JP3702794B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP3702794B2
JP3702794B2 JP2001019203A JP2001019203A JP3702794B2 JP 3702794 B2 JP3702794 B2 JP 3702794B2 JP 2001019203 A JP2001019203 A JP 2001019203A JP 2001019203 A JP2001019203 A JP 2001019203A JP 3702794 B2 JP3702794 B2 JP 3702794B2
Authority
JP
Japan
Prior art keywords
support ring
rotor
permanent magnet
braking
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001019203A
Other languages
Japanese (ja)
Other versions
JP2002223556A (en
Inventor
晃 斎藤
憲治 今西
光雄 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001019203A priority Critical patent/JP3702794B2/en
Publication of JP2002223556A publication Critical patent/JP2002223556A/en
Application granted granted Critical
Publication of JP3702794B2 publication Critical patent/JP3702794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制動補助装置としてバスやトラック等の大型自動車に取付けられる渦電流式減速装置に関するものである。
【0002】
【従来の技術】
近年、バスやトラック等の大型自動車には、長い降坂時等において、安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離を短縮することを目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。この渦電流式減速装置には、磁石として、電磁石を使用するものと、永久磁石を使用するものがあるが、最近では、制動時に通電を必要としない永久磁石を使用するものが多くなってきている。
【0003】
この永久磁石を使用した渦電流式減速装置として、例えば本出願人が特願平1−298948号で提案したものは、図7に示すように、回転軸に一体的に取り付けられたロータ1と、このロータ1に対向して支持され、ロータ1の周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の支持リング2に均等に配置された永久磁石3群と、この永久磁石3群と前記ロータ1との間に、前記永久磁石3と同数だけ均等に介設された強磁性体のスイッチ板4群と、このスイッチ板4群の各スイッチ板4の間に介設された非磁性体の支持体5部分を備えた構成であり、前記永久磁石3の外周面とスイッチ板4の内周面間は、所定の隙間が保たれている。なお、図7中の1aはロータ1の円筒部、1bはロータ1の冷却フィン、6は支持リング2を所定角度往復旋回する駆動部、7は支持リング2の内周面側及び両側壁側と支持体5間に夫々介装され、支持リング2を回動自在に支持する軸受を示す。
【0004】
この特開平1−298948号で提案された渦電流式減速装置では、図8(a)に示すように、永久磁石3がスイッチ板4と重なり合うように支持リング2を回動させると、支持リング2と、隣接する永久磁石3及び隣接するスイッチ板4と、ロータ1の円筒部1aで、矢印で示すように磁気回路が形成されて、いわゆる制動ONの状態となり、前記した円筒部1aには永久磁石3からの磁束が作用して渦電流が発生し、制動トルクが発生する。
【0005】
従って、制動時にはロ−タ1を含む磁気回路に多くの磁束を通すことにより高い制動力が得られることになる。そこで、制動時の支持リング2やスイッチ板4といった回路構成部品の磁気容量を十分に大きくし、制動時の磁気回路上の磁気的抵抗を小さくすることが、制動効率を高め、高価な永久磁石を節減できてコストの低減につながる。
【0006】
また、上記した制動ONの位置から支持リング2を旋回させ、図8(b)に示すように、一つの永久磁石3が隣接するスイッチ板4を跨いで半分ずつ重なり合った状態となすと、支持リング2と、隣接する永久磁石3と、一つのスイッチ板4で、矢印で示すように短絡的磁気回路が形成されて、いわゆる制動OFFの状態となる。
【0007】
この状態では、前記した円筒部1aに渦電流が流れず、制動トルクが発生しないのが理想であるが、スイッチ板4と円筒部1aが近接しているため、現実には、図8(b)に破線で示すように、スイッチ板4を通過する磁束の一部がロータ1の円筒部1aに侵入して円筒部1aに引きずりトルクを発生させ、これによる動力ロスが燃費悪化等の問題を引き起こす。
【0008】
そこで、この引きずりトルクの発生を防止するために、従来はスイッチ板からロータの円筒部への磁束の侵入を抑制するため、スイッチ板の周方向の断面積を十分に大きくし、スイッチ板間での磁束の通りやすさを確保していた。
【0009】
【発明が解決しようとする課題】
しかしながら、上記したようにスイッチ板の周方向の断面積を大きくする手法では、必然的にスイッチ板の厚さが厚くなることから、これが制動時の磁気回路の磁気的抵抗を上昇させ、制動効率の低下を招くといった悪循環が引き起こされていた。
【0010】
本発明は、上記した従来の問題点に鑑みてなされたものであり、制動ON時の制動力を損なわないで、制動OFF時に、永久磁石から発生する磁束を抑制し、スイッチ板からロータの円筒部に漏れる磁束を抑え、引きずりトルクを抑制することができる渦電流式減速装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る渦電流式減速装置は、単列旋回方式の渦電流式減速装置における、支持リングの下記の数式1で表わされる周方向の断面積Aが、κ=0.08〜0.12の範囲となるようにしたり、また、支持リングを半径方向に2分割し、制動時には隣接する永久磁石間における支持リングの断面積が大きく、非制動時には隣接する永久磁石間における支持リングの断面積が小さくなるように構成することとしている。そして、このようにすることで、制動ON時の制動力を損なわないで、制動OFF時に、永久磁石から発生する磁束を抑制し、スイッチ板からロータの円筒部に漏れる磁束を抑え、引きずりトルクを抑制することができるようになる。
【0012】
【数1】
A=κ・(BHmax ・W/ρ)/Br
但し、BHmax :使用する永久磁石の最大エネルギー積(J/m3
W:1個当りの永久磁石質量(kg)
ρ:使用する永久磁石の比重(kg/m3
A:支持リングにおける周方向の断面積(m2
Br:磁界強度5000A/mにおける支持リングの飽和磁束密度(T)
【0013】
【発明の実施の形態】
単列旋回方式の渦電流式減速装置の制動時と非制動時の磁気回路を図5及び図6に示す。なお、図5及び図6は理解を容易にするために磁気回路内を流れる磁束を電流とみなして電流回路として表わしたものである。
【0014】
図8(a)に示した制動時においては、例えば紙面左側の永久磁石3から流れ出た磁束は、同じく紙面左側の永久磁石3とスイッチ板4間の隙間→紙面左側のスイッチ板4→紙面左側のスイッチ板4とロータの円筒1a間の隙間→ロータの円筒1aを通って、ロータの円筒1aと紙面右側のスイッチ板4間の隙間→紙面右側のスイッチ板4→紙面右側のスイッチ板4と永久磁石3間の隙間→支持リング2を通って紙面左側の永久磁石3に戻ることになる。
【0015】
図5はこの制動時における磁気回路を電流回路に置き換えて表わしたもので、この図5において、永久磁石3は電源に相当するものと考え、BHで表わしている。また、支持リング2の周方向断面(図8(a)におけるA−A断面)が有する抵抗をRy(A)、永久磁石3とスイッチ板4間の隙間が有する抵抗をRGap1、スイッチ板4の高さ方向断面(図8(a)におけるB−B断面)が有する抵抗をRP(A)、スイッチ板4とロータの円筒1a間の隙間が有する抵抗をRGap2、ロータの円筒1aの周方向断面(図8(a)におけるC−C断面)が有する抵抗をRD と考える。
【0016】
この図5に示した電流回路において、制動時の全抵抗をRONとした場合、制動時の電流(磁束)IONの大きさは、ION∝BH/RONで表わすことができる。ここで、RON=(RGap1+RP(A)+RGap2)×2+RD +Ry(A)で表わすことができることから、RON≫Ry(A)となる。
【0017】
一方、図8(b)に示した非制動時においては、例えば紙面左側の永久磁石3から流れ出た磁束は、紙面左側の永久磁石3と紙面中央のスイッチ板4間の隙間→紙面中央のスイッチ板4→紙面中央のスイッチ板4と紙面右側の永久磁石3間の隙間→支持リング2を通って紙面左側の永久磁石3に戻ることになる。
【0018】
また、図8(b)に示した非制動時における引きずりトルクは、例えば紙面左側の永久磁石3から流れ出て、紙面左側の永久磁石3と紙面中央のスイッチ板4間の隙間→紙面中央のスイッチ板4を通ってきた磁束の一部が、紙面中央のスイッチ板4とロータの円筒1a間の隙間を介してロータの円筒1aに流れ、ロータの円筒1aと紙面中央のスイッチ板4間の隙間→紙面中央のスイッチ板4→紙面中央のスイッチ板4と紙面右側の永久磁石3間の隙間→支持リング2を通って紙面左側の永久磁石3に戻ることによって発生する。
【0019】
図6はこの非制動時における磁気回路を電流回路に置き換えて表わしたもので、この図6に示した電流回路において、スイッチ板4の周方向(図8(b)におけるD−D断面)の抵抗をRP(t)、非制動時の全抵抗をROFF とした場合、非制動時の電流(磁束)IOFF の大きさは、IOFF ∝BH/ROFF で表わすことができる。ここで、ROFF =2・RGap1+R’+Ry(A)、但し、1/R’=(1/RP(t))+1/(2・RP(A)+2・RGap2+RD )で表わすことができることから、ROFF >Ry(A)となる。
【0020】
また、隙間の磁気的抵抗RGap1及びRGap2は、スイッチ板4、ロータの円筒1a、支持リング2が有する磁気的抵抗RP(A)、RP(t)、RD 、Ry(A)に比べはるかに大きいことから、RON≫ROFF であり、支持リング2の影響は、制動時には小さく、非制動時には大きいことが判る。従って、支持リング2の周方向断面積を小さくすることによって、非制動時の磁束の流れ、ひいては引きずりトルクを小さくすることができる。
【0021】
第1の本発明に係る渦電流式減速装置は、上記した考え方に基づいてなされたものであり、回転軸に一体的に取り付けられたロータと、このロータに対向して支持され、ロータの周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の支持リングに均等に配置された永久磁石群と、この永久磁石群と前記ロータとの間に、前記永久磁石と同数だけ均等に介設された強磁性体のスイッチ板群と、このスイッチ板群の各スイッチ板の間に介設された非磁性体の支持体部分を備えた渦電流式減速装置において、上記の数式1で表わされる支持リングの周方向の断面積Aが、κ=0.08〜0.12の範囲となるようにしたものである。
【0022】
第1の本発明に係る渦電流式減速装置において、上記の数式1で表わされる支持リングの周方向の断面積Aが、κ=0.08〜0.12の範囲となるようにしたのは、単列旋回方式の渦電流式減速装置において、上記数式1で求めた支持リングの周方向の断面積Aを変化させた場合(κを変化させた場合)の制動トルクと引きずりトルクを測定した結果に基づくものである。
【0023】
支持リングの周方向の断面積Aを変化させた場合(κを変化させた場合)の制動トルクと引きずりトルクを測定した結果を図1に示すが、この図1よりκが0.12を超えた場合には制動トルクが飽和することが判る。また、κが0.08未満の場合には、引きずりトルクの低下率はあまり変化しないものの、制動トルクが大きく低下することが判る。
【0024】
この結果より、単列旋回方式の渦電流式減速装置における上記数式1で求めた支持リングの周方向の断面積Aをκが0.08〜0.12の範囲内となるような断面積にした場合には、例えば下記の仕様の渦電流式減速装置では、制動トルクは最大発生トルクの90%以上を確保でき、制動OFF時の引きずりトルクを最大時の18〜28%に抑制することができるようになる。
【0025】
単列旋回方式の渦電流式減速装置仕様
BHmax :360(kJ/m3
W:199(g/1個)
ρ:7.5×103 (kg/m3
κ=0.1の時のA:586(mm2
Br:1.63(T)
【0026】
なお、第1の本発明に係る渦電流式減速装置において、支持リングの磁束密度Brを磁界強度5000A/mにおける飽和磁束密度としているのは、材質が異なる場合は勿論のこと、同じ材質でも磁界強度が異なれば磁束密度Brが異なるため、ただ単に磁束密度Brだけを決めた場合には適用可能な支持リングが曖昧になるからである。
【0027】
また、第2の本発明に係る渦電流式減速装置は、回転軸に一体的に取り付けられたロータと、このロータに対向して支持され、ロータの周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の支持リングに均等に配置された永久磁石群と、この永久磁石群と前記ロータとの間に、前記永久磁石と同数だけ均等に介設された強磁性体のスイッチ板群と、このスイッチ板群の各スイッチ板の間に介設された非磁性体の支持体部分を備えた渦電流式減速装置において、前記支持リングを半径方向に2分割し、制動時には隣接する永久磁石間における支持リングの断面積が大きく、非制動時には隣接する永久磁石間における支持リングの断面積が小さくなるように構成したものである。
【0028】
第2の本発明に係る渦電流式減速装置では、一つの永久磁石が、隣接するスイッチ板を跨いで半分ずつ重なり合った制動OFFの状態では、隣接する永久磁石間における支持リングの断面積が小さくなるので、永久磁石から発生する磁束が抑制され、必然的にロータの円筒部に漏れる磁束が低減でき、引きずりトルクが低減する。
【0029】
【実施例】
以下、本発明の渦電流式減速装置を図2〜図4に示す実施例に基づいて説明する。なお、図2〜図4中、図7及び図8と同一符号は同一部分或いは相当部分を示し、詳細な説明を省略する。
図2は第2の本発明の渦電流式減速装置の回転軸方向の第1実施例を示した断面図で、(a)は制動OFFの状態を示す説明図、(b)は制動ONの状態を示す説明図、図3は第2の本発明の渦電流式減速装置の回転軸方向の第2実施例を示した断面図で、(a)は制動OFFの状態を示す説明図、(b)は制動ONの状態を示す説明図、図4は第2の本発明の渦電流式減速装置の回転軸方向の第3実施例を示した断面図で、(a)は周方向断面を示した図、(b)は(a)のA−A断面図、(c)は制動OFFの状態を示す(a)の矢視B図、(d)は制動ONの状態を示す(a)の矢視B図である。
【0030】
第1の本発明に係る渦電流式減速装置は、例えば密度ρが7500kg/m3 で、1個当りの質量Wが199gの永久磁石を、最大エネルギー積BHmax が360kJ/m3 となるように設けた単列旋回方式の渦電流式減速装置の場合、磁界強度が5000A/mの時の飽和磁束密度Brが例えば1.63Tの材料を使用した支持リングの、周方向断面積Aを468.8mm2 から703.2mm2 の間、すなわち、数式1におけるκが0.08〜0.12の範囲に設定したものである。
【0031】
支持リングの周方向断面積Aを上記したような範囲に設定することで、制動ON時の制動力を損なわないで、制動OFF時に、永久磁石から発生する磁束を抑制し、スイッチ板からロータの円筒部に漏れる磁束を抑え、引きずりトルクを抑制することができるようになる。
【0032】
図2〜図4は、上記した第1の本発明に係る渦電流式減速装置のように支持リングの周方向の断面積を一定範囲内に決定するのに代えて、支持リングを半径方向に2分割し、制動時には隣接する永久磁石間における支持リングの断面積が大きく、非制動時には隣接する永久磁石間における支持リングの断面積が小さくなるように構成した、第2の本発明に係る渦電流式減速装置の具体的な実施例を示したものである。
【0033】
すなわち、図2に示した第1実施例は、半径方向に2分割したうちの内周側に位置する、支持体5に固定した第1支持リング11におけるスイッチ板4の周方向中央部と対向する位置に幅方向全域に至る凹溝11aを設けた構成である。
【0034】
このようにすることで、半径方向に2分割したうちの外周側に位置する第2支持リング12の例えば外周面に均等に設置した永久磁石3を、スイッチ板4と対向させた図2(b)に示す制動ON状態では、支持リングの周方向の断面積が大きくなって(従来の支持リング2における周方向の断面積とほぼ同じ)、制動トルクが損なわれることがない。
【0035】
そして、図2(b)に示す制動ON状態から、一つの永久磁石3が隣接するスイッチ板4を跨いで半分ずつ重なり合った図2(a)に示す制動OFF状態まで第2支持リング12を旋回させれば、支持リングの周方向の断面積が凹溝11aを設けた分だけ小さくなって、短絡的磁気回路を流れる磁束が減少し、必然的にスイッチ板からロータの円筒部に漏れる磁束が減少して、引きずりトルクが低減する。なお、図2中の14は第1支持リング11と第2支持リング12間に介設されたベアリングである。
【0036】
また、図3に示した第2実施例は、図2に示した第1実施例に代えて、支持体5を永久磁石3の設置数と同じ数の多角形となすと共に、この多角形の頂角をスイッチ板4の略周方向中心と対向する位置となるように配置し、この支持体5の各外周面に、それぞれ半径方向に2分割したうちの内周側に位置する第1支持体13を、隣合う第1支持体13間に所定の間隔を存して配置したものである。
【0037】
この図3に示した第2実施例でも、図2に示した第1実施例と同様の作用効果を奏するようになる。なお、図3中の14は第1支持体13と第2支持リング12間に介設されたベアリングである。
【0038】
また、図4に示した第3実施例は、図2に示した第1実施例の第1支持リング11の幅方向一方側(図4(a)の紙面左側)を、凹溝11aの底部と同じ高さに切欠き、この切欠き部11bに第2支持リング12の対向する部分を突出させ、この突出部12aを前記切欠き部11bに対向させているのである。
【0039】
この図4に示した第3実施例でも、図2に示した第1実施例と同様の作用効果を奏するようになる。
【0040】
【発明の効果】
以上説明したように、本発明の渦電流式減速装置によれば、制動ON時の制動力を損なわないで、制動OFF時に、永久磁石から発生する磁束を抑制することができる。従って、この制動OFF時における永久磁石から発生する磁束の減少に伴って、必然的にスイッチ板からロータの円筒部に漏れる磁束が減少し、引きずりトルクを抑制することができるようになる。
【図面の簡単な説明】
【図1】第1の本発明の渦電流式減速装置の説明図で、上記数式1で求めた支持リングの周方向の断面積Aを変化させた場合(κを変化させた場合)の制動トルクと引きずりトルクを測定した結果を示した図である。
【図2】第2の本発明の渦電流式減速装置の回転軸方向の第1実施例を示した断面図で、(a)は制動OFFの状態を示す説明図、(b)は制動ONの状態を示す説明図である。
【図3】第2の本発明の渦電流式減速装置の回転軸方向の第2実施例を示した断面図で、(a)は制動OFFの状態を示す説明図、(b)は制動ONの状態を示す説明図である。
【図4】第2の本発明の渦電流式減速装置の回転軸方向の第3実施例を示した断面図で、(a)は周方向断面を示した図、(b)は(a)のA−A断面図、(c)は制動OFFの状態を示す(a)の矢視B図、(d)は制動ONの状態を示す(a)の矢視B図である。
【図5】図8(a)に示す制動時における磁気回路を電流回路に置き換えて表わした図である。
【図6】図8(b)に示す非制動時における磁気回路を電流回路に置き換えて表わした図である。
【図7】特開平1−298948号で提案された渦電流式減速装置の側面図で、上半分を断面して示した図である。
【図8】図7の渦電流式減速装置における磁気回路構成を示す説明図で、(a)は制動ONの状態、(b)は制動OFFの状態を示す図である。
【符号の説明】
1a 円筒部
2 支持リング
3 永久磁石
4 スイッチ板
11 第1支持リング
11a 凹溝
11b 切欠き部
12 第2支持リング
12a 突出部
13 第1支持体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current type speed reducer attached to a large vehicle such as a bus or a truck as a braking assist device.
[0002]
[Prior art]
In recent years, for large vehicles such as buses and trucks, stable deceleration on long downhills, etc., reducing the number of times the foot brake is used, preventing abnormal lining wear and fading, and braking stop distance For the purpose of shortening the eddy current type speed reducer, in addition to a foot brake as a main brake and an exhaust brake as an auxiliary brake, an eddy current type speed reducer has been attached. There are two types of eddy current type reduction gears that use an electromagnet as a magnet and one that uses a permanent magnet. Recently, there are many that use a permanent magnet that does not require energization during braking. Yes.
[0003]
As an eddy current type speed reducer using this permanent magnet, for example, the one proposed by the present applicant in Japanese Patent Application No. 1-2298948 is shown in FIG. 7, and as shown in FIG. A group of permanent magnets 3 which are supported in opposition to the rotor 1 and are evenly arranged on the support ring 2 of the ferromagnetic material so that the directions of the magnetic poles are opposite to each other along the circumferential direction of the rotor 1; Between the permanent magnet 3 group and the rotor 1, the same number of ferromagnetic magnet switch plates 4 as the permanent magnets 3 are interposed between the switch plates 4 of the switch plate 4 group. A nonmagnetic support member 5 is provided, and a predetermined gap is maintained between the outer peripheral surface of the permanent magnet 3 and the inner peripheral surface of the switch plate 4. In FIG. 7, 1a is a cylindrical portion of the rotor 1, 1b is a cooling fin of the rotor 1, 6 is a drive portion that reciprocates the support ring 2 by a predetermined angle, and 7 is an inner peripheral surface side and both side wall sides of the support ring 2. The bearings are respectively interposed between the support body 5 and the support ring 2 so as to rotatably support the support ring 2.
[0004]
In the eddy current type speed reducer proposed in JP-A-1-298948, when the support ring 2 is rotated so that the permanent magnet 3 overlaps with the switch plate 4 as shown in FIG. 2, the adjacent permanent magnet 3 and the adjacent switch plate 4, and the cylindrical portion 1 a of the rotor 1, a magnetic circuit is formed as shown by an arrow, and a so-called braking ON state is established. The magnetic flux from the permanent magnet 3 acts to generate eddy current, and braking torque is generated.
[0005]
Therefore, a high braking force can be obtained by passing a large amount of magnetic flux through the magnetic circuit including the rotor 1 during braking. Therefore, increasing the magnetic capacity of circuit components such as the support ring 2 and the switch plate 4 during braking and reducing the magnetic resistance on the magnetic circuit during braking increases braking efficiency and is an expensive permanent magnet. Can be saved, leading to cost reduction.
[0006]
Further, when the support ring 2 is turned from the above-described brake-on position, and as shown in FIG. 8 (b), one permanent magnet 3 straddles the adjacent switch plate 4 and is in a state of being overlapped half by half, the support is provided. A short-circuit magnetic circuit is formed by the ring 2, the adjacent permanent magnet 3 and one switch plate 4 as shown by an arrow, and a so-called braking OFF state is established.
[0007]
In this state, it is ideal that no eddy current flows in the cylindrical portion 1a and no braking torque is generated. However, since the switch plate 4 and the cylindrical portion 1a are close to each other, in reality, FIG. ), A part of the magnetic flux passing through the switch plate 4 enters the cylindrical portion 1a of the rotor 1 and generates a drag torque on the cylindrical portion 1a. cause.
[0008]
Therefore, in order to prevent the generation of this drag torque, conventionally, in order to suppress the intrusion of magnetic flux from the switch plate to the cylindrical portion of the rotor, the circumferential cross-sectional area of the switch plate is made sufficiently large, It was easy to pass the magnetic flux.
[0009]
[Problems to be solved by the invention]
However, as described above, the method of increasing the cross-sectional area in the circumferential direction of the switch plate inevitably increases the thickness of the switch plate, which increases the magnetic resistance of the magnetic circuit during braking, and increases the braking efficiency. A vicious circle that caused a decline in
[0010]
The present invention has been made in view of the above-described conventional problems, and suppresses the magnetic flux generated from the permanent magnet at the time of braking OFF without impairing the braking force at the time of braking ON, and from the switch plate to the cylinder of the rotor. An object of the present invention is to provide an eddy current type speed reducer capable of suppressing magnetic flux leaking to a portion and suppressing drag torque.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, the eddy current type reduction device according to the present invention has a circumferential cross-sectional area A represented by the following mathematical formula 1 of the support ring in an eddy current type reduction device of a single row swirl type. κ = 0.08 to 0.12, or the support ring is divided into two in the radial direction, and the cross-sectional area of the support ring is large between adjacent permanent magnets during braking, and adjacent when not braking The configuration is such that the cross-sectional area of the support ring between the permanent magnets is reduced. And by doing in this way, without compromising the braking force at the time of braking ON, the magnetic flux generated from the permanent magnet is suppressed at the time of braking OFF, the magnetic flux leaking from the switch plate to the cylindrical portion of the rotor is suppressed, and the drag torque is reduced. It becomes possible to suppress.
[0012]
[Expression 1]
A = κ · (BHmax · W / ρ) / Br
However, BHmax: Maximum energy product (J / m 3 ) of the permanent magnet used
W: Permanent magnet mass per unit (kg)
ρ: Specific gravity of the permanent magnet used (kg / m 3 )
A: Cross-sectional area in the circumferential direction of the support ring (m 2 )
Br: saturation magnetic flux density (T) of the support ring at a magnetic field strength of 5000 A / m
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 and FIG. 6 show the magnetic circuit at the time of braking and non-braking of the single row turning type eddy current type reduction gear. 5 and 6 are represented as a current circuit by regarding the magnetic flux flowing in the magnetic circuit as a current for easy understanding.
[0014]
At the time of braking shown in FIG. 8A, for example, the magnetic flux flowing out from the permanent magnet 3 on the left side of the paper is the gap between the permanent magnet 3 on the left side of the paper and the switch plate 4 → the switch plate 4 on the left side of the paper → the left side of the paper. The gap between the switch plate 4 and the rotor cylinder 1a → the gap between the rotor cylinder 1a and the switch plate 4 on the right side of the paper through the rotor cylinder 1a → the switch plate 4 on the right side of the paper → the switch plate 4 on the right side of the paper The gap between the permanent magnets 3 returns to the permanent magnet 3 on the left side of the drawing through the support ring 2.
[0015]
FIG. 5 shows the magnetic circuit at the time of braking replaced with a current circuit. In FIG. 5, the permanent magnet 3 is considered to correspond to a power source, and is represented by BH. The resistance of the circumferential section of the support ring 2 (cross section AA in FIG. 8A) is R y (A) , the resistance of the gap between the permanent magnet 3 and the switch plate 4 is R Gap1 , and the switch plate. RP (A) is the resistance of the cross section 4 in the height direction (BB cross section in FIG. 8A ) , R Gap2 is the resistance of the gap between the switch plate 4 and the rotor cylinder 1a, and the cylinder 1a of the rotor. The resistance of the circumferential cross section (CC cross section in FIG. 8A) is considered as R D.
[0016]
In the current circuit shown in FIG. 5, when the total resistance during braking is R ON , the magnitude of the current (magnetic flux) I ON during braking can be expressed as I ON ∝BH / R ON . Here, since R ON = (R Gap1 + R P (A) + R Gap2 ) × 2 + R D + R y (A) , R ON >> R y (A) .
[0017]
On the other hand, at the time of non-braking shown in FIG. 8B, for example, the magnetic flux flowing out from the permanent magnet 3 on the left side of the page is a gap between the permanent magnet 3 on the left side of the page and the switch plate 4 at the center of the page. The gap between the switch plate 4 at the center of the paper surface and the permanent magnet 3 on the right side of the paper surface returns to the permanent magnet 3 on the left side of the paper surface through the support ring 2.
[0018]
Further, the drag torque at the time of non-braking shown in FIG. 8B flows out of, for example, the permanent magnet 3 on the left side of the paper, and the gap between the permanent magnet 3 on the left side of the paper and the switch plate 4 at the center of the paper → the switch at the center of the paper surface. Part of the magnetic flux that has passed through the plate 4 flows into the rotor cylinder 1a via the gap between the switch plate 4 at the center of the paper and the cylinder 1a of the rotor, and the gap between the cylinder 1a of the rotor and the switch plate 4 at the center of the paper. → Switch plate 4 in the center of the page → Gap between the switch plate 4 in the center of the page and the permanent magnet 3 on the right side of the page → Returns to the permanent magnet 3 on the left side of the page through the support ring 2.
[0019]
FIG. 6 shows the non-braking magnetic circuit replaced with a current circuit. In the current circuit shown in FIG. 6, the circumferential direction of the switch plate 4 (cross section DD in FIG. 8B). When the resistance is R P (t) and the total resistance during non-braking is R OFF , the magnitude of the current (magnetic flux) I OFF during non-braking can be expressed as I OFF ∝BH / R OFF . Here, R OFF = 2 · R Gap1 + R ′ + R y (A) , where 1 / R ′ = (1 / R P (t) ) + 1 / (2 · R P (A) + 2 · R Gap2 + R D ), R OFF > R y (A) .
[0020]
Further, the magnetic resistances R Gap1 and R Gap2 of the gap are the magnetic resistances R P (A) , R P (t) , R D , R y (A ) And R ON >> R OFF , it can be seen that the influence of the support ring 2 is small during braking and large during non-braking. Accordingly, by reducing the circumferential cross-sectional area of the support ring 2, the flow of magnetic flux during non-braking, and hence the drag torque can be reduced.
[0021]
An eddy current reduction device according to a first aspect of the present invention is made on the basis of the above-described concept, and includes a rotor that is integrally attached to a rotating shaft, and is supported so as to face the rotor. A permanent magnet group that is evenly arranged on the support ring of the ferromagnetic material so that the directions of the magnetic poles are opposite to each other along the direction, and the same number of permanent magnets between the permanent magnet group and the rotor In an eddy current reduction device comprising a ferromagnetic switch plate group that is evenly interposed and a non-magnetic support member portion that is interposed between the switch plates of the switch plate group, The circumferential cross-sectional area A of the represented support ring is in the range of κ = 0.08 to 0.12.
[0022]
In the eddy current reduction device according to the first aspect of the present invention, the circumferential cross-sectional area A of the support ring represented by Equation 1 is in the range of κ = 0.08 to 0.12. In the single row swirl type eddy current type speed reducer, the braking torque and the drag torque were measured when the circumferential cross-sectional area A of the support ring obtained by Equation 1 was changed (when κ was changed). Based on the results.
[0023]
FIG. 1 shows the results of measurement of braking torque and drag torque when the cross-sectional area A in the circumferential direction of the support ring is changed (when κ is changed). FIG. 1 shows that κ exceeds 0.12. In this case, it can be seen that the braking torque is saturated. In addition, when κ is less than 0.08, it can be seen that although the rate of decrease in drag torque does not change much, the braking torque decreases greatly.
[0024]
From this result, the cross-sectional area A in the circumferential direction of the support ring obtained by Equation 1 in the single-row swirling type eddy current type reduction gear is set to a cross-sectional area such that κ is in the range of 0.08 to 0.12. In this case, for example, in the eddy current type speed reducer with the following specifications, the braking torque can ensure 90% or more of the maximum generated torque, and the drag torque at the time of braking OFF can be suppressed to 18 to 28% of the maximum. become able to.
[0025]
Single row swirl type eddy current type speed reducer specifications BHmax: 360 (kJ / m 3 )
W: 199 (g / 1 piece)
ρ: 7.5 × 10 3 (kg / m 3 )
A when κ = 0.1: 586 (mm 2 )
Br: 1.63 (T)
[0026]
In the eddy current reduction device according to the first aspect of the present invention, the magnetic flux density Br of the support ring is set to the saturation magnetic flux density at a magnetic field strength of 5000 A / m. This is because if the strength is different, the magnetic flux density Br is different, and therefore, when only the magnetic flux density Br is determined, the applicable support ring becomes ambiguous.
[0027]
An eddy current type speed reducer according to a second aspect of the present invention includes a rotor that is integrally attached to a rotating shaft, and is supported so as to face the rotor, and the directions of magnetic poles are opposite to each other along the circumferential direction of the rotor. A permanent magnet group arranged evenly on the support ring of the ferromagnetic material so as to be oriented, and the same number of ferromagnetic magnets interposed between the permanent magnet group and the rotor as many as the permanent magnets. In an eddy current type speed reducer comprising a switch plate group and a non-magnetic support portion interposed between the switch plates of the switch plate group, the support ring is divided into two in the radial direction and adjacent to each other during braking. The cross-sectional area of the support ring between the permanent magnets is large, and the cross-sectional area of the support ring between the adjacent permanent magnets is small during non-braking.
[0028]
In the eddy current type speed reducer according to the second aspect of the present invention, in a braking OFF state in which one permanent magnet is overlapped by half across the adjacent switch plates, the cross-sectional area of the support ring between the adjacent permanent magnets is small. Therefore, the magnetic flux generated from the permanent magnet is suppressed, the magnetic flux inevitably leaking to the cylindrical portion of the rotor can be reduced, and the drag torque is reduced.
[0029]
【Example】
Hereinafter, the eddy current type speed reducer of the present invention will be described based on the embodiments shown in FIGS. 2 to 4, the same reference numerals as those in FIGS. 7 and 8 denote the same or corresponding parts, and detailed description thereof is omitted.
FIG. 2 is a cross-sectional view showing a first embodiment of the eddy current type speed reducer according to the second aspect of the present invention in the direction of the rotation axis. FIG. FIG. 3 is an explanatory view showing a state, FIG. 3 is a sectional view showing a second embodiment of the eddy current type speed reducer according to the second aspect of the present invention in the rotational axis direction, and (a) is an explanatory view showing a state of braking OFF. FIG. 4 is an explanatory view showing a state of braking ON, FIG. 4 is a cross-sectional view showing a third embodiment of the eddy current type speed reducer according to the second aspect of the present invention, and FIG. The figure shown, (b) is a sectional view taken on line AA of (a), (c) is an arrow B view of (a) showing the state of braking OFF, (d) shows the state of braking ON (a) FIG.
[0030]
In the eddy current type speed reducer according to the first aspect of the present invention, for example, a permanent magnet having a density ρ of 7500 kg / m 3 and a mass W of 199 g per unit is set so that the maximum energy product BHmax is 360 kJ / m 3. In the case of the single row swirl type eddy current speed reducer provided, the circumferential cross-sectional area A of the support ring using a material having a saturation magnetic flux density Br of, for example, 1.63 T when the magnetic field strength is 5000 A / m is 468. between 8 mm 2 of 703.2Mm 2, i.e., one in which κ in equation 1 is set in the range of 0.08 to 0.12.
[0031]
By setting the circumferential cross-sectional area A of the support ring in the above-described range, the magnetic force generated from the permanent magnet is suppressed at the time of braking OFF without impairing the braking force at the time of braking ON. Magnetic flux leaking to the cylindrical portion can be suppressed, and drag torque can be suppressed.
[0032]
2-4, instead of determining the circumferential cross-sectional area of the support ring within a certain range as in the eddy current type speed reducer according to the first aspect of the present invention described above, the support ring is arranged in the radial direction. The vortex according to the second aspect of the present invention, which is divided into two and is configured such that the cross-sectional area of the support ring between adjacent permanent magnets is large during braking and the cross-sectional area of the support ring between adjacent permanent magnets is small during non-braking. The specific Example of an electric current type reduction gear is shown.
[0033]
That is, the first embodiment shown in FIG. 2 faces the central portion in the circumferential direction of the switch plate 4 in the first support ring 11 fixed to the support body 5, which is located on the inner peripheral side of the two divided in the radial direction. It is the structure which provided the ditch | groove 11a which reaches the whole width direction in the position to carry out.
[0034]
In this way, the permanent magnet 3 that is evenly installed on, for example, the outer peripheral surface of the second support ring 12 located on the outer peripheral side of the two divided in the radial direction is opposed to the switch plate 4 as shown in FIG. In the braking ON state shown in (2), the circumferential cross-sectional area of the support ring is increased (substantially the same as the circumferential cross-sectional area of the conventional support ring 2), and the braking torque is not impaired.
[0035]
Then, the second support ring 12 is swung from the braking ON state shown in FIG. 2 (b) to the braking OFF state shown in FIG. 2 (a) in which one permanent magnet 3 overlaps the adjacent switch plates 4 and overlaps each other by half. If this is done, the circumferential cross-sectional area of the support ring is reduced by the amount of the concave groove 11a, the magnetic flux flowing through the short circuit magnetic circuit is reduced, and the magnetic flux inevitably leaking from the switch plate to the cylindrical portion of the rotor is reduced. The drag torque is reduced. 2 denotes a bearing interposed between the first support ring 11 and the second support ring 12.
[0036]
Further, the second embodiment shown in FIG. 3 replaces the first embodiment shown in FIG. 2 with the support body 5 having the same number of polygons as the number of permanent magnets 3 installed. The apex angle is arranged so as to face the substantially circumferential center of the switch plate 4, and the first support located on the outer peripheral surface of the support 5 is located on the inner peripheral side of the two divided in the radial direction. The body 13 is arranged with a predetermined interval between the adjacent first supports 13.
[0037]
The second embodiment shown in FIG. 3 also achieves the same operational effects as the first embodiment shown in FIG. Note that reference numeral 14 in FIG. 3 denotes a bearing interposed between the first support 13 and the second support ring 12.
[0038]
Further, in the third embodiment shown in FIG. 4, one side in the width direction of the first support ring 11 of the first embodiment shown in FIG. 2 (the left side in FIG. 4A) is arranged at the bottom of the groove 11a. The notch portion 11b is made to project the opposite portion of the second support ring 12, and the projecting portion 12a is made to face the notch portion 11b.
[0039]
The third embodiment shown in FIG. 4 also achieves the same operational effects as the first embodiment shown in FIG.
[0040]
【The invention's effect】
As described above, according to the eddy current reduction device of the present invention, the magnetic flux generated from the permanent magnet can be suppressed when the brake is OFF without damaging the braking force when the brake is ON. Therefore, the magnetic flux leaking from the switch plate to the cylindrical portion of the rotor inevitably decreases with the decrease of the magnetic flux generated from the permanent magnet at the time of braking OFF, and the drag torque can be suppressed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an eddy current type speed reducer according to the first aspect of the present invention, in which braking is performed when the cross-sectional area A in the circumferential direction of the support ring obtained by Equation 1 is changed (when κ is changed). It is the figure which showed the result of having measured the torque and the drag torque.
FIGS. 2A and 2B are cross-sectional views showing a first embodiment of the eddy current reduction device according to the second aspect of the present invention in the direction of the rotation axis, wherein FIG. 2A is an explanatory view showing a state of braking OFF, and FIG. It is explanatory drawing which shows the state of.
FIGS. 3A and 3B are cross-sectional views showing a second embodiment of the eddy current reduction device according to the second aspect of the present invention in the direction of the rotation axis, where FIG. 3A is an explanatory view showing a state of braking OFF, and FIG. It is explanatory drawing which shows the state of.
4A and 4B are cross-sectional views showing a third embodiment of the eddy current reduction device of the second aspect of the present invention in the direction of the rotation axis, wherein FIG. 4A is a cross-sectional view in the circumferential direction, and FIG. FIG. 6A is a cross-sectional view taken along line A-A, FIG. 5C is a B view of FIG. 4A showing a state of braking OFF, and FIG. 4D is a B view of FIG.
FIG. 5 is a diagram in which the magnetic circuit at the time of braking shown in FIG. 8A is replaced with a current circuit.
6 is a diagram in which the magnetic circuit at the time of non-braking shown in FIG. 8B is replaced with a current circuit.
FIG. 7 is a side view of an eddy current type speed reducer proposed in Japanese Patent Application Laid-Open No. 1-2298948, and is a view showing a cross section of the upper half.
FIGS. 8A and 8B are explanatory diagrams showing a magnetic circuit configuration in the eddy current reduction device of FIG. 7, wherein FIG. 8A is a diagram showing a state in which braking is ON, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a Cylindrical part 2 Support ring 3 Permanent magnet 4 Switch board 11 1st support ring 11a Groove 11b Notch part 12 Second support ring 12a Protrusion part 13 1st support body

Claims (2)

回転軸に一体的に取り付けられたロータと、このロータに対向して支持され、ロータの周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の支持リングに均等に配置された永久磁石群と、この永久磁石群と前記ロータとの間に、前記永久磁石と同数だけ均等に介設された強磁性体のスイッチ板群と、このスイッチ板群の各スイッチ板の間に介設された非磁性体の支持体部分を備えた渦電流式減速装置において、下記の数式で表わされる支持リングの周方向の断面積Aが、κ=0.08〜0.12の範囲となるようにしたことを特徴とする渦電流式減速装置。
A=κ・(BHmax ・W/ρ)/Br
但し、BHmax :使用する永久磁石の最大エネルギー積(J/m3
W:1個当りの永久磁石質量(kg)
ρ:使用する永久磁石の比重(kg/m3
A:支持リングにおける周方向の断面積(m2
Br:磁界強度5000A/mにおける支持リングの飽和磁束密度(T)
A rotor that is integrally attached to the rotating shaft and a rotor that is supported opposite to the rotor and that is evenly arranged on the ferromagnetic support ring so that the magnetic poles are opposite to each other along the circumferential direction of the rotor. A permanent magnet group, a ferromagnetic switch plate group that is equally interposed between the permanent magnet group and the rotor, and the switch plates of the switch plate group. In the eddy current type speed reducer provided with the nonmagnetic support member, the circumferential cross-sectional area A of the support ring represented by the following formula is in the range of κ = 0.08 to 0.12. An eddy current type speed reducer characterized by the above.
A = κ · (BHmax · W / ρ) / Br
However, BHmax: Maximum energy product (J / m 3 ) of the permanent magnet used
W: Permanent magnet mass per unit (kg)
ρ: Specific gravity of the permanent magnet used (kg / m 3 )
A: Cross-sectional area in the circumferential direction of the support ring (m 2 )
Br: saturation magnetic flux density (T) of the support ring at a magnetic field strength of 5000 A / m
回転軸に一体的に取り付けられたロータと、このロータに対向して支持され、ロータの周方向に沿って磁極の向きを互いに逆向きとなるよう、強磁性体の支持リングに均等に配置された永久磁石群と、この永久磁石群と前記ロータとの間に、前記永久磁石と同数だけ均等に介設された強磁性体のスイッチ板群と、このスイッチ板群の各スイッチ板の間に介設された非磁性体の支持体部分を備えた渦電流式減速装置において、前記支持リングを半径方向に2分割し、制動時には隣接する永久磁石間における支持リングの断面積が大きく、非制動時には隣接する永久磁石間における支持リングの断面積が小さくなるように構成したことを特徴とする渦電流式減速装置。A rotor that is integrally attached to the rotating shaft and a rotor that is supported opposite to the rotor and that is evenly arranged on the ferromagnetic support ring so that the directions of the magnetic poles are opposite to each other along the circumferential direction of the rotor. A permanent magnet group, a ferromagnetic switch plate group that is equally interposed between the permanent magnet group and the rotor, and the switch plates of the switch plate group. In the eddy current type speed reducer provided with a nonmagnetic support body portion, the support ring is divided into two in the radial direction, and the cross-sectional area of the support ring is large between adjacent permanent magnets during braking, and adjacent when non-braking An eddy current type speed reducer characterized in that the cross-sectional area of the support ring between the permanent magnets is small.
JP2001019203A 2001-01-26 2001-01-26 Eddy current reducer Expired - Lifetime JP3702794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019203A JP3702794B2 (en) 2001-01-26 2001-01-26 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019203A JP3702794B2 (en) 2001-01-26 2001-01-26 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2002223556A JP2002223556A (en) 2002-08-09
JP3702794B2 true JP3702794B2 (en) 2005-10-05

Family

ID=18885121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019203A Expired - Lifetime JP3702794B2 (en) 2001-01-26 2001-01-26 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP3702794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102778A1 (en) * 2003-05-19 2004-11-25 Isuzu Motors Limited Eddy-current reduction gear
JP4296835B2 (en) * 2003-05-19 2009-07-15 いすゞ自動車株式会社 Eddy current reducer

Also Published As

Publication number Publication date
JP2002223556A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP6852814B2 (en) Eddy current speed reducer
JP3651255B2 (en) Eddy current reducer
JPH01298948A (en) Eddy current type decelerator
JP3702794B2 (en) Eddy current reducer
JP2009278860A (en) Permanent magnet rotating electric machine and electric vehicle using the same
JP3592948B2 (en) Electric vehicle and permanent magnet rotating electric machine used therefor
JP2709827B2 (en) Eddy current type reduction gear
JP4042357B2 (en) Eddy current reducer
JP2709822B2 (en) Eddy current type reduction gear
JP3855590B2 (en) Eddy current reducer
JP4296835B2 (en) Eddy current reducer
JPH07245933A (en) Eddy current type reduction gear
WO2004102778A1 (en) Eddy-current reduction gear
JP4604857B2 (en) Eddy current reducer
JP3953718B2 (en) Eddy current reducer
JP6088465B2 (en) Drive unit
JP2701390B2 (en) Eddy current type reduction gear
JP3285043B2 (en) Eddy current type reduction gear
JP4296836B2 (en) Eddy current reducer
JP3436271B2 (en) Eddy current type reduction gear
JP4042524B2 (en) Eddy current reducer
JP4016537B2 (en) Eddy current reducer
JP2000032734A (en) Pole piece for eddy current reduction gear
JP2566803Y2 (en) Eddy current type reduction gear
JP3892599B2 (en) Eddy current reducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Ref document number: 3702794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term