で移動させるとともに、上方の2本のローラ3、4を同一高さで配置し、このローラ3、4間を加工部5としている。
【0016】
すなわち、この加工部5の上方には、ワーク圧接手段としてのワークホルダ6と、加工部5に向けて砥粒スラリー(微細な砥粒を油性又は水溶性のクーラントで懸濁したスラリー)を供給するノズル7、7が配設されており、前記ワークホルダ6はインゴットWを保持し得るようにされるとともに、不図示の昇降手段によって上下動可能とされている。
また、加工部5の下方には、砥粒スラリーを受けるためのスラリー受け8が配設されている。
【0017】
そして、前記駆動ローラ2は、ワイヤ供給駆動手段としての駆動モータ10によって回転自在とされており、この駆動モータ10は、予めプログラミングされた方式に従って制御する制御手段11に接続されている。そしてこの制御手段11によって、駆動モータ10は所定のタイミングで回転方向が逆転するようにされ、ワイヤ1が往復動しながら実質上所定の移動速度(新線供給速度)でワイヤ送り出し部Aからワイヤ受け取り部Bに向けて供給されるようにしている。
【0018】
この新線供給速度は、例えば図5に示すように制御される。すなわち、ワイヤ線速度が500m/min である場合に、例えば(A)に示すように順方向に36sec 移動させた後、逆方向に24sec 移動させ、これを繰り返すことで、実質100m/min (500m/min ×(36−24)/(36+24))の速度で順方向に移動させることが出来、これが新線供給速度となる。
次に線速度を一定(500m/min )に保ったまま、例えば(B)に示すように、順方向に32.4sec 移動させた後、逆方向に27.6sec 移動させ、これを繰り返すことで、実質40m/min (500m/min ×(32.4−27.6)/(32.4+27.6))の速度で順方向に移動させることが出来、これが新線供給速度となる。
このように回転方向の逆転タイミングを調整することで、新線供給速度を任意に変えることが出来る。尚、この新線供給速度は後述する理想的なワイヤ摩耗量に基づいて制御するようにしている。
【0019】
また加工部5では、前記ワークホルダ6を降下させてインゴットWを移動するワイヤ1に向けて圧接し、この圧接部に砥粒スラリーを供給しながら切断加工するが、本実施例では、図6に示すように、インゴットWの上面と下面にガラス当て板G、Gを接着して切断を行っている。このガラス当て板G、Gのうち、例えばワークホルダ6側(上方)のガラス当て板Gは、切出したウェーハが下方に落下しないよう切断後も保持する機能をも有するものであるが、本実施例では、切断開始時と切断終了時の切断負荷の急激な変化を避ける機能も果たさせるようにしている。そこで、この切断負荷について図4に基づき説明する。
【0020】
切断負荷とは、インゴットWをワイヤ1で切断する時にワイヤ1にかかる負荷であり、断面円形のインゴットWを切断する場合、図4(A)に示すような切断弦長と、(B)に示すような加工送り速度(インゴット送り速度)との乗数で、(C)図のように表わされる。そして、本実施形態では、(B)の加工送り速度(インゴット送り速度)を変化させることで、(C)に示すように切断負荷が一定になるようにしているが、切断開始時と切断終了時では加工送り速度を無限大にすることが不可能なため、切断開始時と切断終了時の切断負荷を一定にすることは出来ず、切断負荷の急激な変化は避けられない。
【0021】
そこで、本案の場合は、上記のような切断開始と終了時の切断負荷の急変を避けるため、前記のように上下にガラス当て板G、Gを接着し、このガラス当て板G、Gと共に切断するようにしている。因みに、上方のガラス当て板Gは、切断したウェーハを保持しておくため、下面の一部だけが切込まれた状態で切断を停止するようにしている。
【0022】
ところで、本発明者は、上記のような切断負荷と新線供給速度とワイヤ摩耗量の間に、ワイヤ摩耗量=k×(切断負荷/新線供給速度)の関係が成り立つことを見出した。ここでkは係数である。
すなわち、切断負荷が大きくなると、それに比例してワイヤ摩耗量が大きくなり、新線供給速度が増せば、それに反比例してワイヤ摩耗量が少なくなるということである。
【0023】
この際、切断幅d(図9)はワイヤ摩耗量によって変化し、例えばワイヤ摩耗量が多い場合はワイヤ1の径が細くなって切断幅dが狭くなり、ワイヤ摩耗量が少ない場合はワイヤ1の径が太いままで切断幅dが広がることから、ワイヤ摩耗量に変化を生じさせないで切断することが好ましい。但し、ワイヤ摩耗量を一定にしただけでは、砥粒の減耗分によって図8に示すように、ウェーハの厚みに一定のテーパが生じるため、この砥粒の減耗部を補償する必要がある。
【0024】
そこで、本案では、図2(C)に示すように、理論上の理想的なワイヤ摩耗量という概念を導入した。この理想的なワイヤ摩耗量は、砥粒の減耗分を補償すべく、横軸の切断深さの進行の度合いに応じてワイヤ摩耗量を少なくするよう、直線に下向きの傾斜を与えたものである。因みに、砥粒の減耗分を考慮しないでワイヤ摩耗量を一定にしただけの場合は、このワイヤ摩耗量の直線は水平になる。
【0025】
また、図2(A)の切断負荷は、前述の図4のように、ワーク加工送り速度を調整して概ね一定に保持されるものである。
従って、この図2(A)の切断負荷と、(C)の理想的なワイヤ摩耗量を、前述のワイヤ摩耗量=k×(切断負荷/新線供給速度)の計算式に適用すれば、(B)に示すような理想的な新線供給速度が求められる。
【0026】
そこで、図3は、図2の理想的な状態に近似させた実施例であり、図3(A)の切断負荷については、図2(A)をそのまま忠実に再現し、図3(B)の新線供給速度については、図2(B)の理想的な新線供給速度を4区間分割で近似している。そして、図3(C)の理論上のワイヤ摩耗量は、図3(A)(B)から上記計算式で求めている。
【0027】
すなわち、本案では、切断負荷を一定に保つよう加工送り速度を調整しつつ、新線供給速度を4段階に変化させるよう制御手段11で駆動モータ10を制御しながら加工する。そしてこの時に実際に切出されるウェーハは、図3(D)に示すように、切断方向に対するテーパの影響は殆どないような状態であった。
【0028】
また、この切断時のテーパ度を従来の場合、及び内周刃スライサーの場合と較べると、例えば図7に示すとおりであり、内周刃スライサーに較べて僅かに劣る程度まで改善されることが確認された。
【0029】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0030】
例えば、本実施形態では、理想的な新線供給速度に対して4区間分割で近似させ切換えるようにしているが、より理想に近づけるためには、連続的に或いは少なくとも8〜10段階程度以上に切換えることが望ましい。
【0031】
【発明の効果】
以上のように本発明はワイヤの新線供給速度を制御して、砥粒の減耗分を加味したワイヤの摩耗量を直線的に変化させるようにしたため、ワークの切断幅(加工取代)を一定にすることが出来、例えばウェーハ等において厚みを均一にすることが出来る。
このため、例えば後工程の面取幅を均一化出来、ラップ取代を少なく出来る等の効果がある。
また新線供給速度を、所定の関係式に基づいて制御することで、理想的なワイヤ摩耗量に基づいて新線供給速度を制御することが出来る。
更に新線供給方式としてワイヤの往復動方式を採用すれば、ワイヤの消費を効率的に抑えることが出来る。
【図面の簡単な説明】
【図1】ワイヤソーによる切断装置の構成概要図である。
【図2】理想的なワーク切断方法を説明する説明図であり、(A)は切断負荷、(B)は理想的な新線供給速度、(C)は(理論上の)理想的なワイヤ摩耗量である。
【図3】ワーク切断方法の実施例の説明図であり、(A)は切断負荷、(B)は新線供給速度、(C)は(理論上の)ワイヤ摩耗量、(D)は実際のウェーハテーパである。
【図4】切断負荷を説明するための説明図であり、(A)は切断弦長、(B)はインゴット送り速度、(C)は切断負荷である。
【図5】新線供給速度を説明するための説明図であり、(A)は新線供給速度を100m/min にする時、(B)は新線供給速度を40m/min にする時の制御方法である。
【図6】インゴットにガラス当て板を接着した状態の説明図である。
【図7】本案の効果を比較する比較図である。
【図8】切断負荷を一定にして切断した時の砥粒の減耗の影響の典型例を示す説明図である。
【図9】切断幅の説明図である。
【符号の説明】
1…ワイヤ、 2…駆動ローラ、
3…ローラ、 4…ローラ、
5…加工部、 6…ワークホルダ、
7…ノズル、 8…スラリー受け、
10…駆動モータ、 11…制御手段、
A…ワイヤ送り出し部、 B…ワイヤ受け取り部、
d…切断幅、 G…ガラス当て板、
W…インゴット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in technology for cutting, for example, a semiconductor silicon ingot into a wafer.
[0002]
[Prior art]
Conventionally, for example, in a workpiece cutting method in which a wafer is cut from a semiconductor silicon ingot, the ingot is pressed against a plurality of thin steel wire wires that move simultaneously at a constant width interval in the longitudinal direction between a pair of rollers, and the pressure contact portion is fine There is known a cutting method such as a wire saw in which a plurality of wafers are simultaneously cut while supplying an abrasive slurry in which various abrasive grains are suspended with an oily or water-soluble coolant. And since this method can cut out many wafers at the same time, it is frequently used in place of a conventional inner peripheral edge slicer or the like.
[0003]
At this time, as a method of moving the wire, a method of cutting by moving the wire at a constant linear velocity from the wire sending portion to the wire receiving portion (one-way feeding cutting of the wire), and keeping the wire linear velocity constant There is a method of cutting by reversing the wire moving direction at a predetermined timing (wire reciprocating cutting). In the latter case, for example, when the wire linear velocity is 500 m / min, the wire moves 36 seconds in the forward direction. After moving, it is moved in the reverse direction for 24 seconds, and this is repeated to move in the forward direction at a speed of substantially 100 m / min (500 m / min × (36-24) / (36 + 24)). The actual feed speed is called the new line supply speed, and is generally kept constant.
Incidentally, in the former one-way cutting of the wire as in the former, the wire speed is the same as the new wire supply speed. However, this method consumes a lot of new wire and increases the cost. A cutting method is common.
[0004]
[Problems to be solved by the invention]
However, when cutting by the conventional method, there is a problem that the cutting surface changes in a taper shape along the cutting direction, and the thickness of the cut wafer changes along the cutting direction.
And the tendency that the thickness of this wafer is different is particularly remarkable when it is cut with a wire saw compared to when it is cut with a conventional inner blade slicer or the like, for example, it reaches 10 μm or more with one wafer, There were problems such as a large lapping allowance in the subsequent process.
[0005]
As a factor for changing the thickness of the wafer in this way, a change in the wear amount of the wire itself was considered. That is, the wire itself is also worn by the action of the abrasive grains, and the amount of wear of this wire affects the cutting width d as shown in FIG. 9, and the cutting surface or thickness changes in a taper shape depending on the width of the cutting width d. It may be that. In general, if the wire wear amount is large and the wire diameter is thin, the cutting width d tends to be narrowed and the wafer thickness tends to be thick. If the wire wear amount is small, the cutting width d is widened and the wafer is widened. It seems that the thickness of will tend to be thin.
[0006]
Therefore, it is considered that such a change in the amount of wear of the wire is greatly influenced by a cutting load (work cutting length × work processing feed speed) applied to the wire, so that the cutting load applied to the wire is kept constant. For example, if the workpiece feed rate is controlled to keep the cutting load constant, it is considered that the amount of wear of the wire becomes constant. Therefore, for example, if the processing is performed while adjusting the processing feed rate so as to make the cutting load constant, the thickness difference is 8 even if the taper sudden change portion at the cutting start portion and the end portion is removed as shown in the typical example of FIG. It was cut out with a taper shape reaching 10 μm, and the taper shape could not be improved. And this taper shape was considered to be the influence by the abrasion of an abrasive grain.
In FIG. 8, the vertical axis represents the thickness of the wafer, and the horizontal axis represents the cutting depth (the left side starts cutting and the right side ends cutting).
[0007]
In view of this, there has been a demand for means for correcting a problem such that the thickness of the workpiece or the cut surface changes in a taper shape along the cutting direction in cutting using a wire saw.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention presses a workpiece against a wire to which a new line is supplied at a predetermined speed from the wire sending side toward the wire receiving side, and supplies the abrasive slurry to the pressure contact portion. In the method of cutting workpieces to be cut, the new wire supply speed is controlled by the amount of wear of the wire and the degree of wear of the abrasive grains. By this control, the amount of wear of the wire is linearly compensated for the amount of wear of the abrasive grains. To change.
In addition, as this device , a wire supply driving means for supplying a new wire at a predetermined speed from the wire sending side to the wire receiving side, a work pressure contacting means for pressing the workpiece against the wire, and supplying abrasive slurry to the pressure contact portion And a control means for controlling the wire supply driving means, and the new line supply speed is controlled by the control means.
[0009]
That is, for example, if the wire wear amount is made constant by making the cutting load constant, as shown in FIG. 8, the thickness of the wafer increases as the processing proceeds, and this means that the cutting width is narrow. It shows that the machining allowance will be reduced. The cause of this was thought to be wear of abrasive grains. That is, generally, while the diameter of the abrasive grains is large, the cutting width is wide (the machining allowance is large), and conversely, if the abrasive grains are crushed and the diameter of the abrasive grains is reduced, the cutting width is reduced (the machining allowance is reduced). ) It is also conceivable that the amount of abrasive slurry that sticks to the wire as it progresses into the cutting groove decreases.
[0010]
Therefore, the cutting speed (machining allowance) is kept constant by controlling the new line supply speed according to the amount of wire wear and the degree of wear of the abrasive grains, which greatly affect the cutting width (machining allowance).
Here, as a method for keeping the new line supply speed constant, for example, in the case of reciprocating cutting of the wire, the ratio of the time in the forward direction and the reverse direction is changed in a constant reciprocating cycle.
[0011]
In the cutting method and cutting apparatus of the present invention, the new line supply speed is
Wire wear amount = k x (cutting load / new line supply speed)
Control based on the relational expression.
Here, cutting load = (work cutting length) × (work processing feed rate), k is a coefficient.
[0012]
The above relational expression has been found by the present inventor. This expression indicates that the wire wear amount increases in proportion to the cutting load and increases in proportion to the new line supply speed. It shows that it decreases.
Therefore, if the cutting load is determined, and the ideal wire wear amount that compensates for the abrasive wear is obtained, the ideal new line supply speed can be obtained from the above relational expression. If the new line supply speed is controlled by approximating this ideal new line supply speed, the cutting width (processing allowance) can be kept constant.
[0013]
In the cutting method and the cutting apparatus of the present invention , as a new line supply method, a reciprocating supply method for supplying a wire while reciprocating at a predetermined timing is adopted.
And the consumption of a wire can be efficiently suppressed by such a reciprocating system.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings. Here, FIG. 1 is a schematic configuration diagram of a wire saw cutting device, FIG. 2 is an explanatory diagram for explaining an ideal workpiece cutting method, FIG. 3 is an explanatory diagram of an embodiment of the workpiece cutting method, and FIG. 4 is for explaining a cutting load. FIG. 5 is an explanatory diagram for explaining the new line supply speed.
[0015]
The workpiece cutting device using a wire saw of the present invention is configured as a device for cutting a wafer from a silicon ingot manufactured by, for example, a single crystal pulling method, and as shown in FIG. The steel wire 1 is spirally wound around the three rollers 2, 3, 4 at a predetermined pitch and then extended toward the wire receiving portion B, and the lower roller 2 is used as a driving roller. The wire 1 is moved at a predetermined linear velocity, and the two upper rollers 3 and 4 are arranged at the same height, and a processing section 5 is formed between the rollers 3 and 4.
[0016]
That is, a workpiece holder 6 as a workpiece pressing means and an abrasive slurry (a slurry in which fine abrasive grains are suspended in an oily or water-soluble coolant) are supplied to the processing unit 5 and above the processing unit 5. Nozzles 7 and 7 are disposed, and the work holder 6 can hold the ingot W, and can be moved up and down by lifting means (not shown).
A slurry receiver 8 for receiving the abrasive slurry is disposed below the processing unit 5.
[0017]
The drive roller 2 is rotatable by a drive motor 10 as a wire supply drive means, and this drive motor 10 is connected to a control means 11 for controlling according to a preprogrammed method. Then, the control means 11 causes the rotation direction of the drive motor 10 to be reversed at a predetermined timing, and the wire 1 is moved from the wire delivery section A at a substantially predetermined movement speed (new line supply speed) while reciprocating. It is made to supply toward the receiving part B.
[0018]
The new line supply speed is controlled, for example, as shown in FIG. That is, when the wire linear velocity is 500 m / min, for example, as shown in (A), after moving 36 seconds in the forward direction, it is moved 24 seconds in the reverse direction, and by repeating this, it is substantially 100 m / min (500 m / min / min × (36−24) / (36 + 24)) can be moved in the forward direction, and this becomes the new line supply speed.
Next, while keeping the linear velocity constant (500 m / min), for example, as shown in (B), after moving 32.4 seconds in the forward direction, it is moved 27.6 seconds in the reverse direction, and this is repeated. Thus, it can be moved in the forward direction at a speed of substantially 40 m / min (500 m / min × (32.4-27.6) / (32.4 + 27.6)), which becomes the new line supply speed.
Thus, the new line supply speed can be arbitrarily changed by adjusting the reverse rotation timing in the rotation direction. The new wire supply speed is controlled based on an ideal wire wear amount described later.
[0019]
In the processing section 5, the work holder 6 is lowered and pressed against the wire 1 moving the ingot W, and cutting is performed while supplying abrasive slurry to the pressing section. In this embodiment, FIG. As shown in FIG. 5, the glass backing plates G and G are bonded to the upper and lower surfaces of the ingot W for cutting. Of these glass backing plates G, G, for example, the glass backing plate G on the work holder 6 side (upper side) has a function of holding the cut wafer after cutting so that it does not fall downward. In the example, the function of avoiding a sudden change in the cutting load at the start of cutting and at the end of cutting is also performed. This cutting load will be described with reference to FIG.
[0020]
The cutting load is a load applied to the wire 1 when the ingot W is cut by the wire 1. When cutting the ingot W having a circular cross section, the cutting chord length as shown in FIG. It is a multiplier with a machining feed rate (ingot feed rate) as shown in FIG. In this embodiment, the cutting load is made constant as shown in (C) by changing the machining feed rate (ingot feed rate) in (B). In some cases, the machining feed rate cannot be made infinite, so the cutting load at the start of cutting and at the end of cutting cannot be made constant, and a sudden change in the cutting load is inevitable.
[0021]
Therefore, in the case of the present plan, in order to avoid a sudden change in the cutting load at the start and end of cutting as described above, the glass backing plates G and G are bonded up and down as described above, and the glass backing plates G and G are cut together. Like to do. Incidentally, the upper glass backing plate G holds the cut wafer, so that the cutting is stopped in a state where only a part of the lower surface is cut.
[0022]
By the way, the present inventor has found that the relationship of wire wear amount = k × (cutting load / new line supply speed) is established among the cutting load, the new line supply speed, and the wire wear amount as described above. Here, k is a coefficient.
That is, as the cutting load increases, the amount of wire wear increases in proportion to it, and as the new wire feed rate increases, the amount of wire wear decreases in inverse proportion.
[0023]
At this time, the cutting width d (FIG. 9) varies depending on the wire wear amount. For example, when the wire wear amount is large, the diameter of the wire 1 is narrowed and the cut width d is narrowed. Since the cutting width d increases until the diameter of the wire is thick, it is preferable to cut without causing a change in the amount of wire wear. However, if the wire wear amount is kept constant, a certain taper is generated in the wafer thickness as shown in FIG. 8 depending on the amount of wear of the abrasive grains. Therefore, it is necessary to compensate for the depleted portion of the abrasive grains.
[0024]
Therefore, in this proposal, as shown in FIG. 2 (C), a concept of a theoretical ideal amount of wire wear was introduced. This ideal amount of wire wear is a straight line with a downward slope so as to reduce the amount of wire wear according to the progress of the cutting depth of the horizontal axis in order to compensate for the amount of abrasive grain wear. is there. Incidentally, when the wire wear amount is only made constant without considering the depletion amount of the abrasive grains, the straight line of the wire wear amount becomes horizontal.
[0025]
Further, the cutting load in FIG. 2A is maintained substantially constant by adjusting the workpiece machining feed rate as shown in FIG.
Therefore, if the cutting load of FIG. 2 (A) and the ideal wire wear amount of (C) are applied to the above-described calculation formula of wire wear amount = k × (cutting load / new line feed rate), An ideal new line supply speed as shown in (B) is required.
[0026]
Therefore, FIG. 3 is an embodiment approximated to the ideal state of FIG. 2, and for the cutting load of FIG. 3 (A), FIG. 2 (A) is faithfully reproduced as is, and FIG. As for the new line supply speed, the ideal new line supply speed in FIG. 2B is approximated by dividing into four sections. The theoretical wire wear amount in FIG. 3C is obtained from the above calculation formula from FIGS. 3A and 3B.
[0027]
That is, in this proposal, the machining is performed while controlling the drive motor 10 by the control means 11 so as to change the new line supply speed in four stages while adjusting the machining feed rate so as to keep the cutting load constant. The wafer actually cut at this time was in a state where there was almost no influence of the taper on the cutting direction, as shown in FIG.
[0028]
Further, when the taper degree at the time of cutting is compared with the conventional case and the case of the inner peripheral blade slicer, for example, as shown in FIG. 7, the taper degree is improved to a level slightly inferior to the inner peripheral blade slicer. confirmed.
[0029]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0030]
For example, in this embodiment, the ideal new line supply speed is approximated and switched by dividing into four sections. However, in order to make it closer to the ideal, continuously or at least about 8 to 10 steps or more. It is desirable to switch.
[0031]
【The invention's effect】
The present invention as described above, controls the new linear feed speed of the wire, due to so as to linearly vary the amount of wear of the wire in consideration of the depletion amount of the abrasive grains, the work of cutting width (machining allowance) For example, the thickness can be made uniform on a wafer or the like.
For this reason, for example, there is an effect that the chamfering width in the subsequent process can be made uniform and the lapping allowance can be reduced.
Further , by controlling the new line supply speed based on a predetermined relational expression , the new line supply speed can be controlled based on the ideal wire wear amount.
Furthermore , if the wire reciprocating system is adopted as the new line supply system, the wire consumption can be efficiently suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cutting apparatus using a wire saw.
FIG. 2 is an explanatory diagram for explaining an ideal workpiece cutting method, in which (A) is a cutting load, (B) is an ideal new wire feed rate, and (C) is an (theoretical) ideal wire. It is the amount of wear.
FIG. 3 is an explanatory diagram of an embodiment of a workpiece cutting method, where (A) is a cutting load, (B) is a new wire supply speed, (C) is a (theoretical) wire wear amount, and (D) is an actual one. The wafer taper.
4A and 4B are explanatory diagrams for explaining a cutting load, in which FIG. 4A is a cutting string length, FIG. 4B is an ingot feed speed, and FIG. 4C is a cutting load.
FIG. 5 is an explanatory diagram for explaining a new line supply speed, (A) when the new line supply speed is 100 m / min, and (B) when the new line supply speed is 40 m / min. It is a control method.
FIG. 6 is an explanatory diagram of a state where a glass backing plate is bonded to an ingot.
FIG. 7 is a comparative diagram for comparing the effects of the present scheme.
FIG. 8 is an explanatory diagram showing a typical example of the influence of abrasive grain wear when cutting with a constant cutting load.
FIG. 9 is an explanatory diagram of a cutting width.
[Explanation of symbols]
1 ... wire, 2 ... drive roller,
3 ... Roller, 4 ... Roller,
5 ... Machining part, 6 ... Work holder,
7 ... nozzle, 8 ... slurry receiver,
10 ... Drive motor, 11 ... Control means,
A ... Wire feeding part, B ... Wire receiving part,
d: Cutting width, G: Glass plate,
W ... Ingot.

Claims (4)

ワイヤ送り出し側からワイヤ受け取り側に向けて所定の速度で新線が供給されるワイヤにワークを圧接し、この圧接部に砥粒スラリーを供給しつつワークを切断するようにしたワークの切断方法において、切断負荷((ワークの切断長)×(ワークの加工送り速度))を一定に保つよう加工送り速度を調整しつつ、前記ワイヤの新線供給速度は切断負荷を一定にした時に加工の進行に連れてウェーハの厚みが増える分を補償するように直線的に変化するようにしたことを特徴とするワイヤソーによるワーク切断方法。In a workpiece cutting method in which a workpiece is pressed against a wire to which a new line is supplied at a predetermined speed from the wire sending side to the wire receiving side, and the workpiece is cut while supplying abrasive slurry to the pressure contact portion. , While adjusting the machining feed rate to keep the cutting load ((work cutting length) x (work feed speed)) constant, the new wire supply speed of the wire will be processed when the cutting load is kept constant A method of cutting a workpiece with a wire saw, wherein the workpiece linearly changes so as to compensate for an increase in the thickness of the wafer along with the wire saw. 請求項に記載のワイヤソーによるワーク切断方法において、前記新線の供給は、ワイヤを所定のタイミングで往復動させつつ供給する往復動供給方式であることを特徴とするワイヤソーによるワーク切断方法。2. The work cutting method using a wire saw according to claim 1 , wherein the supply of the new line is a reciprocating supply system that supplies the wire while reciprocating at a predetermined timing. ワイヤ送り出し側からワイヤ受け取り側に向けて所定の速度で新線を供給するワイヤ供給駆動手段と、このワイヤにワークを圧接するワーク圧接手段と、圧接部に砥粒スラリーを供給するスラリー供給手段と、前記ワイヤ供給駆動手段を制御する制御手段を備えたワーク切断装置であって、前記制御手段は、切断負荷を一定にした時に加工の進行に連れてウェーハの厚みが増える分を補償するように直線的に新線供給速度を制御することを特徴とするワイヤソーによるワーク切断装置。Wire supply driving means for supplying a new line at a predetermined speed from the wire sending side toward the wire receiving side, work pressure contacting means for pressing the workpiece against the wire, and slurry supplying means for supplying abrasive slurry to the pressure contact portion A workpiece cutting apparatus comprising a control means for controlling the wire supply driving means, wherein the control means compensates for an increase in wafer thickness as the processing proceeds when the cutting load is constant. A workpiece cutting device using a wire saw that linearly controls a new line supply speed. 請求項に記載のワイヤソーによるワーク切断装置において、前記ワイヤ供給駆動手段による新線の供給は、ワイヤの送り方向を所定のタイミングで反転させつつ供給する往復動供給方式であることを特徴とするワイヤソーによるワーク切断装置。4. The workpiece cutting apparatus using a wire saw according to claim 3 , wherein the supply of the new line by the wire supply driving means is a reciprocating supply system that supplies the wire while reversing the wire feeding direction at a predetermined timing. Work cutting device with wire saw.
JP9770296A 1996-03-27 1996-03-27 Work cutting method and apparatus using wire saw Expired - Fee Related JP3656317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9770296A JP3656317B2 (en) 1996-03-27 1996-03-27 Work cutting method and apparatus using wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9770296A JP3656317B2 (en) 1996-03-27 1996-03-27 Work cutting method and apparatus using wire saw

Publications (2)

Publication Number Publication Date
JPH09262826A JPH09262826A (en) 1997-10-07
JP3656317B2 true JP3656317B2 (en) 2005-06-08

Family

ID=14199265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9770296A Expired - Fee Related JP3656317B2 (en) 1996-03-27 1996-03-27 Work cutting method and apparatus using wire saw

Country Status (1)

Country Link
JP (1) JP3656317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453811B (en) * 2007-03-06 2014-09-21 Shinetsu Handotai Kk Cutting method and wire saw device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3810170B2 (en) * 1997-01-29 2006-08-16 信越半導体株式会社 Method of cutting workpiece with wire saw and wire saw
JP4791306B2 (en) 2006-09-22 2011-10-12 信越半導体株式会社 Cutting method
JP4965949B2 (en) 2006-09-22 2012-07-04 信越半導体株式会社 Cutting method
JP4991229B2 (en) 2006-09-22 2012-08-01 信越半導体株式会社 Cutting method and epitaxial wafer manufacturing method
DE102006058823B4 (en) * 2006-12-13 2017-06-08 Siltronic Ag A method of separating a plurality of slices from a workpiece
JP5003294B2 (en) 2007-06-08 2012-08-15 信越半導体株式会社 Cutting method
JP5045378B2 (en) 2007-11-08 2012-10-10 信越半導体株式会社 Wire saw equipment
JP4998241B2 (en) 2007-12-11 2012-08-15 信越半導体株式会社 Method of cutting workpiece by wire saw and wire saw
JP5366135B2 (en) * 2009-05-11 2013-12-11 コマツNtc株式会社 Thin wafer processing method
JP5370006B2 (en) 2009-08-31 2013-12-18 株式会社Sumco Wire saw equipment
JP5045765B2 (en) 2010-01-20 2012-10-10 信越半導体株式会社 Ingot cutting method and wire saw
CN102626959B (en) * 2012-04-23 2014-10-22 天津职业技术师范大学 Equal-line-loss computation method for multi-line cutting machine
JP6402700B2 (en) 2015-10-20 2018-10-10 信越半導体株式会社 Work cutting method and wire saw
CN106956375B (en) * 2017-04-12 2019-12-13 隆基乐叶光伏科技有限公司 cutting method of silicon wafer with polygonal structure size and rod sticking tool
JP6819621B2 (en) 2018-01-25 2021-01-27 信越半導体株式会社 Work cutting method and wire saw
CN109093867B (en) * 2018-09-26 2020-12-15 国家电投集团西安太阳能电力有限公司 Method for cutting solar monocrystalline silicon rod into thin wires
CN109352846A (en) * 2018-12-06 2019-02-19 中电工业互联网有限公司 A kind of intelligent multi-line cutting machine for jade cutting
JP6969579B2 (en) 2019-01-15 2021-11-24 信越半導体株式会社 Work cutting method and wire saw
JP6627002B1 (en) 2019-02-13 2019-12-25 信越半導体株式会社 Work cutting method and work cutting device
JP7020454B2 (en) 2019-05-16 2022-02-16 信越半導体株式会社 Work cutting method and wire saw
JP7226286B2 (en) 2019-12-10 2023-02-21 信越半導体株式会社 How to resume wire saw operation
JP2022178384A (en) 2021-05-20 2022-12-02 信越半導体株式会社 Silicon wafer manufacturing method
CN113799277B (en) * 2021-08-10 2024-04-19 威科赛乐微电子股份有限公司 Crystal multi-line cutting method
JP2023027820A (en) 2021-08-18 2023-03-03 株式会社ディスコ Manufacturing method of single crystal silicon substrate
JP2023057841A (en) 2021-10-12 2023-04-24 株式会社ディスコ Method for manufacturing substrate
JP2023059323A (en) 2021-10-15 2023-04-27 株式会社ディスコ Method for manufacturing single crystal silicon substrate
JP2023066465A (en) 2021-10-29 2023-05-16 株式会社ディスコ Method for manufacturing substrate
JP2023102809A (en) 2022-01-13 2023-07-26 株式会社ディスコ Manufacturing method of substrate
JP2023108103A (en) 2022-01-25 2023-08-04 株式会社ディスコ Manufacturing method of single crystal silicon substrate
JP2023168070A (en) 2022-05-13 2023-11-24 株式会社ディスコ Manufacturing method of substrate
JP2023173995A (en) 2022-05-27 2023-12-07 株式会社ディスコ Manufacturing method of monocrystal silicon substrate
JP2023177025A (en) 2022-06-01 2023-12-13 株式会社ディスコ Method for manufacturing single-crystal silicon substrate
JP2024003655A (en) 2022-06-27 2024-01-15 株式会社ディスコ Method of manufacturing wafer
JP2024043868A (en) 2022-09-20 2024-04-02 株式会社ディスコ Workpiece inspection method and inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453811B (en) * 2007-03-06 2014-09-21 Shinetsu Handotai Kk Cutting method and wire saw device

Also Published As

Publication number Publication date
JPH09262826A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3656317B2 (en) Work cutting method and apparatus using wire saw
TWI578392B (en) Method for simultaneously cutting a multiplicity of slices of particularly uniform thickness from a workpiece
JP2891187B2 (en) Wire saw device and cutting method
CN101687306B (en) Multi-wire saw and method of cutting ingot
JP3672146B2 (en) Wire saw and ingot cutting method
JP2000117613A (en) Method and device for cutting off plurality of plates from hard and fragil workpiece
JP3810170B2 (en) Method of cutting workpiece with wire saw and wire saw
JP2010105061A (en) Wire saw apparatus
KR102103330B1 (en) Ingot cutting method and wire saw
US4191159A (en) System for slicing silicon wafers
JP6589744B2 (en) Work cutting method
KR102100839B1 (en) Workpiece cutting method
US6511362B1 (en) Polishing apparatus and polishing method
JPH09262827A (en) Work cutting method with wire saw
JP2007276048A (en) Workpiece cutting method using wire
JP2003159642A (en) Work cutting method and multi-wire saw system
JPH1128654A (en) Dressing method and device of fixed abrasive grain wire saw
JP3692703B2 (en) Wire saw and ingot cutting method
JP2000141201A (en) Cutting method of wire saw
JP2005153031A (en) Wire saw and working fluid feed method of wire saw
CN113226640B (en) Method for cutting workpiece and wire saw
JP2011230274A (en) Saw wire and method for cutting silicon ingot using the same
JP2008188721A (en) Substrate manufacturing method and wire saw device
JPH10128737A (en) Method for cutting workpiece of wire saw
CN216400146U (en) Device for cutting silicon single crystal rod

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees