JP3654127B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3654127B2
JP3654127B2 JP2000103426A JP2000103426A JP3654127B2 JP 3654127 B2 JP3654127 B2 JP 3654127B2 JP 2000103426 A JP2000103426 A JP 2000103426A JP 2000103426 A JP2000103426 A JP 2000103426A JP 3654127 B2 JP3654127 B2 JP 3654127B2
Authority
JP
Japan
Prior art keywords
permanent magnet
support ring
switch plate
magnetic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000103426A
Other languages
Japanese (ja)
Other versions
JP2001292560A (en
Inventor
晃 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000103426A priority Critical patent/JP3654127B2/en
Publication of JP2001292560A publication Critical patent/JP2001292560A/en
Application granted granted Critical
Publication of JP3654127B2 publication Critical patent/JP3654127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制動補助装置としてバスやトラック等の大型自動車に取付けられる渦電流減速装置に係り、特に連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮可能な渦電流減速装置に関するものである。
【0002】
【従来の技術】
近年、バスやトラック等の大型自動車には、長い降坂時等において、安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離を短縮することを目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。
【0003】
この渦電流式減速装置には、▲1▼例えば図11に示すような、回転軸1に設けられたドラム状のロータ2の内周面側に、非磁性体の支持体3間に所定間隔で配置した強磁性体のスイッチ板4群を介して、ロータ2に対向してその周方向に沿って前記スイッチ板4と基本的には同じ角度位置にN極、S極を交互に配置した永久磁石5群を有する強磁性体の支持リング6を、前記永久磁石5群が全面対向する位置から全面離脱する位置まで密閉ケース7内をアクチュエータ8によって進退可能に設けた軸スライド方式(例えば特開平1−234043号)と、▲2▼例えば図12に示すような、ロータ2の内周面側にこれに対向して配置した支持リング6を、スイッチ板4と支持リング6の外周面に配置した永久磁石5とが重なり合う位置と、一つの永久磁石5が隣接するスイッチ板4を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けた単列旋回方式(例えば特開平1−298948号)と、▲3▼例えば図13に示すような、外周面にその周方向に沿って所定間隔でN極、S極を交互に配置した永久磁石群を有する強磁性体の支持リングを2個並列配置し、一方の支持リング(以下、「固定支持リング6a」という。)は固定で、他方の支持リング(以下、「可動支持リング6b」という。)は所定角度回動可能に構成し、可動支持リング6bの旋回移動によって、可動支持リング6bの永久磁石5bと隣合う固定支持リング6aの永久磁石5aが同極になる位置と、隣合う可動支持リング6bの永久磁石5bと固定支持リング6aの永久磁石5aが異極になる位置とを選択できるように構成した複列旋回方式(例えば特開平4−12659号)とがある。
【0004】
ところで、上記したような渦電流式減速装置にあっては、いずれの方式であっても、例えば長い下り坂で渦電流式減速装置を使用する場合、ロータ2の温度が高温になり、ロータ2が熱変形を起こしたり、ロータ2に熱亀裂が発生したりするのみならず、ロータ2の熱が支持リング6(固定支持リング6a、可動支持リング6b)に伝わって永久磁石5(永久磁石5a,5b)の温度を上昇させる。この永久磁石5(永久磁石5a,5b)の耐熱温度は低く、一般的には120℃程度から不可逆減磁をきたす。従って、連続使用時においても永久磁石5(永久磁石5a,5b)の温度が耐熱温度を超えないような断熱設計を行う必要がある。
【0005】
この断熱設計として、従来は、スイッチ板4の内周面と対向する永久磁石5(永久磁石5a,5b)の表面との間隔を空隙によって構成し、その空隙を広げることによって断熱性を確保していたが、空隙は磁気回路上の大きな抵抗要素であることから、制動力の低下を招くことになっていた。これを補うためには、高価な永久磁石5(永久磁石5a,5b)の量を増加させる必要がある。
【0006】
そこで、上記したような問題を解決するために、特開平4−251600号では、図11に示したような軸スライド方式の渦電流式減速装置において、図14に示すように、ロータ2に対向する温度スイッチ9を密閉ケース7に支持させ、支持リング6を駆動するアクチュエータ8の流体回路を制御する電磁切換弁10の通電回路に温度スイッチ9を挿入接続し、ロータ2の温度が所定以上になった時、支持リング6をロータ2から離反させるようにしている。なお、図14中の11はアクチュエータ8の駆動源を示す。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平4−251600号で提案された装置は、システム構成が複雑でコスト高となるうえに、制御時には制動途中で制動効果を中断させることになるので、長時間の継続使用ができないという欠点がある。
【0008】
本発明は、上記した従来の問題点に鑑みてなされたものであり、簡単な構成で連続使用の際にも制動効果を中断させることなくロータの温度上昇を抑えて長時間制動効果を発揮可能な渦電流減速装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、本発明の渦電流式減速装置は、軸スライド方式、単列旋回方式、複列旋回方式のうちの何れかの渦電流式減速装置において、支持リングかスイッチ板の少なくとも何れか一方を、整磁材料或いは強磁性体と整磁材料との複合構造となしたり、また、永久磁石の表面側に整磁材料からなる磁極板を設けたこととしている。そして、このようにすることで、連続使用の際にも制動効果を中断させることなくロータの温度上昇を抑えて長時間にわたって制動効果を発揮することができる。
【0010】
【発明の実施の形態】
本発明の渦電流式減速装置は、回転軸に設けられたロータの内周面側に、非磁性体の支持体間に所定間隔で配置した強磁性体のスイッチ板群を介して、ロータに対向してその周方向に沿って前記スイッチ板と基本的には同じ角度位置にN極、S極を交互に配置した永久磁石群を有する強磁性体の支持リングを、前記永久磁石群が全面対向する位置から全面離脱する位置まで密閉ケース内を進退可能に設けたり、または、スイッチ板と永久磁石とが重なり合う位置と、一つの永久磁石が隣接するスイッチ板を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けたり、または、前記支持リングを2個並列配置し、一方の支持リングは固定で、他方の支持リングは所定角度回動可能に構成し、他方の支持リングの旋回移動によって、他方の支持リングの永久磁石と隣合う一方の支持リングの永久磁石が同極になる位置と、隣合う他方の支持リングの永久磁石と一方の支持リングの永久磁石が異極になる位置とを選択できるように構成した渦電流式減速装置において、前記支持リングかスイッチ板の少なくとも何れか一方を、整磁材料或いは強磁性体と整磁材料との複合構造となしたり、また、永久磁石の表面側に整磁材料からなる磁極板を設けたりしたものである。
【0011】
本発明の渦電流式減速装置は、支持リングかスイッチ板の少なくとも何れか一方を、整磁材料或いは強磁性体と整磁材料との複合構造となしたり、或いは、永久磁石の表面側に整磁材料からなる磁極板を設けたりすることで、すなわち、整磁材料を磁気回路の途中に介在させることで、当該部位の温度上昇に伴って磁気回路の磁気的な抵抗が増大することになるので、長時間の連続制動時には制動力が抑制されることになって、ロータの温度上昇がおさまり、ロータの熱変形や熱亀裂の発生を防止したうえで、安定した制動効果を長時間継続できることになる。また、同じ理由によって、ロータの熱影響による永久磁石の温度上昇が抑制され、永久磁石が耐熱温度を超えない状態で安定した制動効果を長時間持続できることになる。
【0012】
例えば、支持リングやスイッチ板を整磁材料或いは強磁性体と整磁材料との複合構造となした場合には、長時間の制動時には、制動時間の経過と共にロータの温度が上昇するにつれてロータの熱を吸収して支持リングやスイッチ板の温度も上昇し、支持リングやスイッチ板の飽和磁束密度が低下して支持リングやスイッチ板を通過する磁束量が減少し、発生する制動力が低下するようになる。制動力が低下すると、その低下に伴ってロータの発熱が抑制され、ロータの温度上昇がおさまり、その後は安定して長時間にわたり、制動を持続することができるようになる。
【0013】
【実施例】
以下、複列旋回方式に適用した場合における本発明の渦電流式減速装置を図1〜図8に示す実施例に基づいて説明する。なお、図1〜図8中、図13と同一符号は同一部分或いは相当部分を示し、詳細な説明を省略する。
図1〜図5はスイッチ板を整磁材料或いは強磁性体と整磁材料との複合構造となした本発明の渦電流式減速装置の回転軸方向の要部断面図、図6及び図7は支持リングを整磁材料或いは強磁性体と整磁材料との複合構造となした本発明の渦電流式減速装置の制動時での磁気回路構成を示す説明図、図8は永久磁石の表面側に整磁材料からなる磁極板を設けた本発明の渦電流式減速装置の制動時での磁気回路構成を示す説明図である。
【0014】
図1〜図8はそれぞれ本発明の渦電流式減速装置の一例を示したもので、図13を用いて説明したものと同様の、回転軸(1)に一体的に取り付けられたロータ2と、このロータ2に対向して支持され、ロータ2の周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の固定支持リング6aに一定の間隔を存して配置された永久磁石5a群と、この永久磁石5a群を配置した固定支持リング6aに隣接すると共に前記ロータ2に対向して設けられ、固定支持リング6aと同様に、ロータ2の周方向に沿って磁極の向きを互いに逆向きとなるように永久磁石5b群を配置した所要角度旋回可能な可動支持リング6bと、これら両永久磁石5a,5b群と前記ロータ2との間に、これら両永久磁石5a,5b群の各永久磁石5a,5bと基本的には同じ角度位置に介設された強磁性体のスイッチ板4群と、このスイッチ板4群の各スイッチ板4の間に介設された非磁性体の支持体3部分を備えた構造である。
【0015】
本発明は、上記した構造の複列旋回方式の渦電流式減速装置において、固定支持リング6a及び可動支持リング6bか、スイッチ板4の少なくとも何れか一方を、整磁材料或いは強磁性体と整磁材料との複合構造となしたり、また、永久磁石5a,5bの表面側に整磁材料からなる磁極板を設けたりすることで、当該部位の温度上昇に伴って磁気回路の磁気的な抵抗が増大し、長時間の連続制動時には制動力が抑制されてロータ2の温度上昇がおさまり、ロータ2の熱変形や熱亀裂の発生を防止したうえで、安定した制動効果を長時間継続できるようにしたものである。また、同じ理由によって、ロータ2の熱影響による永久磁石5a,5bの温度上昇が抑制され、永久磁石5a,5bが耐熱温度を超えない状態で安定した制動効果を長時間持続できるようになる。
以下これらについて、図1〜図8に基づいて個々に説明する。
【0016】
先ず、図1〜図5はスイッチ板4を、整磁材料或いは強磁性体と整磁材料との複合構造となした例である。
図1(a)はスイッチ板4全体を整磁材料4aで構成したものである。このような構成の場合、スイッチ板4をアルミニウムなどの非磁性体よりなる支持体3で鋳ぐるんだ後、一体成形加工により製作することが可能であるため、製造コストが安価になる。また、整磁材料4aがロータ2の内表面近傍に対向しているので、図1(b)に示したように、従来と比較してロータ2に対するスイッチ板4の温度感受性を高くすることができ、図1(c)に示したように、従来と比較してロータ2の温度上昇抑制を高い精度で実現できることになる。
【0017】
また、図2(a)はスイッチ板4の外周面側に一定の厚みの整磁材料4aを設けたものである。このような構成の場合、図2(b)に示したように、従来と比較した場合は勿論のこと、図1(a)に示したようなスイッチ板4全体を整磁材料4aで構成したものよりもさらに温度感受性が高くなるので、整磁材料4aの厚みを適宜設定することによって、図2(c)に示したように、発生する制動力をある一定値よりも低下しないようにすることが可能になる。また、図1(a)に示したようなスイッチ板4全体を整磁材料4aで構成したものよりも整磁材料4aの使用量が少なくてすむので、コストを抑えることができる。
【0018】
また、図3はスイッチ板4の外周面側における回転軸方向の中央部分のみに一定の厚みの整磁材料4aを設けたものである。このように、制動解除時、異なる極性の永久磁石5a,5bから発生する磁束の密度が最も高くなるスイッチ板4の回転軸方向中央部分に整磁材料4aを設けた場合、図2(a)に示したような外周面側に一定の厚みの整磁材料4aを設けたものよりもさらに温度感受性が高くなって、整磁材料4aの厚みの設定により、発生する制動力をある一定値よりも低下しないようにすることが容易に行えるようになる。また、整磁材料4aの使用量もさらに少なくてすむので、コストを抑えることができる。さらに、制動力を下げる際に温度が最も高くなるロータ2の幅中央部において効果的に作用するので、ロータ2の幅中央部の発熱を抑制する上でも効果的である。
【0019】
また、図4はスイッチ板4の内周面側に一定の厚みの整磁材料4aを設けたものである。このような構成の場合、図1〜図3に示したような構成のものと比較して、固定支持リング6aや可動支持リング6bの内部、特に永久磁石5a,5bの温度に対する整磁材料4aの感受性が高くなるので、永久磁石5a,5bから発生する磁束量を制限することによって永久磁石5a,5b或いは固定支持リング6aや可動支持リング6bを構成する部品の温度上昇を容易に抑制することが可能になる。
【0020】
ところで、ロータ2の耐熱性に余裕がある場合には、特に永久磁石5a,5bの耐熱温度の制約から制動を中断せざるをえなくなるが、その永久磁石5a,5bの耐熱温度を超えないように、図4のように永久磁石5a,5bの温度に追随する部位に整磁材料4aを設けて発生する磁束を減少させることで、永久磁石5a,5bがその耐熱温度を超えない範囲で制動を持続させることが可能になる。
【0021】
また、図5はスイッチ板4の内周面側における回転軸方向の両側を一定の厚みの整磁材料4aとなしたものである。このような構成の場合、図4に示したような構成のものと比較して、図5(b)に示した制動解除時におけるロータ2への磁気漏れを減少させることが可能となる。すなわち、制動解除時には異なる極性の永久磁石5a,5bから発生する磁束がスイッチ板4の断面を通過するが、その磁束密度が最も高い幅中央部での断面積(断面高さ)部分において、温度上昇によって飽和磁束量が低下する整磁材料4aを配置していないからである。
【0022】
次に、図6及び図7は固定支持リング6a及び可動支持リング6bを、整磁材料或いは強磁性体と整磁材料との複合構造となした例である。
図6は固定支持リング6a及び可動支持リング6bの外周面側に一定の厚みの整磁材料6aa,6baを設けたものである。このような構成の場合、図4に示したようなスイッチ板4の内周面側に一定の厚みの整磁材料4aを設けたものに比べて、特に永久磁石5a,5bに対する整磁材料6aa,6baの温度感受性が高くなるので、永久磁石5a,5bから発生する磁束量を永久磁石5a,5bの温度によって精度良く制御することが容易に可能になる。また、整磁材料6aa,6baも固定支持リング6a及び可動支持リング6bについてそれぞれ1つですむので、組み立て及び部品コストのうえでも有利である。
【0023】
図7は固定支持リング6a及び可動支持リング6bの外周面側における永久磁石5a,5a間及び永久磁石5b,5b間の一部のみに一定の厚みの整磁材料6aa,6baを設けたものである。このような構成の場合、図6に示したものと同様、特に永久磁石5a,5bに対する整磁材料6aa,6baの温度感受性が高くなるので、永久磁石5a,5bから発生する磁束量を永久磁石5a,5bの温度によって精度良く制御することが容易に可能になる。
【0024】
次に、図8は永久磁石5a,5bの表面側に整磁材料からなる磁極板5aa,5baを設けた例である。このような構成の場合、整磁材料からなる磁極板5aa,5baが永久磁石5a,5bに直接接触しているので、図6や図7に示したものよりもさらに永久磁石5a,5bに対する整磁材料からなる磁極板5aa,5baの温度感受性が高くなって、永久磁石5a,5bから発生する磁束量を永久磁石5a,5bの温度によって最も精度良く制御することが容易に可能になる。
【0025】
このような図1〜図8に示した構成の本発明の渦電流式減速装置では、図示しない駆動部によって可動支持リング6bを旋回移動させることによって、可動支持リング6bの永久磁石5bと隣合う固定支持リング6aの永久磁石5aが同極になると、ロータ2の周方向に隣接する永久磁石5a,5b相互が、スイッチ板4を磁気通路としてロータ2と磁気的に接続されて、いわゆる制動状態となり、回転する前記ロータ2が永久磁石5a,5bからの磁界を横切る時にロータ2に生じる渦電流と磁界の作用により、ロータ2に制動トルクが発生する。
【0026】
そしてこの制動時、上記した構成の本発明の渦電流式減速装置では、整磁材料4a,6aa,6baや磁極板5aa,5baによって、当該整磁材料4a,6aa,6baや磁極板5aa,5baの温度上昇に伴って磁気回路の磁気的な抵抗が増大し、図9に実線で示したように、長時間の連続制動時には制動力が抑制されてロータ2の温度上昇がおさまり、ロータ2の熱変形や熱亀裂の発生を防止したうえで、安定した制動効果を長時間継続できるようになる。また、同じ理由によって、図10に実線で示したように、ロータ2の熱影響による永久磁石5a,5bの温度上昇が抑制され、永久磁石5a,5bが耐熱温度を超えない状態で安定した制動効果を長時間持続できるようになる。なお、図9及び図10における破線は整磁材料を磁気回路の途中に介在させない従来の渦電流式減速装置を使用した場合の結果を示したものである。
【0027】
上記した制動時の位置から、可動支持リング6bを回動させて、永久磁石5b列を磁石の1配列ピッチ分だけ旋回移動させる。この状態では、1配列ピッチ分だけ旋回移動した可動支持リング6bの永久磁石5bと固定支持リング6aの永久磁石5aが異極になって、隣合う永久磁石5a,5b同士がスイッチ板4によって磁気的に接続され、固定支持リング6a、可動支持リング6bとロータ2との間は磁気遮蔽の制動解除状態となる。
【0028】
図1〜図8は、複列旋回方式の渦電流式減速装置に本発明を適用したものについて説明したものであるが、本発明は、複列旋回方式の渦電流式減速装置に限らず、軸スライド方式や単列旋回方式の渦電流式減速装置に適用しても良いことは言うまでもない。
【0029】
【発明の効果】
以上説明したように、本発明の渦電流式減速装置では、整磁材料を磁気回路の途中に介在させることで、当該部位の温度上昇に伴って磁気回路の磁気的な抵抗が増大することになるので、長時間の連続制動時には制動力が抑制されることになって、ロータの温度上昇がおさまり、ロータの熱変形や熱亀裂の発生を防止したうえで、安定した制動効果を長時間継続できることになる。また、同じ理由によって、ロータの熱影響による永久磁石の温度上昇が抑制され、永久磁石が耐熱温度を超えない状態で安定した制動効果を長時間持続できることになる。
【0030】
すなわち、本発明の渦電流式減速装置によれば、簡単な構成で連続使用の際にも制動効果を中断させることなくロータの温度上昇を抑えて長時間制動効果を発揮することができるようになる。
【図面の簡単な説明】
【図1】(a)は複列旋回方式に適用した場合における本発明の渦電流式減速装置の回転軸方向の要部断面図で、スイッチ板全体を整磁材料となしたもの、(b)は(a)の構成におけるスイッチ板の飽和磁束密度と温度の関係を従来との比較において示した図、(c)は(a)の構成における制動時間とロータ温度の関係を従来との比較において示した図である。
【図2】(a)は複列旋回方式に適用した場合における本発明の渦電流式減速装置の回転軸方向の要部断面図で、スイッチ板の外周面側のみを整磁材料となし、その他は強磁性体のもの、(b)は(a)の構成におけるスイッチ板の飽和磁束密度と温度の関係を従来との比較において示した図、(c)は(a)の構成における制動時間と発生制動力の関係を従来との比較において示した図である。
【図3】複列旋回方式に適用した場合における本発明の渦電流式減速装置の回転軸方向の要部断面図で、スイッチ板の外周面側における回転軸方向の中央部分のみを整磁材料となし、その他は強磁性体のものである。
【図4】複列旋回方式に適用した場合における本発明の渦電流式減速装置の回転軸方向の要部断面図で、スイッチ板の内周面側のみを整磁材料となし、その他は強磁性体のものである。
【図5】複列旋回方式に適用した場合における本発明の渦電流式減速装置の回転軸方向の要部断面図で、スイッチ板の内周面側における回転軸方向の両側を整磁材料となし、その他は強磁性体のもので、(a)は制動時、(b)は制動解除時を示したものである。
【図6】複列旋回方式に適用した場合における本発明の渦電流式減速装置の制動時での磁気回路構成を示す説明図で、支持リングの外周面側のみを整磁材料となし、その他は強磁性体のものである。
【図7】複列旋回方式に適用した場合における本発明の渦電流式減速装置の制動時での磁気回路構成を示す説明図で、支持リングの外周面側における永久磁石間の一部のみを整磁材料となし、その他は強磁性体のものである。
【図8】複列旋回方式に適用した場合における本発明の渦電流式減速装置の制動時での磁気回路構成を示す説明図で、永久磁石の表面側に整磁材料からなる磁極板を設けたものである。
【図9】本発明の渦電流式減速装置を適用した場合における制動力の抑制効果とロータの温度上昇特性を従来の渦電流式減速装置と比較した図である。
【図10】本発明の渦電流式減速装置を適用した場合における制動力の抑制効果と永久磁石の温度上昇特性を従来の渦電流式減速装置と比較した図である。
【図11】特開平1−234043号で提案された軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【図12】特開平1−298948号で提案された単列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図13】特開平4−12659号で提案された複列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図14】特開平4−251600号で提案された軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【符号の説明】
1 回転軸
2 ロータ
3 支持体
4 スイッチ板
4a 整磁材料
5 永久磁石
5a 永久磁石
5aa 磁極板
5b 永久磁石
5ba 磁極板
6 支持リング
6a 固定支持リング
6aa 整磁材料
6b 可動支持リング
6ba 整磁材料
7 密閉ケース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current reduction device attached to a large vehicle such as a bus or a truck as a braking assist device, and more particularly to an eddy current reduction device capable of exerting a braking effect for a long time by suppressing a temperature rise of a rotor even in continuous use. It relates to the device.
[0002]
[Prior art]
In recent years, for large vehicles such as buses and trucks, stable deceleration on long downhills, etc., reducing the number of times the foot brake is used, preventing abnormal lining wear and fading, and braking stop distance For the purpose of shortening the eddy current type speed reducer, in addition to a foot brake as a main brake and an exhaust brake as an auxiliary brake, an eddy current type speed reducer has been attached.
[0003]
In this eddy current type speed reducer, (1) as shown in FIG. 11, for example, on the inner peripheral surface side of a drum-like rotor 2 provided on the rotary shaft 1, a predetermined interval is provided between nonmagnetic support bodies 3. The N poles and S poles are alternately arranged at the same angular position as the switch plate 4 along the circumferential direction facing the rotor 2 through the group of ferromagnetic switch plates 4 arranged in the above. A shaft slide system (for example, specially provided) in which a ferromagnetic support ring 6 having a group of permanent magnets 5 is provided so that it can be moved back and forth by an actuator 8 from a position where the group of permanent magnets 5 completely faces to a position where it is completely detached. (2) No. 1-234043) and (2), for example, as shown in FIG. 12, a support ring 6 arranged on the inner peripheral surface side of the rotor 2 so as to oppose it is provided on the outer peripheral surfaces of the switch plate 4 and the support ring 6. A position where the arranged permanent magnet 5 overlaps; A single row turning system (for example, JP-A-1-298948) provided so as to be able to select a position where two permanent magnets 5 overlap each other across the adjacent switch plates 4, and (3), for example, FIG. As shown in FIG. 13, two support rings made of a ferromagnetic material having a permanent magnet group in which N poles and S poles are alternately arranged at predetermined intervals along the circumferential direction are arranged in parallel on the outer peripheral surface, and one support ring (Hereinafter referred to as “fixed support ring 6a”) is fixed, and the other support ring (hereinafter referred to as “movable support ring 6b”) is configured to be rotatable by a predetermined angle. The permanent magnet 5b of the movable support ring 6b and the permanent magnet 5a of the fixed support ring 6a adjacent to each other have the same polarity, and the permanent magnet 5b of the adjacent movable support ring 6b and the permanent magnet 5a of the fixed support ring 6a are different. There is a double row swivel system (JP-A-4-12659) configuration were to allow selection of the position where the.
[0004]
By the way, in the eddy current type speed reducer as described above, in any system, for example, when the eddy current type speed reducer is used on a long downhill, the temperature of the rotor 2 becomes high, and the rotor 2 Not only causes thermal deformation or thermal cracks in the rotor 2, but also the heat of the rotor 2 is transmitted to the support ring 6 (fixed support ring 6a, movable support ring 6b) and the permanent magnet 5 (permanent magnet 5a). , 5b). The heat resistance temperature of the permanent magnet 5 (permanent magnets 5a and 5b) is low and generally causes irreversible demagnetization from about 120 ° C. Therefore, it is necessary to perform a heat insulation design so that the temperature of the permanent magnet 5 (permanent magnets 5a and 5b) does not exceed the heat resistance temperature even during continuous use.
[0005]
As this heat insulation design, conventionally, the gap between the inner peripheral surface of the switch plate 4 and the surface of the permanent magnet 5 (permanent magnets 5a, 5b) facing the gap is formed by a gap, and the heat insulation is ensured by widening the gap. However, since the air gap is a large resistance element on the magnetic circuit, the braking force is reduced. In order to compensate for this, it is necessary to increase the amount of expensive permanent magnets 5 (permanent magnets 5a and 5b).
[0006]
Therefore, in order to solve the above-described problem, Japanese Patent Laid-Open No. 4-251600 discloses that the shaft slide type eddy current type reduction device as shown in FIG. 11 faces the rotor 2 as shown in FIG. The temperature switch 9 is supported by the sealed case 7, and the temperature switch 9 is inserted and connected to the energization circuit of the electromagnetic switching valve 10 that controls the fluid circuit of the actuator 8 that drives the support ring 6, so that the temperature of the rotor 2 exceeds a predetermined value. When this happens, the support ring 6 is separated from the rotor 2. Note that reference numeral 11 in FIG. 14 denotes a drive source of the actuator 8.
[0007]
[Problems to be solved by the invention]
However, the device proposed in Japanese Patent Laid-Open No. 4-251600 has a complicated system configuration and is expensive, and the braking effect is interrupted during braking during control, so that it cannot be used continuously for a long time. There are drawbacks.
[0008]
The present invention has been made in view of the above-described conventional problems, and can suppress the temperature rise of the rotor without interrupting the braking effect even during continuous use with a simple configuration and can exert a braking effect for a long time. An object of the present invention is to provide a simple eddy current reduction device.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, the eddy current type speed reducer of the present invention is a support ring or switch plate in any one of an eddy current type speed reducer of a shaft slide type, a single row turning type, or a double row turning type. It is assumed that at least one of these is a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material, and a magnetic pole plate made of a magnetic shunt material is provided on the surface side of the permanent magnet. And by doing in this way, the temperature rise of a rotor can be suppressed and the braking effect can be exhibited over a long time, without interrupting the braking effect even in continuous use.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The eddy current reduction device of the present invention is provided on the rotor through a ferromagnetic switch plate group arranged at a predetermined interval between nonmagnetic support members on the inner peripheral surface side of the rotor provided on the rotating shaft. A ferromagnetic support ring having a permanent magnet group in which N poles and S poles are alternately arranged at the same angular position as the switch plate along the circumferential direction is opposed to the entire surface of the permanent magnet group. A position in which the inside of the sealed case can be moved forward and backward from the facing position to the position where it completely leaves, or a position where the switch plate and the permanent magnet overlap, and a position where one permanent magnet overlaps the adjacent switch plate by half. The two support rings are arranged in parallel so that they can be selected, or one of the support rings is fixed and the other support ring is rotatable by a predetermined angle. For the swivel movement Thus, the permanent magnet of one support ring adjacent to the permanent magnet of the other support ring has the same polarity, and the permanent magnet of the other adjacent support ring and the permanent magnet of one support ring have different polarities. In the eddy current type speed reducer configured so that the position can be selected, at least one of the support ring and the switch plate has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material, A pole plate made of a magnetic shunt material is provided on the surface side of the permanent magnet.
[0011]
In the eddy current type speed reducer of the present invention, at least one of the support ring and the switch plate has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material, or is arranged on the surface side of a permanent magnet. By providing a magnetic plate made of a magnetic material, that is, by interposing a magnetic shunt material in the middle of the magnetic circuit, the magnetic resistance of the magnetic circuit increases as the temperature of the part increases. Therefore, the braking force is suppressed during continuous braking for a long time, the temperature rise of the rotor is suppressed, and the stable braking effect can be continued for a long time while preventing thermal deformation and thermal cracking of the rotor. become. For the same reason, the temperature increase of the permanent magnet due to the heat effect of the rotor is suppressed, and a stable braking effect can be maintained for a long time in a state where the permanent magnet does not exceed the heat resistance temperature.
[0012]
For example, when the support ring and the switch plate are made of a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material, during braking for a long time, the rotor temperature increases as the rotor temperature rises as the braking time elapses. The temperature of the support ring and switch plate rises by absorbing heat, the saturation flux density of the support ring and switch plate decreases, the amount of magnetic flux passing through the support ring and switch plate decreases, and the generated braking force decreases. It becomes like this. When the braking force decreases, the heat generation of the rotor is suppressed as the braking force decreases, and the temperature rise of the rotor is suppressed. After that, braking can be stably continued for a long time.
[0013]
【Example】
Hereinafter, the eddy current type speed reducer of the present invention when applied to a double row swirl method will be described based on the embodiments shown in FIGS. 1 to 8, the same reference numerals as those in FIG. 13 denote the same or corresponding parts, and a detailed description thereof is omitted.
1 to 5 are cross-sectional views of the main part of the eddy current type speed reducer of the present invention in which the switch plate has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material, and FIG. 6 and FIG. FIG. 8 is an explanatory view showing a magnetic circuit configuration at the time of braking of the eddy current type speed reducer according to the present invention in which the support ring has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material. FIG. It is explanatory drawing which shows the magnetic circuit structure at the time of the braking of the eddy current type | formula speed reducer of this invention which provided the magnetic pole board which consists of magnetic shunt materials in the side.
[0014]
FIGS. 1 to 8 each show an example of the eddy current type speed reducer of the present invention, which is similar to the one described with reference to FIG. 13 and the rotor 2 integrally attached to the rotating shaft (1). The permanent support is arranged opposite to the rotor 2 and arranged at a fixed interval on the fixed support ring 6a made of a ferromagnetic material so that the directions of the magnetic poles are opposite to each other along the circumferential direction of the rotor 2. A magnet 5a group and a fixed support ring 6a on which the permanent magnet 5a group is disposed are provided adjacent to the rotor 2 and facing the rotor 2, and the direction of the magnetic poles along the circumferential direction of the rotor 2 is the same as the fixed support ring 6a. Between the two permanent magnets 5a and 5b and the rotor 2 between the permanent magnets 5a and 5b and the rotor 2. Each permanent magnet 5a, 5b in the group Basically, a ferromagnetic switch plate 4 group interposed at the same angular position and a non-magnetic support 3 portion interposed between the switch plates 4 of the switch plate 4 group are provided. Structure.
[0015]
In the double-row swirl type eddy current type speed reducer having the above-described structure, the present invention is configured such that at least one of the fixed support ring 6a and the movable support ring 6b and the switch plate 4 is arranged with a magnetic shunt material or a ferromagnetic material. By forming a composite structure with a magnetic material, or by providing a magnetic pole plate made of a magnetic shunt material on the surface side of the permanent magnets 5a and 5b, the magnetic resistance of the magnetic circuit is increased as the temperature of the portion increases. The braking force is suppressed during long-time continuous braking, and the temperature rise of the rotor 2 is suppressed, so that the rotor 2 can be prevented from thermal deformation and cracking, and a stable braking effect can be continued for a long time. It is a thing. For the same reason, the temperature rise of the permanent magnets 5a and 5b due to the thermal influence of the rotor 2 is suppressed, and a stable braking effect can be maintained for a long time in a state where the permanent magnets 5a and 5b do not exceed the heat resistance temperature.
Hereinafter, these will be described individually with reference to FIGS.
[0016]
First, FIGS. 1 to 5 show an example in which the switch plate 4 has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material.
FIG. 1A shows the entire switch plate 4 made of a magnetic shunt material 4a. In such a configuration, the switch plate 4 can be manufactured by integral molding after casting the switch plate 4 with the support 3 made of a non-magnetic material such as aluminum, so that the manufacturing cost is reduced. Further, since the magnetic shunt material 4a is opposed to the vicinity of the inner surface of the rotor 2, as shown in FIG. 1B, the temperature sensitivity of the switch plate 4 with respect to the rotor 2 can be increased as compared with the conventional case. In addition, as shown in FIG. 1C, the temperature rise of the rotor 2 can be suppressed with higher accuracy than in the prior art.
[0017]
FIG. 2A shows a case where a magnetic shunt material 4 a having a certain thickness is provided on the outer peripheral surface side of the switch plate 4. In the case of such a configuration, as shown in FIG. 2 (b), the switch plate 4 as shown in FIG. 1 (a) is entirely composed of a magnetic shunt material 4a, as compared with the conventional case. Since the temperature sensitivity is higher than that of the material, the thickness of the magnetic shunt material 4a is appropriately set so that the generated braking force is not lowered below a certain value as shown in FIG. It becomes possible. In addition, since the amount of the magnetic shunt material 4a used is less than that of the switch plate 4 as a whole as shown in FIG. 1A made of the magnetic shunt material 4a, the cost can be reduced.
[0018]
Further, FIG. 3 shows that a magnetic shunt material 4a having a certain thickness is provided only in the central portion in the direction of the rotation axis on the outer peripheral surface side of the switch plate 4. As described above, when the magnetic shunt material 4a is provided at the central portion in the rotation axis direction of the switch plate 4 where the density of the magnetic flux generated from the permanent magnets 5a and 5b having different polarities is highest when the brake is released, FIG. The temperature sensitivity is further higher than that in which the magnetic shunt material 4a having a constant thickness is provided on the outer peripheral surface side as shown in FIG. 1, and the generated braking force is set to a certain value by setting the thickness of the magnetic shunt material 4a. It is possible to easily prevent the decrease. Further, since the amount of the magnetic shunt material 4a used can be further reduced, the cost can be suppressed. Furthermore, since it acts effectively in the central part of the width of the rotor 2 where the temperature becomes highest when the braking force is lowered, it is also effective in suppressing heat generation in the central part of the width of the rotor 2.
[0019]
FIG. 4 shows a case where a magnetic shunt material 4 a having a certain thickness is provided on the inner peripheral surface side of the switch plate 4. In the case of such a configuration, the magnetic shunt material 4a with respect to the temperature of the inside of the fixed support ring 6a and the movable support ring 6b, particularly the permanent magnets 5a and 5b, as compared with the configuration shown in FIGS. Therefore, by limiting the amount of magnetic flux generated from the permanent magnets 5a and 5b, the temperature rise of the components constituting the permanent magnets 5a and 5b or the fixed support ring 6a and the movable support ring 6b can be easily suppressed. Is possible.
[0020]
By the way, when the heat resistance of the rotor 2 has a margin, the braking must be interrupted due to the restriction of the heat resistance temperature of the permanent magnets 5a and 5b, but the heat resistance temperature of the permanent magnets 5a and 5b should not be exceeded. Further, as shown in FIG. 4, the magnetic flux generated by reducing the magnetic flux generated by providing the magnetic shunt material 4a at the site following the temperature of the permanent magnets 5a and 5b is reduced within a range in which the permanent magnets 5a and 5b do not exceed the heat resistant temperature. Can be sustained.
[0021]
FIG. 5 shows a magnetic shunt material 4a having a constant thickness on both sides in the rotational axis direction on the inner peripheral surface side of the switch plate 4. FIG. In the case of such a configuration, it is possible to reduce the magnetic leakage to the rotor 2 at the time of releasing the brake shown in FIG. 5B, compared with the configuration shown in FIG. In other words, the magnetic flux generated from the permanent magnets 5a and 5b having different polarities when the brake is released passes through the cross section of the switch plate 4, but the temperature at the cross-sectional area (cross-sectional height) portion at the center of the width where the magnetic flux density is the highest. This is because the magnetic shunt material 4a whose saturation magnetic flux amount decreases due to the rise is not disposed.
[0022]
Next, FIGS. 6 and 7 show examples in which the fixed support ring 6a and the movable support ring 6b have a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material.
In FIG. 6, magnetic shunt materials 6aa and 6ba having a constant thickness are provided on the outer peripheral surface side of the fixed support ring 6a and the movable support ring 6b. In the case of such a configuration, the magnetic shunt material 6aa for the permanent magnets 5a and 5b in particular, as compared with the case where the shunt material 4a having a certain thickness is provided on the inner peripheral surface side of the switch plate 4 as shown in FIG. , 6ba becomes high in temperature sensitivity, so that the amount of magnetic flux generated from the permanent magnets 5a, 5b can be easily controlled with high accuracy by the temperature of the permanent magnets 5a, 5b. Further, only one magnetic shunt material 6aa, 6ba is required for each of the fixed support ring 6a and the movable support ring 6b, which is advantageous in terms of assembly and parts costs.
[0023]
FIG. 7 shows that magnetic shunt materials 6aa and 6ba having a constant thickness are provided only between the permanent magnets 5a and 5a and a part between the permanent magnets 5b and 5b on the outer peripheral surface side of the fixed support ring 6a and the movable support ring 6b. is there. In the case of such a configuration, the temperature sensitivity of the magnetic shunt materials 6aa and 6ba with respect to the permanent magnets 5a and 5b is particularly high as in the case shown in FIG. 6, so that the amount of magnetic flux generated from the permanent magnets 5a and 5b can be reduced. It becomes easy to control with high accuracy by the temperatures of 5a and 5b.
[0024]
Next, FIG. 8 shows an example in which magnetic pole plates 5aa and 5ba made of a magnetic shunt material are provided on the surface side of the permanent magnets 5a and 5b. In the case of such a configuration, the magnetic pole plates 5aa and 5ba made of a magnetic shunt material are in direct contact with the permanent magnets 5a and 5b. Therefore, the magnetic plates 5a and 5b are further adjusted with respect to the permanent magnets 5a and 5b than those shown in FIGS. The temperature sensitivity of the magnetic pole plates 5aa and 5ba made of a magnetic material is increased, and the amount of magnetic flux generated from the permanent magnets 5a and 5b can be easily controlled with the highest accuracy by the temperature of the permanent magnets 5a and 5b.
[0025]
In the eddy current type speed reduction device of the present invention having the configuration shown in FIGS. 1 to 8, the movable support ring 6b is swung by a drive unit (not shown) to be adjacent to the permanent magnet 5b of the movable support ring 6b. When the permanent magnet 5a of the fixed support ring 6a has the same polarity, the permanent magnets 5a and 5b adjacent to each other in the circumferential direction of the rotor 2 are magnetically connected to the rotor 2 with the switch plate 4 as a magnetic path, so-called braking state. Thus, braking torque is generated in the rotor 2 by the action of eddy current and magnetic field generated in the rotor 2 when the rotating rotor 2 crosses the magnetic field from the permanent magnets 5a and 5b.
[0026]
At the time of braking, in the eddy current type speed reducer of the present invention configured as described above, the magnetic shunt materials 4a, 6aa, 6ba and the magnetic pole plates 5aa, 5ba are used by the magnetic shunt materials 4a, 6aa, 6ba and the magnetic pole plates 5aa, 5ba. As the temperature rises, the magnetic resistance of the magnetic circuit increases. As shown by the solid line in FIG. 9, the braking force is suppressed during long-time continuous braking, and the temperature rise of the rotor 2 is suppressed. In addition to preventing the occurrence of thermal deformation and thermal cracks, a stable braking effect can be continued for a long time. For the same reason, as shown by the solid line in FIG. 10, the temperature rise of the permanent magnets 5a and 5b due to the thermal influence of the rotor 2 is suppressed, and stable braking is performed in a state where the permanent magnets 5a and 5b do not exceed the heat resistance temperature. The effect can last for a long time. The broken lines in FIGS. 9 and 10 show the results when using a conventional eddy current type speed reducer in which the magnetic shunt material is not interposed in the middle of the magnetic circuit.
[0027]
The movable support ring 6b is rotated from the position at the time of braking described above, and the permanent magnet 5b row is rotated by one arrangement pitch of the magnets. In this state, the permanent magnet 5b of the movable support ring 6b swung and moved by one arrangement pitch and the permanent magnet 5a of the fixed support ring 6a have different polarities, and the adjacent permanent magnets 5a and 5b are magnetized by the switch plate 4. The fixed support ring 6a, the movable support ring 6b, and the rotor 2 are in a state of releasing the magnetic shielding braking.
[0028]
1 to 8 illustrate the application of the present invention to a double-row swirl type eddy current speed reducer, but the present invention is not limited to a double-row swirl type eddy current speed reducer, Needless to say, the present invention may be applied to an eddy current type reduction device of a shaft slide type or a single row turning type.
[0029]
【The invention's effect】
As described above, in the eddy current reduction device of the present invention, the magnetic resistance of the magnetic circuit increases as the temperature of the portion increases by interposing the magnetic shunt material in the middle of the magnetic circuit. Therefore, the braking force is suppressed during continuous braking for a long time, and the temperature rise of the rotor is suppressed, preventing the occurrence of thermal deformation and cracking of the rotor, and stable braking effect continues for a long time. It will be possible. For the same reason, the temperature increase of the permanent magnet due to the heat effect of the rotor is suppressed, and a stable braking effect can be maintained for a long time in a state where the permanent magnet does not exceed the heat resistance temperature.
[0030]
That is, according to the eddy current type speed reducer of the present invention, it is possible to exert a braking effect for a long time by suppressing the temperature rise of the rotor without interrupting the braking effect even in continuous use with a simple configuration. Become.
[Brief description of the drawings]
FIG. 1 (a) is a cross-sectional view of the main part of the eddy current reduction device of the present invention when applied to a double row swirl method, in which the entire switch plate is made of a magnetic shunt material; ) Is a diagram showing the relationship between the saturation magnetic flux density and temperature of the switch plate in the configuration of (a) in comparison with the prior art, and (c) is a comparison of the relationship between braking time and rotor temperature in the configuration of (a) with the conventional one. FIG.
FIG. 2 (a) is a cross-sectional view of the main part of the eddy current reduction device according to the present invention when applied to a double row swirl method, in which only the outer peripheral surface side of the switch plate is made of a magnetic shunt material; The other is a ferromagnetic material, (b) is a diagram showing the relationship between the saturation magnetic flux density and temperature of the switch plate in the configuration of (a) in comparison with the prior art, and (c) is the braking time in the configuration of (a). It is the figure which showed the relationship of the generated braking force in comparison with the past.
FIG. 3 is a cross-sectional view of the main part of the eddy current reduction device of the present invention in the direction of the rotation axis when applied to the double-row swivel method, and only the central portion in the direction of the rotation axis on the outer peripheral surface side of the switch plate None and others are ferromagnetic.
FIG. 4 is a cross-sectional view of the main part of the eddy current reduction device of the present invention in the direction of the rotation axis when applied to a double-row swivel system, where only the inner peripheral surface side of the switch plate is made of a magnetic shunt material and the others are strong. Of magnetic material.
FIG. 5 is a cross-sectional view of the main part of the eddy current type speed reducer of the present invention when applied to a double row swivel method, in which the both sides of the switch plate on the inner peripheral surface side in the direction of the rotary axis None and others are of a ferromagnetic material, (a) shows the time of braking, and (b) shows the time of releasing the brake.
FIG. 6 is an explanatory view showing a magnetic circuit configuration at the time of braking of the eddy current type speed reducer of the present invention when applied to a double-row swivel method. Only the outer peripheral surface side of the support ring is made of a magnetic shunt material; Is a ferromagnetic material.
FIG. 7 is an explanatory view showing a magnetic circuit configuration at the time of braking of the eddy current type speed reducer of the present invention when applied to a double row swivel system, and shows only a part between permanent magnets on the outer peripheral surface side of a support ring. There are no magnetic shunt materials, and the others are ferromagnetic materials.
FIG. 8 is an explanatory view showing a magnetic circuit configuration at the time of braking of the eddy current type speed reducer of the present invention when applied to a double-row swivel method, and a magnetic pole plate made of a magnetic shunt material is provided on the surface side of a permanent magnet. It is a thing.
FIG. 9 is a diagram comparing braking force suppression effect and rotor temperature rise characteristics with a conventional eddy current speed reducer when the eddy current speed reducer of the present invention is applied.
FIG. 10 is a diagram comparing a braking force suppression effect and a permanent magnet temperature increase characteristic with a conventional eddy current speed reducer when the eddy current speed reducer of the present invention is applied.
FIG. 11 is a cross-sectional view of the shaft slide type eddy current type reduction device proposed in Japanese Patent Laid-Open No. 1-234043 in the direction of the rotation axis.
FIG. 12 is a cross-sectional view in the direction of the rotation axis of a single-row swirl type eddy current reduction device proposed in Japanese Patent Laid-Open No. 1-298948.
FIG. 13 is a cross-sectional view in the direction of the rotation axis of a double-row swirl type eddy current reduction device proposed in Japanese Patent Laid-Open No. 4-12659.
FIG. 14 is a cross-sectional view of the shaft slide type eddy current reduction device proposed in Japanese Patent Laid-Open No. 4-251600 in the direction of the rotation axis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Rotor 3 Support body 4 Switch plate 4a Magnetic shunt material 5 Permanent magnet 5a Permanent magnet 5aa Magnetic pole plate 5b Permanent magnet 5ba Magnetic pole plate 6 Support ring 6a Fixed support ring 6aa Magnetic shunt material 6b Movable support ring 6ba Magnetic shunt material 7 Sealed case

Claims (2)

回転軸に設けられたロータの内周面側に、非磁性体の支持体間に所定間隔で配置した強磁性体のスイッチ板群を介して、ロータに対向してその周方向に沿って前記スイッチ板と基本的には同じ角度位置にN極、S極を交互に配置した永久磁石群を有する強磁性体の支持リングを、
前記永久磁石群が全面対向する位置から全面離脱する位置まで密閉ケース内を進退可能に設けたり、
または、スイッチ板と永久磁石とが重なり合う位置と、一つの永久磁石が隣接するスイッチ板を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けたり、
または、前記支持リングを2個並列配置し、一方の支持リングは固定で、他方の支持リングは所定角度回動可能に構成し、他方の支持リングの旋回移動によって、他方の支持リングの永久磁石と隣合う一方の支持リングの永久磁石が同極になる位置と、隣合う他方の支持リングの永久磁石と一方の支持リングの永久磁石が異極になる位置とを選択できるように構成した渦電流式減速装置において、
前記支持リングかスイッチ板の少なくとも何れか一方を、整磁材料或いは強磁性体と整磁材料との複合構造となしたことを特徴とする渦電流式減速装置。
On the inner peripheral surface side of the rotor provided on the rotating shaft, the ferromagnetic switch plate group disposed at a predetermined interval between the nonmagnetic support members is opposed to the rotor and along the circumferential direction. A ferromagnetic support ring having a permanent magnet group in which N poles and S poles are alternately arranged at basically the same angular position as the switch plate,
The permanent magnet group is provided so as to be able to advance and retreat in the sealed case from the position where the permanent magnet group is completely opposed to the position where the permanent magnet group is completely separated,
Alternatively, a position where the switch plate and the permanent magnet overlap and a position where one permanent magnet overlaps the adjacent switch plate by half are provided so as to be pivotable so that they can be selected,
Alternatively, two support rings are arranged in parallel, one support ring is fixed, and the other support ring is configured to be pivotable by a predetermined angle. The vortex is configured so that the position of the permanent magnet of one of the adjacent support rings can be selected to be the same, and the position of the permanent magnet of the other adjacent support ring and the position of the permanent magnet of one of the support rings can be different. In the current type speed reducer,
An eddy current type speed reducer characterized in that at least one of the support ring and the switch plate has a magnetic shunt material or a composite structure of a ferromagnetic material and a magnetic shunt material.
請求項1記載の支持リングやスイッチ板に代えて、永久磁石の表面側に整磁材料からなる磁極板を設けたことを特徴とする渦電流式減速装置。2. An eddy current reduction device comprising a magnetic pole plate made of a magnetic shunt material on the surface side of a permanent magnet in place of the support ring and the switch plate according to claim 1.
JP2000103426A 2000-04-05 2000-04-05 Eddy current reducer Expired - Fee Related JP3654127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103426A JP3654127B2 (en) 2000-04-05 2000-04-05 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103426A JP3654127B2 (en) 2000-04-05 2000-04-05 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2001292560A JP2001292560A (en) 2001-10-19
JP3654127B2 true JP3654127B2 (en) 2005-06-02

Family

ID=18617144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103426A Expired - Fee Related JP3654127B2 (en) 2000-04-05 2000-04-05 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3654127B2 (en)

Also Published As

Publication number Publication date
JP2001292560A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3654127B2 (en) Eddy current reducer
JP4600156B2 (en) Eddy current reducer
JP3953718B2 (en) Eddy current reducer
JP3855590B2 (en) Eddy current reducer
JPH01298947A (en) Eddy current type decelerator
JP3765290B2 (en) Eddy current reducer
JP4010279B2 (en) Eddy current reducer
JP4016537B2 (en) Eddy current reducer
JP4042357B2 (en) Eddy current reducer
JPH07245933A (en) Eddy current type reduction gear
JP2709822B2 (en) Eddy current type reduction gear
JP3892599B2 (en) Eddy current reducer
JP3702794B2 (en) Eddy current reducer
JP2000116107A (en) Fddy-current reduction gear
JP3804425B2 (en) Eddy current reducer
JP3633291B2 (en) Eddy current reducer
JP2001119924A (en) Eddy-current decelerator
JP2001224162A (en) Eddy current type deceleration apparatus
JP2001224161A (en) Eddy current type deceleration apparatus
JPH02159961A (en) Eddy current reduction gear
JP4604857B2 (en) Eddy current reducer
JP2004222405A (en) Ferromagnetic plate and eddy current type reduction gear
JP4715546B2 (en) Eddy current reducer
JP2000116106A (en) Eddy-current reduction gear
JP3941740B2 (en) Eddy current reducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees