JP3653926B2 - Method for producing metal oxide-supported composite - Google Patents

Method for producing metal oxide-supported composite Download PDF

Info

Publication number
JP3653926B2
JP3653926B2 JP09374797A JP9374797A JP3653926B2 JP 3653926 B2 JP3653926 B2 JP 3653926B2 JP 09374797 A JP09374797 A JP 09374797A JP 9374797 A JP9374797 A JP 9374797A JP 3653926 B2 JP3653926 B2 JP 3653926B2
Authority
JP
Japan
Prior art keywords
metal
ion
ion exchange
cation exchanger
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09374797A
Other languages
Japanese (ja)
Other versions
JPH10286579A (en
Inventor
健吾 岡嶌
勝芳 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP09374797A priority Critical patent/JP3653926B2/en
Publication of JPH10286579A publication Critical patent/JPH10286579A/en
Application granted granted Critical
Publication of JP3653926B2 publication Critical patent/JP3653926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業廃液中などに存在する被還元性物質や被酸化性物質等を分解して除去するのに適した金属酸化物担持複合体の製造方法に関するものである。
【0002】
【従来の技術】
一般に金属の酸化物,水酸化物,過酸化物,水和酸化物,オキシ水酸化物(以下「金属酸化物」と総称する)は、表面改質剤や触媒等の機能性材料として工業的に用いる場合には成形或いは担体への固定化が必要である。
【0003】
例えば食塩電解用のフッ素系有機高分子陽イオン交換膜の表面改質剤としての用途が特開昭57ー39185号公報、特開昭57ー172927号公報、特開昭57ー207184号公報に開示されている。これは金属酸化物の多孔質層を、電解用陽イオン交換膜の表面に付着させ、金属酸化物層を形成させた複合体である。その製造方法は、金属酸化物の粉末を媒体中で結合剤と混合し、フィルター上に多孔質層のケーキを形成し、膜面に加熱、圧着する操作からなる。この複合体は通常塩化ナトリウム水溶液等の電解における隔膜として使用されるが、金属酸化物はイオン交換膜の表面にのみ担持され、物理的な結合力により保持されている。そのため攪拌、加熱等により金属酸化物が陽イオン交換膜から容易に剥離し、性能面での経時安定性に乏しい。また、製造工程が長く複雑であり、多くの装置例えば濾過機、ホットプレス機等が必要で、しかも生産性が低い等多くの欠点を有していた。
【0004】
又、特開平6ー23375号公報にはMn,周期表1B族元素及び周期表8族元素から選ばれた少なくとも1種の金属(以下、Mn等という)の酸化物とフッ素系有機高分子陽イオン交換体との複合体を別の用途、即ち被還元性物質及び被酸化性物質を分解して除去する触媒として利用する方法が提案されている。
【0005】
該複合体はフッ素系有機高分子陽イオン交換体にMn等の金属酸化物を強固に担持したもので、溶液中に存在する被還元性物質等を分解する優れた機能を有する。その製造方法はフッ素系有機高分子陽イオン交換体をMn等の塩を溶解させた均一溶液及び/又はMn等の金属酸化物類の懸濁液と接触させ、該イオン交換体の対イオンをMn等の金属イオンとし、次いで、酸化剤及び/又はアルカリにてMn等を酸化物として該イオン交換体に析出させ、フッ素系有機高分子陽イオン交換体との複合体を得る方法である。該方法では、確かに高性能の複合体が製造でき、被還元性物質及び被酸化性物質を触媒的に分解除去できる。この方法で重要な操作は、イオン交換体の対イオンをMn等のイオンに交換する操作である。この操作には、通常Mn等の塩を溶解させた均一溶液が用いられる。しかし、この場合イオン交換率を高くできず、Mn等の塩の利用率が低くなる。高いイオン交換率を達成するためには、過剰の金属塩を必要とし、経済的でない。又、イオン交換後、過剰のMn等の塩を含有する廃液が発生し、環境面および経済面からその塩の回収、又は無害化処理が必要で、操作は煩雑となる。
【0006】
又、特開平6−23375号公報には、イオン交換体の対イオンをMn等のイオンに交換する他の操作として、Mn等の酸化物類の懸濁液と接触させる記載がある。この方法は、Mn等の酸化物類の利用率は高くできるものの、イオン交換速度はそれほど大きくなく、又副生する水により、液量が増加する。その水の量は該複合体量が多い時には無視できない程多く、そのため大容量の装置が必要となる。又、該酸化物類の表面は活性であり、空気中の炭酸ガス等と反応しやすく、不活性となり、イオン交換が阻害される。又、この時固結等の問題が生じることがある。
【0007】
【発明が解決しようとする課題】
本発明の目的は、前記種々の問題点を解決できる金属酸化物担持複合体の製造方法の提供である。すなわちMn等の酸化物を陽イオン交換体に担持する方法として、操作が簡単で、Mn等の利用率が高く、環境面で問題となるMn等の塩を含む廃液を生じることが無く、又経済性の高い、該複合体の工業的製造方法、又、Mn等の金属酸化物と陽イオン交換体との結合が強固であり、耐久性に優れ、長期間高い性能を維持する金属酸化物担持複合体の工業的製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明はH型陽イオン交換体と金属を、水を介して接触させることにより該陽イオン交換体の対イオンを該金属イオンとした後、酸化剤及び/又はアルカリと接触させることを特徴とする金属酸化物担持複合体の新規な製造方法を提供するものである。
【0009】
本発明の骨子となる所は、H型陽イオン交換体と固体である金属を、水を介して接触させ、イオン交換を行い、該イオン交換体の対イオンを該金属イオンに交換することである。これまでの技術では、イオン交換はその金属イオンが溶解した溶液状態で行われる。金属を用いてイオン交換することは、従来の常識を逸脱するものである。しかし、本発明者等は、検討を重ねた結果、固体である金属を用いたイオン交換を見出し、そして産業上利用価値の高い金属酸化物担持複合体の製造に到達した。この技術の完成により、予想しなかった多くの、そして大きな効果がもたらされた。本発明の工業的価値は極めて大きい。
【0010】
以下、本発明について詳細に説明する。
【0011】
本複合体の製造は、まずH型陽イオン交換体と金属とを、水を介して接触させることを必須とする。H型陽イオン交換体とは、交換基の対イオンが実質的にH+(水素イオン)であり、Mn等の金属と接触させることで、対イオンをMn等のイオンに置換できる陽イオン交換体を示す。ここで言う実質的にとは、対イオンの50%以上がH+であることを示す。好ましくは60%以上である。H+比率が低く、Na+等の他の陽イオンの比率が高いと、金属とのイオン交換が不十分になる。
【0012】
陽イオン交換体とは、無機陽イオン交換体、有機高分子陽イオン交換体いずれも好適に使用できる。具体的には前者は、ゼオライト、後者はスルホン酸基、カルボン酸基、ホスホン酸基、フェノール性水酸基、等の交換基を有する炭化水素系陽イオン交換体及びフッ素系陽イオン交換体を挙げることができる。
【0013】
ゼオライトとしては、天然産鉱物に含有されるゼオライトや高シリカ−ペンタシル型ゼオライトであるZSM−5、シリカライト、モルデナイト、更にはフォージャサイトであるX型,Y型、そしてA型ゼオライト等があり、いずれのものも使用できる。好ましいゼオライトは、耐酸性の高い、即ち水溶液中でH型にし易い、高シリカ比のゼオライトであり、高シリカ−ペンタシル型ゼオライト、シリカライト、モルデナイト、Y型(特にultrastable Y型ゼオライト)がこれに該当する。
【0014】
炭化水素系陽イオン交換体としては、市販の陽イオン交換樹脂やキレート樹脂、陽イオン交換膜があり、フッ素系陽イオン交換体としては市販のフッ素系有機高分子陽イオン交換樹脂、フッ素系有機高分子陽イオン交換膜等があり、いずれのものも使用できる。これらのうち、耐熱性、耐薬品性、形状の自由選択性等の面からフッ素系陽イオン交換体が好ましい。
【0015】
以下、好適なフッ素系陽イオン交換体で説明する。
【0016】
フッ素系有機高分子陽イオン交換体として具体的に述べると、例えばテトラフルオロエチレン、パーフルオロビニルエーテルとの共重合体に陽イオン交換基が導入されたNafion(Du Pont社製)、Flemion(旭硝子(株)製)等の商標が付された陽イオン交換体を好適に用いることができる。このパーフルオロカチオン交換体が最も耐久性に富むが、炭化水素系陽イオン交換体を窒素、アルゴン等の不活性ガスで希釈したフッ素ガスと接触させて得られるものは、主鎖に一部水素が残るが、耐久性は良く本発明として好適に使用することができる。これらフッ素系有機高分子陽イオン交換体のイオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基、フェノール性水酸基があり、いずれも好適に用いることができる。なかでも、Mn等の酸化物との結合力の点でスルホン酸基またはカルボン酸基をもつものがより望ましい。又、該フッ素系有機高分子陽イオン交換体のイオン交換容量が大きい程、金属の酸化物を強く結合でき、又酸化物の担持量を多くできるので好ましい。具体的には0.3ミリグラム当量/(グラムー乾燥体)以上、特に0.5ミリグラム当量/(グラムー乾燥体)以上のものを選ぶのが良い。該フッ素系有機高分子陽イオン交換体の形状は、膜状、球状、繊維状のいずれでも良い。更に該フッ素系有機高分子陽イオン交換体として、イオン交換膜法食塩電解の隔膜として用いられた使用済みのフッ素系有機高分子陽イオン交換膜でも良く、使用条件に合わせて適当な形状・大きさに切って使用すれば良い。
【0017】
市販されているフッ素系有機高分子陽イオン交換体の対イオンが実質的にH+(H型)であれば、そのままMn等の金属の溶液及び/又は懸濁液に接触させることでMn等のイオンに交換できる。しかし、通常はフッ素系有機高分子陽イオン交換体は劣化しにくい型、K型(対イオンがK+)、Na型(対イオンがNa+)等で市販されており、又食塩電解の隔膜として用いられた使用済みの陽イオン交換膜ではNa型となっている。その場合は、酸を用いてH型とする。使用する酸としては、塩酸,硫酸,硝酸等の鉱酸、酢酸,酒石酸,安息香酸等の有機酸いずれでも構わないが、経済性が高く、廃酸の処理が容易で、取扱い性が良い鉱酸が好ましい。H型とするには回分式、連続式、半回分式いずれでも良く、又固定床、流動床、移動床のいずれでも構わない。より好ましい方法は回分式又は固定床流通式である。回分式の場合は一度の処理では全部はH型とはならないが、一部H型以外のイオンが残存していても構わない。実質的にH+型であれば良い。より好ましくは、回分式を繰り返しH型の割合を高めることであり、容易に、好ましいH型割合である60%以上、更には80%以上にできる。該酸の濃度及び温度はいずれも高い程効率が良いので好ましいが、フッ素系有機高分子陽イオン交換体が劣化せず、特殊な装置材質を必要としない範囲がより好ましく、具体的には酸濃度0.001〜5モル/リットル、温度5〜100℃である。
【0018】
上記方法によりH型としたフッ素系有機高分子陽イオン交換体とMn等の金属を水を介して接触させ、該フッ素系有機高分子陽イオン交換体の対イオンをMn等の金属イオンとするが、本発明におけるMn等の金属とは、具体的には金属
Mn,Fe,Co,Ni,Cu,Pd等をあげることができる。
【0019】
Mn等の金属は単独であっても、異種の金属を共存させても差し支えない。更に、理由は定かではないが、該金属と同種元素のイオンを塩の形で溶解させて
Mn等の金属のイオン交換を行うと、その交換速度をより大きくできる。Mn等の金属の添加量は特に限定しないが、イオン交換基に対して化学量論量か、もしくは若干過剰に使用するのが好ましく、Mn等のイオンの交換量をより多くできる。経済性、操作性から化学量論量の2倍以下が望ましい。過剰量用いても未反応の金属は固体として容易に回収でき、再利用できる。このことも本発明の大きな特徴である。イオン交換に使用するMn等の金属は粉末状、粒状、板状いずれでも構わないがより好ましくは粉末状である。これは比表面積が大きいためイオン交換速度を大きくでき、効率的にイオン交換できる為である。特に重要なのは粒子径であり、平均粒子径1mm以下が好ましく、より好ましくは0.1mm以下である。この時のMn等の金属の懸濁濃度は、撹拌できる範囲であればいくらでも構わないが、濃度が低すぎると装置容量が大きくなる。逆に高すぎると撹拌所要動力が増す。これらのことより、好ましい範囲は、0.001〜30wt%であり、より好ましくは0.01〜20wt%である。この懸濁濃度範囲で好適にイオン交換することができる。
【0020】
金属の懸濁濃度によってイオン交換速度、イオン交換率は大きく変動することなく、ほぼ安定した速度、交換率が維持できる。このことも本発明の大きな特徴である。この理由も定かではないが、注意深い観察によると、金属粉末が均一にH型陽イオン交換体表面に付着し、時間を経るにつれて小さく、少なくなっていることから、両者が最も接近した状態(付着)でイオン交換が進行したためと考えられる。
【0021】
このことは特開平6ー23375号公報開示の金属酸化物をイオン交換に用いる方法にも見られないことである。
【0022】
本発明の金属によるイオン交換は、前記公報と比較して、速度が大きく、安定している。その理由を推察すると、前述の付着以外に反応活性な金属表面が水と反応し、加水分解することで、表面に極めて活性の高い水酸化物の如き中間活性種が生成し、該水酸化物がH+ イオンと速やかに反応し、イオン交換したためと考えられる。
【0023】
該イオン交換の方式は、回分式、連続式、半回分式いずれでも良く、又、固定床、流動床、移動床いずれをも選択できる。より好ましくは回分式であり、イオン交換を効率的に実施できる。又、このようにイオン交換処理してフッ素系有機高分子陽イオン交換体の対イオンをMn等のイオンとするが、この時の対イオンの価数に制限はない。
【0024】
イオン交換処理の時間は、通常2〜100時間で良い。その処理温度は低すぎるとイオン交換に時間を要し、高すぎると装置材料の腐食抑制の面から高価なものを必要とするので、5〜100℃、特に10〜90℃が好ましい。
【0025】
こうして、フッ素系有機高分子陽イオン交換体は、Mn等の金属のイオンに交換される。そのイオン交換率は高く、1回の回分式操作でも容易に60%以上、更には90%以上、95%以上にもできる。この高いイオン交換率も本発明の大きな特徴である。通常用いられる金属塩の水溶液による回分式イオン交換では、イオン交換平衡により1回の操作で高いイオン交換率は得られない。回分操作を数回繰り返したり、連続流通式操作により、イオン交換率を高く、例えば90%以上にしている。
【0026】
又、本発明のイオン交換ではMn等の金属イオンを含む処理廃液が殆ど派生しない。このことも本発明の特徴である。これまでの金属塩の水溶液を用いるイオン交換では、そのイオン交換平衡により、Mn等の金属イオンやイオン交換体の対イオンを含む処理液が必ず発生し、Mn等の金属イオンの回収、環境対策上の処置等、煩雑な操作を必要とした。
【0027】
以上のようにイオン交換処理して得られたフッ素系有機高分子陽イオン交換体を、次に酸化剤及び/又はアルカリと接触させる。この処理により、該イオン交換体におけるMn等のイオンがその酸化物に転化して金属酸化物担持複合体が得られる。
【0028】
酸化剤は特に限定しないが、好ましいのは塩素,次亜塩素酸(塩),亜塩素酸(塩),塩素酸(塩),塩素化シアヌル酸(塩);臭素,次亜臭素酸(塩),亜臭素酸(塩),臭素酸(塩);ヨウ素,ヨウ素の酸素酸(塩);過酸化水素,オゾン,過マンガン酸(塩),重クロム酸(塩)等の1種または2種以上をあげることができる。これらの内、入手が容易であって環境上悪影響のない塩素、次亜塩素酸塩が望ましい。この酸化剤との接触によって、Mn等のイオンは微細な高次の価数の酸化物となってイオン交換体の内部及び表面に結合した形で析出する。この時の金属酸化物担持複合体におけるMn等の酸化物と陽イオン交換体との結合は、後述のアルカリのみによる複合体と比べてよりいっそう強固になり、かつ触媒としての活性も高くなるので好ましい方法である。これは定かではないが、Mn等の価数が高くなり、イオン交換体の交換基との電気的作用によるものと推定される。又、酸化剤による処理は、pHが5以上、更には7以上が好ましく、短時間で効率良く担持することができる。しかし、pH14よりも高くしても、それ以上の時間短縮効果は大きくなく、アルカリ消費量が増すので、pH14以下が望ましい。酸化剤が次亜塩素酸塩の水溶液の時、pHは通常10以上であり、そのままで好適に使用できる。一方、塩素のように水に溶解し、酸を生じる場合は別にアルカリを併用してpHを5以上にするのが良い。
【0029】
アルカリとしては、アルカリ金属の水酸化物、その炭酸塩、アルカリ土類金属の水酸化物、アンモニア、アミン等の水溶液を挙げることができるが、ナトリウム、カリウムなどのアルカリ金属の水酸化物の水溶液のような強アルカリが担持効率を高くできるので好ましい。それは、上記の転化反応の速度を大きくすることができるからである。このアルカリとの接触によって、Mn等のイオンは微細な水酸化物としてイオン交換体の内部及び表面に強固に結合した形で析出する。Mn等のイオンの酸化物への転化処理の時間は、酸化剤及び/又はアルカリの種類、濃度および量、pH、温度などによって異なるが、通常3分〜3時間とすれば良い。その処理温度は、低すぎれば転化に長時間を要したり転化が不十分となり、高すぎれば熱エネルギーを多く消費するにすぎないことになるので、5〜90℃、特に10〜70℃とするのが良い。つまり常温で好適に実施することができる。
【0030】
酸化剤による処理を次亜塩素酸で行えば、金属酸化物担持複合体を構成するイオン交換体の対イオンはH+となり、この場合には上記のイオン交換及び転化の処理をそのまま繰り返すことができ、担持量を高めることができる。次亜塩素酸ナトリウム等を酸化剤として処理すると、本複合体のイオン交換体の対イオンはNa+となり、この場合は弱酸により再度H+型とした後、以上の操作を繰り返すと担持量を高めることができる。一回の担持操作でも良いが、繰り返し回数を、2回または3回とすると担持量を高め得る。尚、4回以上繰り返しても上記酸化物の担持量はそれほど増加しない。
【0031】
以上の操作で得られたMn等の酸化物とフッ素系有機高分子陽イオン交換体との複合体の用途は、
(1)被酸化性物質の溶液を、酸化剤の存在下、本複合体と接触させることによる被酸化性物質の分解
(2)本複合体を酸化剤と接触させたのち、被酸化性物質の溶液と接触させることによる、被酸化性物質の分解
(3)被還元性物質の溶液を本複合体と接触させることによる、被還元性物質の分解等の触媒として有効である。
【0032】
更に、本発明の製法によって製造した複合体は金属酸化物とフッ素系有機高分子陽イオン交換体との結合力が大きく、従来の触媒では不可能であった攪拌系における処理も可能となった。このように、結合力が強い理由は明らかではないが、イオン交換基を有しない樹脂や陰イオン交換体では強い結合力がみられないことより、陽イオン交換基と金属酸化物との間に何等かの化学的な牽引力が働いているものと推定される。
【0033】
【実施例】
以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0034】
例中、金属酸化物担持複合体中のフッ素系有機高分子陽イオン交換体のH型に対する金属の担持量(wt%)は、該複合体の試料を塩酸に入れてMn等の酸化物を溶解させた後、セイコー電子(株)製 SPS−7000による誘導結合プラズマ発光分光法によって金属の量(Ag)を測定し、この時H型となったフッ素系有機高分子陽イオン交換体を110℃で12時間乾燥したのち重量(Wg)を測定し、
(A/W)×100
によって求めた。
【0035】
実施例1
イオン交換膜法食塩電解に使用したフッ素系有機高分子陽イオン交換膜Nafion954(Du Pont社製)の100g(乾燥重量換算)を良く水洗した後、10mm×10mmの大きさに切断した(この切断片を、以下、ナフィオン膜片という)。
【0036】
1リットルビーカーにNーHCl500ml、ナフィオン膜片100gを入れ、1時間放置しイオン交換基の対イオンをNa+イオンからH+イオンに置換した。一度の操作では全てをH型に置換できなかったので、同様の操作を更に2回繰り返した。その結果、ナフィオン膜片イオン交換基の対イオンほぼ全てがH+(水素イオン)となった(以下、H型ナフィオン膜片という)。
【0037】
1リットルセパラブルフラスコに、純水880ml及び日興ファインプロダクツ(株)製Ni粉末 Type287 を3.15g(平均粒径2.6〜3.3μm、比表面積0.56cm2/g)を加え、恒温水槽で温度50℃とした。H型ナフィオン膜片の100gを1リットルセパラブルフラスコに入れ、攪拌速度300rpmでNi型へのイオン交換を開始した。イオン交換処理を5時間行ったのちナフィオン膜片を全量取り出し、一部でNi交換量を測定したところナフィオン膜片1g(乾燥重量換算)に対して、0.023gのNi2+イオンが交換していた(以下、Ni型ナフィオン膜片という)。
【0038】
次に、3.1wt%NaClO水溶液(pH10)0.5リットルを入れた1リットルビーカーに、Ni型ナフィオン膜片の全量を入れ、ガラス棒で攪拌したところ、ニッケルイオンは黒色の酸化物となった。1時間の処理後、複合体のフッ素系有機高分子陽イオン交換膜乾燥重量に対するNiの比率は2.1%であった。
【0039】
次いで、オーバーフロー管付き1.5リットルセパラブルフラスコの反応槽に上記の複合体89g(乾燥重量換算)を入れ、攪拌速度300rpmにして、
6.1wt%NaClO水溶液(pH10)を0.4リットル/Hrの流速で連続的に供給し、同時に、オーバーフロー管より処理液を流出させた。反応槽内でNaClOが分解し、酸素ガスを発生するのが認められた。反応を開始して、3日後、該反応槽出口のNaClO濃度は1.2wt%となり、分解率は80.3%であった。更に反応を継続したところ、22日後の該反応槽出口のNaClO濃度は1.3wt%であり、分解率は78.7%であり、ほとんど複合体の性能の変化が見られなかった。また、複合体からのニッケル酸化物剥離等の変化もほとんどなかった。
【0040】
実施例2
実施例1と同様な操作により使用済みH型ナフィオン膜片を100g得た。1リットルセパラブルフラスコに、純水500ml及びキシダ化学(株)製試薬特級NiCl2・6H2O119gを入れてNiCl2溶液とし、更に実施例1で用いたNi粉末を4.56g加え、恒温水槽で温度50℃とした。H型ナフィオン膜片の100gを1リットルセパラブルフラスコに入れ、攪拌速度300rpmでNi型へのイオン交換を開始した。イオン交換処理4時間でナフィオン膜片を全量取り出し、一部でNi交換量を測定したところナフィオン膜片1g(乾燥重量換算)に対して、0.024gのNi2+イオンが交換していた(以下、Ni型ナフィオン膜片という)。イオン交換に供した後のNiCl2 水溶液中にはNi2+イオン以外の陽イオンを含まず、液のpHは中性となった。該NiCl2 水溶液は再利用が可能であった。
【0041】
次に、3.1wt%NaClO水溶液(pH10)0.5リットルを入れた1リットルビーカーに、Ni型ナフィオン膜片の全量を入れ、ガラス棒で攪拌したところ、ニッケルイオンは黒色の酸化物となった。1時間の処理後、複合体のフッ素系有機高分子陽イオン交換膜乾燥重量に対するNiの比率は2.2%であった。
【0042】
次いで、オーバーフロー管付き1.5リットルセパラブルフラスコの反応槽に上記の複合体88g(乾燥重量換算)を入れ、攪拌速度300rpmにして、
6.2wt%NaClO水溶液(pH11)を0.4リットル/Hrの流速で連続的に供給し、同時に、オーバーフロー管より処理液を流出させた。反応槽内でNaClOが分解し、酸素ガスを発生するのが認められた。反応を開始して、3日後、該反応槽出口のNaClO濃度は1.3wt%となり、分解率は79.0%であった。更に反応を継続したところ、17日後の該反応槽出口のNaClO濃度は1.4wt%であり、分解率は77.4%であり、ほとんど複合体の性能の変化が見られなかった。また、複合体からのニッケル酸化物剥離等の変化もほとんどなかった。
【0043】
実施例3
H型ZSM−5(東ソー(株)製、SiO2 /Al2 3 (モル比)=70)粉末20グラムと実施例1で用いたと同様のNi粉末2グラムを水溶液中に懸濁し、温度50℃で5時間、イオン交換処理を行った。その結果1グラムのZSM−5に対し、約0.01グラムのニッケルをイオン交換できた。このNi型のZSM−5を、pH10の3wt%NaClO水溶液中に懸濁し、30分間酸化処理を行った。その結果、ゼオライトは黒色となり、ゼオライトとニッケル酸化物の複合体を調製できた。
【0044】
比較例1
1リットルセパラブルフラスコに純水880ml、キシダ化学(株)製試薬一級NiCl2 ・6H2 O 12.8gを溶解させ、恒温水槽内で50℃とした。H型ナフィオン膜片の100gを良く水洗した後、NiCl2 が入った1リットルセパラブルフラスコに入れ、攪拌速度300rpmで、Ni型へのイオン交換を開始した。イオン交換処理1日でナフィオン膜片を全量取り出し、一部でNi交換量を測定したところナフィオン膜片1g(乾燥重量換算)に対して0.009gしかNi2+イオンが交換していなかった(以下、Ni型ナフィオン膜片という)。
【0045】
次に、3.0wt%NaClO水溶液(pH10)0.5リットルを入れた1リットルビーカーに、Ni型ナフィオン膜片の全量を入れガラス棒で攪拌したところ、ニッケルイオンは黒色の酸化物となり、得られた複合体のフッ素系有機高分子陽イオン交換体乾燥重量に対するNiの比率は0.9%と低かった。
【0046】
次いで、オーバーフロー管付き1.5リットルセパラブルフラスコの反応槽に上記の複合体90g(乾燥重量換算)を入れ、攪拌速度300rpmにして、Ca(ClO)2 10.2wt%、NaCl 19.8wt%及び900mg/リットルのSS分を含んだpH9.5の水溶液を0.35リットル/Hrの流速で連続的に供給し、同時に、オーバーフロー管より処理液を流出させた。反応槽内でCa(ClO)2 が分解し、酸素ガスが発生するのが認められた。反応を開始して、3日後、該反応槽出口のCa(ClO)2 濃度は4.03wt%となり、分解率は60.5%であり、実施例、例えば実施例1での分解率(=78.7%)よりも相当低くなった。
【0047】
更に反応を継続したところ、17日後の該反応槽出口のCa(ClO)2 濃度は4.18wt%であり、分解率は59.0%となり、さらに低下した。
【0048】
【発明の効果】
本発明の方法によれば、Mn等の酸化物を陽イオン交換体に効果的・効率的、且つ工業的に担持でき、金属酸化物担持複合体を製造することができる。
【0049】
以下、本発明の効果を列記する。
【0050】
(1)担持される金属酸化物の原料は、金属であり、入手が容易で取り扱い性が高く、又安価で経済的である。
【0051】
(2)金属を用いて、陽イオン交換体の対イオンを金属イオンとした時、環境上、経済上問題となる金属イオンを含む溶液が実質的に派生せず環境対策上極めて有益である。
【0052】
(3)陽イオン交換体の対イオンに対してほぼ当量の金属を使用しても、ほぼ完全にイオン交換でき、その利用率をすこぶる高くできる。
【0053】
(4)金属を過剰に用いても、イオン交換終了後、デカンテーション、濾過等の操作で液と金属を簡単に分別でき、回収した金属はこれまでと同様効率良く再使用できる。
【0054】
(5)得られた金属酸化物担持複合体の担持強度はすこぶる高く、撹拌等の機械的作用に対して高い抵抗を示し、その耐久性が大きく、長期間触媒等に使用できる。
【0055】
(6)金属酸化物担持複合体の触媒としての作用は大きく、被酸化性物質、被還元性物質の分解に好適に用いることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal oxide-supported composite suitable for decomposing and removing reducible substances and oxidizable substances present in industrial waste liquids.
[0002]
[Prior art]
In general, metal oxides, hydroxides, peroxides, hydrated oxides, and oxyhydroxides (hereinafter collectively referred to as “metal oxides”) are industrially used as functional materials such as surface modifiers and catalysts. In the case of using for the above, it is necessary to mold or fix to the carrier.
[0003]
For example, the use as a surface modifier of a fluorine-based organic polymer cation exchange membrane for salt electrolysis is disclosed in JP-A-57-39185, JP-A-57-172927, and JP-A-57-207184. It is disclosed. This is a composite in which a metal oxide porous layer is deposited on the surface of a cation exchange membrane for electrolysis to form a metal oxide layer. The manufacturing method includes an operation of mixing a metal oxide powder with a binder in a medium, forming a cake of a porous layer on a filter, and heating and pressing the film surface. This complex is usually used as a diaphragm in electrolysis of an aqueous sodium chloride solution or the like, but the metal oxide is supported only on the surface of the ion exchange membrane and is held by physical bonding force. For this reason, the metal oxide is easily peeled off from the cation exchange membrane by stirring, heating or the like, and the temporal stability in performance is poor. In addition, the manufacturing process is long and complicated, and many devices such as a filter and a hot press machine are required, and the productivity is low.
[0004]
JP-A-6-23375 discloses an oxide of at least one metal selected from Mn, Group 1B elements of the periodic table and Group 8 elements of the periodic table (hereinafter referred to as Mn) and a fluorine-based organic polymer positive electrode. A method of using a complex with an ion exchanger as another catalyst, that is, a catalyst for decomposing and removing a reducible substance and an oxidizable substance has been proposed.
[0005]
The composite is a fluorinated organic polymer cation exchanger firmly supporting a metal oxide such as Mn, and has an excellent function of decomposing reducible substances present in the solution. In the production method, a fluorine-based organic polymer cation exchanger is brought into contact with a homogeneous solution in which a salt such as Mn is dissolved and / or a suspension of metal oxides such as Mn. In this method, a metal ion such as Mn is used, and then Mn and the like are precipitated as an oxide with an oxidizing agent and / or an alkali to form a composite with a fluorinated organic polymer cation exchanger. In this method, a high-performance composite can be produced, and the reducible substance and the oxidizable substance can be catalytically decomposed and removed. An important operation in this method is an operation of exchanging the counter ion of the ion exchanger with an ion such as Mn. For this operation, a homogeneous solution in which a salt such as Mn is usually dissolved is used. However, in this case, the ion exchange rate cannot be increased, and the utilization rate of salts such as Mn is lowered. In order to achieve a high ion exchange rate, an excess metal salt is required, which is not economical. Further, after the ion exchange, a waste liquid containing an excessive salt such as Mn is generated, and the recovery of the salt or detoxification treatment is necessary from the environmental and economic aspects, and the operation becomes complicated.
[0006]
Japanese Patent Application Laid-Open No. 6-23375 discloses that as another operation for exchanging the counter ion of the ion exchanger with an ion such as Mn, it is brought into contact with a suspension of an oxide such as Mn. In this method, although the utilization rate of oxides such as Mn can be increased, the ion exchange rate is not so high, and the amount of liquid increases due to by-produced water. The amount of water is so large that it cannot be ignored when the amount of the complex is large, so that a large-capacity apparatus is required. Further, the surface of the oxides is active, and easily reacts with carbon dioxide gas in the air, becomes inactive, and ion exchange is inhibited. At this time, problems such as consolidation may occur.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a metal oxide-supported composite that can solve the various problems. That is, as a method of supporting an oxide such as Mn on a cation exchanger, the operation is simple, the utilization rate of Mn and the like is high, and there is no waste liquid containing a salt such as Mn which is an environmental problem. A highly economical industrial production method of the composite, and a metal oxide such as Mn, which has a strong bond between a cation exchanger and excellent durability, and maintains high performance for a long period of time. An object of the present invention is to provide an industrial production method for a supported composite.
[0008]
[Means for Solving the Problems]
The present invention is characterized in that an H-type cation exchanger and a metal are brought into contact with each other through water to make the counter ion of the cation exchanger a metal ion, and then contacted with an oxidizing agent and / or an alkali. The present invention provides a novel method for producing a metal oxide-supported composite.
[0009]
The gist of the present invention is that an H-type cation exchanger and a solid metal are brought into contact with each other through water, ion exchange is performed, and a counter ion of the ion exchanger is exchanged with the metal ion. is there. In conventional techniques, ion exchange is performed in a solution state in which the metal ions are dissolved. Ion exchange using metal deviates from conventional common sense. However, as a result of repeated studies, the present inventors have found ion exchange using a solid metal, and have reached production of a metal oxide-supported composite having high industrial utility value. The completion of this technology has had many unexpected and significant benefits. The industrial value of the present invention is extremely great.
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
In the production of this complex, it is essential that the H-type cation exchanger and the metal are first brought into contact with each other through water. In the H-type cation exchanger, the counter ion of the exchange group is substantially H. + (Hydrogen ion) A cation exchanger capable of replacing a counter ion with an ion such as Mn by contacting with a metal such as Mn. As used herein, substantially means that 50% or more of the counter ions are H. + Indicates that Preferably it is 60% or more. H + The ratio is low, Na + If the ratio of other cations such as these is high, ion exchange with the metal becomes insufficient.
[0012]
As the cation exchanger, either an inorganic cation exchanger or an organic polymer cation exchanger can be preferably used. Specifically, the former is a zeolite, and the latter is a hydrocarbon cation exchanger and a fluorinated cation exchanger having an exchange group such as a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phenolic hydroxyl group. Can do.
[0013]
Zeolite includes Zeolite contained in natural minerals, high silica-pentacil type zeolite ZSM-5, silicalite, mordenite, and faujasite X-type, Y-type, and A-type zeolite. Any of these can be used. Preferred zeolites are those with high acid resistance, i.e., high silica ratios, which are easily converted to H-type in aqueous solution. Applicable.
[0014]
Hydrocarbon cation exchangers include commercially available cation exchange resins, chelate resins, and cation exchange membranes. Fluorine cation exchangers include commercially available fluorinated organic polymer cation exchange resins and fluorinated organics. There are polymer cation exchange membranes, and any of them can be used. Among these, a fluorine-based cation exchanger is preferable from the viewpoints of heat resistance, chemical resistance, free shape selectivity, and the like.
[0015]
Hereinafter, a suitable fluorine-based cation exchanger will be described.
[0016]
Specifically described as a fluorine-based organic polymer cation exchanger, for example, Nafion (manufactured by Du Pont) in which a cation exchange group is introduced into a copolymer of tetrafluoroethylene and perfluorovinyl ether, Flemion (Asahi Glass ( A cation exchanger to which a trademark such as “made by Co., Ltd.” is attached can be suitably used. This perfluorocation exchanger has the most durability. However, what is obtained by contacting a hydrocarbon cation exchanger with a fluorine gas diluted with an inert gas such as nitrogen or argon is partially hydrogenated in the main chain. However, it has good durability and can be suitably used as the present invention. As the ion exchange group of these fluorine-based organic polymer cation exchangers, there are a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phenolic hydroxyl group, and any of them can be suitably used. Among these, those having a sulfonic acid group or a carboxylic acid group are more preferable in terms of bonding strength with an oxide such as Mn. Further, the larger the ion exchange capacity of the fluorinated organic polymer cation exchanger is, the more preferable it is because the metal oxide can be strongly bonded and the amount of oxide supported can be increased. Specifically, it is preferable to select one having 0.3 milligram equivalent / (gram-dried product) or more, particularly 0.5 milligram equivalent / (gram-dried product) or more. The shape of the fluorinated organic polymer cation exchanger may be any of membrane, sphere, and fiber. Further, as the fluorine-based organic polymer cation exchanger, a used fluorine-based organic polymer cation exchange membrane used as a diaphragm for salt electrolysis with an ion exchange membrane method may be used. Just cut it off and use it.
[0017]
The counter ion of a commercially available fluorinated organic polymer cation exchanger is substantially H. + If it is (H type), it can be exchanged for ions such as Mn by bringing it into contact with a solution and / or suspension of a metal such as Mn as it is. However, in general, fluorinated organic polymer cation exchangers are difficult to deteriorate, K type (counter ion is K + ), Na type (counter ion is Na + ) Etc., and used cation exchange membranes used as a membrane for salt electrolysis are Na-type. In that case, an acid is used to form the H type. The acid to be used may be any of mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid, tartaric acid and benzoic acid, but it is highly economical, easy to treat waste acid, and easy to handle. Acid is preferred. For the H type, any of batch type, continuous type and semi-batch type may be used, and any of fixed bed, fluidized bed and moving bed may be used. A more preferable method is a batch type or a fixed bed flow type. In the case of the batch type, not all of the H-type is obtained in a single process, but some ions other than the H-type may remain. Substantially H + Any type is acceptable. More preferably, the batch type is repeated to increase the H-type ratio, and the preferable H-type ratio can be easily increased to 60% or more, and more preferably 80% or more. The higher the concentration and temperature of the acid, the better the efficiency, but it is preferable. However, the range in which the fluorine-based organic polymer cation exchanger does not deteriorate and does not require a special apparatus material is more preferable. The concentration is 0.001 to 5 mol / liter, and the temperature is 5 to 100 ° C.
[0018]
The fluorine-based organic polymer cation exchanger made H-type by the above method is brought into contact with a metal such as Mn through water, and the counter ion of the fluorine-based organic polymer cation exchanger is used as a metal ion such as Mn. However, the metal such as Mn in the present invention is specifically a metal.
Mn, Fe, Co, Ni, Cu, Pd, etc. can be mentioned.
[0019]
A metal such as Mn may be used alone or different metals may be present together. Furthermore, although the reason is not clear, ions of the same element as the metal are dissolved in the form of a salt.
When ion exchange of a metal such as Mn is performed, the exchange rate can be increased. The amount of metal such as Mn added is not particularly limited, but it is preferably stoichiometric or slightly excessive with respect to the ion exchange group, and the amount of exchange of ions such as Mn can be increased. In view of economy and operability, the stoichiometric amount is preferably twice or less. Even if an excessive amount is used, the unreacted metal can be easily recovered as a solid and can be reused. This is also a major feature of the present invention. The metal such as Mn used for the ion exchange may be powdery, granular, or plate-like, but is more preferably powdery. This is because since the specific surface area is large, the ion exchange rate can be increased and the ion exchange can be performed efficiently. What is particularly important is the particle diameter, and the average particle diameter is preferably 1 mm or less, more preferably 0.1 mm or less. The suspension concentration of the metal such as Mn at this time is not limited as long as it can be stirred, but if the concentration is too low, the capacity of the apparatus increases. Conversely, if it is too high, the power required for stirring increases. From these things, a preferable range is 0.001-30 wt%, More preferably, it is 0.01-20 wt%. Ion exchange can be suitably performed within this suspension concentration range.
[0020]
The ion exchange rate and ion exchange rate do not vary greatly depending on the suspension concentration of the metal, and an almost stable rate and exchange rate can be maintained. This is also a major feature of the present invention. The reason for this is not clear, but careful observation shows that the metal powder uniformly adheres to the surface of the H-type cation exchanger and becomes smaller and smaller over time. This is probably because ion exchange progressed.
[0021]
This is not seen in the method of using the metal oxide disclosed in JP-A-6-23375 for ion exchange.
[0022]
The ion exchange with the metal of the present invention is faster and more stable than the above publication. Inferring the reason for this, in addition to the above-mentioned adhesion, the reactive metal surface reacts with water and hydrolyzes to produce intermediate active species such as a highly active hydroxide on the surface, and the hydroxide Is H + This is thought to be due to the rapid reaction with ions and ion exchange.
[0023]
The ion exchange method may be any of batch, continuous, and semi-batch, and any of fixed bed, fluidized bed, and moving bed can be selected. More preferably, it is a batch type, and ion exchange can be carried out efficiently. In addition, the counter ion of the fluorinated organic polymer cation exchanger is changed to an ion such as Mn by performing the ion exchange in this way, but the valence of the counter ion is not limited.
[0024]
The time for the ion exchange treatment is usually 2 to 100 hours. If the treatment temperature is too low, it takes time for ion exchange, and if it is too high, an expensive one is required from the viewpoint of inhibiting corrosion of the apparatus material, so 5 to 100 ° C, particularly 10 to 90 ° C is preferable.
[0025]
Thus, the fluorinated organic polymer cation exchanger is exchanged for metal ions such as Mn. The ion exchange rate is high, and it can be easily increased to 60% or more, further 90% or more, 95% or more even in a single batch operation. This high ion exchange rate is also a major feature of the present invention. In batch ion exchange using an aqueous solution of a commonly used metal salt, a high ion exchange rate cannot be obtained in a single operation due to ion exchange equilibrium. By repeating the batch operation several times or by continuous flow operation, the ion exchange rate is increased, for example, 90% or more.
[0026]
In addition, in the ion exchange of the present invention, the treatment waste liquid containing metal ions such as Mn is hardly derived. This is also a feature of the present invention. In conventional ion exchange using an aqueous solution of a metal salt, due to the ion exchange equilibrium, a treatment liquid containing a metal ion such as Mn and a counter ion of the ion exchanger is surely generated. Complicated operations such as the above measures were required.
[0027]
The fluorine-based organic polymer cation exchanger obtained by the ion exchange treatment as described above is then contacted with an oxidizing agent and / or an alkali. By this treatment, ions such as Mn in the ion exchanger are converted into the oxide, and a metal oxide-supported composite is obtained.
[0028]
The oxidizing agent is not particularly limited, but is preferably chlorine, hypochlorous acid (salt), chlorous acid (salt), chloric acid (salt), chlorinated cyanuric acid (salt); bromine, hypobromous acid (salt) ), Bromic acid (salt), bromic acid (salt); iodine, iodine oxyacid (salt); one or two of hydrogen peroxide, ozone, permanganic acid (salt), dichromic acid (salt), etc. More than seeds can be raised. Of these, chlorine and hypochlorite that are easily available and have no adverse environmental impact are desirable. By contact with this oxidizing agent, ions such as Mn are precipitated as fine high-order valence oxides bonded to the inside and the surface of the ion exchanger. In this case, the bond between the oxide such as Mn and the cation exchanger in the metal oxide-supported composite becomes stronger and more active as a catalyst as compared with the composite using only alkali described later. This is the preferred method. Although this is not certain, it is presumed that the valence of Mn or the like becomes high and is caused by an electrical action with the exchange group of the ion exchanger. Further, the treatment with an oxidizing agent preferably has a pH of 5 or more, more preferably 7 or more, and can be carried efficiently in a short time. However, even if it is higher than pH 14, the effect of shortening the time beyond that is not great, and the alkali consumption is increased. When the oxidizing agent is an aqueous solution of hypochlorite, the pH is usually 10 or more, and it can be suitably used as it is. On the other hand, when it dissolves in water like chlorine and generates an acid, it is preferable to make the pH 5 or more by using an alkali together.
[0029]
Examples of the alkali include aqueous solutions of alkali metal hydroxides, carbonates thereof, alkaline earth metal hydroxides, ammonia, amines, etc., but aqueous solutions of alkali metal hydroxides such as sodium and potassium. Such a strong alkali is preferable because the carrying efficiency can be increased. This is because the rate of the above conversion reaction can be increased. By contact with the alkali, ions such as Mn are precipitated as fine hydroxides in a form firmly bonded to the inside and the surface of the ion exchanger. The time for the conversion treatment of ions such as Mn to oxide varies depending on the kind, concentration and amount of the oxidizing agent and / or alkali, pH, temperature, etc., but is usually 3 minutes to 3 hours. If the treatment temperature is too low, the conversion takes a long time or the conversion becomes insufficient, and if it is too high, only a large amount of heat energy is consumed. Good to do. That is, it can be suitably carried out at room temperature.
[0030]
If the treatment with the oxidizing agent is performed with hypochlorous acid, the counter ion of the ion exchanger constituting the metal oxide-supported composite is H + In this case, the above ion exchange and conversion processes can be repeated as they are, and the loading amount can be increased. When sodium hypochlorite or the like is treated as an oxidizing agent, the counter ion of the ion exchanger of this complex is Na. + In this case, it is H again with a weak acid. + After forming the mold, the loading amount can be increased by repeating the above operation. Although the carrying operation may be performed once, the carrying amount can be increased when the number of repetitions is 2 or 3 times. In addition, even if it repeats 4 times or more, the load of the said oxide does not increase so much.
[0031]
The use of a composite of an oxide such as Mn obtained by the above operation and a fluorinated organic polymer cation exchanger is as follows:
(1) Decomposition of an oxidizable substance by bringing a solution of the oxidizable substance into contact with the complex in the presence of an oxidizing agent.
(2) Decomposition of the oxidizable substance by contacting the complex with an oxidant and then contacting with the solution of the oxidizable substance.
(3) It is effective as a catalyst for decomposing the reducible substance by bringing a solution of the reducible substance into contact with the complex.
[0032]
Furthermore, the composite produced by the production method of the present invention has a high binding force between the metal oxide and the fluorine-based organic polymer cation exchanger, and can be processed in a stirring system, which is impossible with conventional catalysts. . As described above, the reason why the bonding force is strong is not clear, but a resin or anion exchanger that does not have an ion exchange group does not show a strong bonding force. It is estimated that some kind of chemical traction is working.
[0033]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.
[0034]
In the examples, the amount of metal supported (wt%) relative to the H-type of the fluorine-based organic polymer cation exchanger in the metal oxide-supported composite is determined by placing an oxide such as Mn in a sample of the composite in hydrochloric acid. After dissolution, the amount of metal (Ag) was measured by inductively coupled plasma emission spectroscopy using SPS-7000 manufactured by Seiko Electronics Co., Ltd. After drying at ℃ 12 hours, weigh (Wg),
(A / W) x 100
Sought by.
[0035]
Example 1
Ion exchange membrane method 100 g (in terms of dry weight) of a fluorine-based organic polymer cation exchange membrane Nafion 954 (manufactured by Du Pont) used for salt electrolysis was thoroughly washed with water and then cut into a size of 10 mm × 10 mm (this cut) The pieces are hereinafter referred to as Nafion membrane pieces).
[0036]
Place 500 ml of N-HCl and 100 g of Nafion membrane in a 1 liter beaker and leave it for 1 hour. + From ion to H + Replaced with ions. Since not all could be replaced with the H-type by a single operation, the same operation was repeated two more times. As a result, almost all counter ions of the Nafion membrane piece ion exchange group are H. + (Hydrogen ion) (hereinafter referred to as H-type Nafion membrane piece).
[0037]
In a 1-liter separable flask, 880 ml of pure water and 3.15 g of Ni powder Type 287 manufactured by Nikko Fine Products Co., Ltd. (average particle size of 2.6 to 3.3 μm, specific surface area of 0.56 cm) 2 / G), and the temperature was adjusted to 50 ° C. in a constant temperature water bath. 100 g of the H-type Nafion membrane piece was placed in a 1-liter separable flask, and ion exchange into Ni-type was started at a stirring speed of 300 rpm. After 5 hours of ion exchange treatment, the entire Nafion membrane piece was taken out and the Ni exchange amount was measured for a part of the Nafion membrane piece. As a result, 0.023 g of Ni was obtained per 1 g of Nafion membrane piece (dry weight conversion). 2+ Ions were exchanged (hereinafter referred to as Ni-type Nafion membrane pieces).
[0038]
Next, when the entire amount of the Ni-type Nafion membrane piece was placed in a 1 liter beaker containing 0.5 liter of a 3.1 wt% NaClO aqueous solution (pH 10) and stirred with a glass rod, the nickel ions became black oxides. It was. After the treatment for 1 hour, the ratio of Ni to the dry weight of the fluorinated organic polymer cation exchange membrane of the composite was 2.1%.
[0039]
Next, 89 g of the above complex (in terms of dry weight) was placed in a reaction vessel of a 1.5 liter separable flask with an overflow tube, and the stirring speed was 300 rpm.
A 6.1 wt% NaClO aqueous solution (pH 10) was continuously supplied at a flow rate of 0.4 liter / hr, and at the same time, the treatment liquid was discharged from the overflow pipe. It was observed that NaClO decomposed in the reaction tank and oxygen gas was generated. Three days after starting the reaction, the NaClO concentration at the outlet of the reaction vessel was 1.2 wt%, and the decomposition rate was 80.3%. When the reaction was further continued, the NaClO concentration at the outlet of the reaction vessel after 22 days was 1.3 wt%, the decomposition rate was 78.7%, and almost no change in the performance of the composite was observed. Further, there was almost no change such as peeling of nickel oxide from the composite.
[0040]
Example 2
100 g of used H-type Nafion membrane pieces were obtained by the same operation as in Example 1. In a 1 liter separable flask, 500 ml of pure water and reagent-grade NiCl manufactured by Kishida Chemical Co., Ltd. 2 ・ 6H 2 NiCl with O119g 2 4.56 g of Ni powder used in Example 1 was further added, and the temperature was adjusted to 50 ° C. in a constant temperature water bath. 100 g of the H-type Nafion membrane piece was placed in a 1-liter separable flask, and ion exchange into Ni-type was started at a stirring speed of 300 rpm. The whole amount of Nafion membrane piece was taken out in 4 hours of ion exchange treatment, and Ni exchange amount was measured for a part of the Nafion membrane piece. 2+ Ions were exchanged (hereinafter referred to as Ni-type Nafion membrane pieces). NiCl after ion exchange 2 Ni in the aqueous solution 2+ The pH of the solution became neutral without containing cations other than ions. The NiCl 2 The aqueous solution could be reused.
[0041]
Next, when the entire amount of the Ni-type Nafion membrane piece was placed in a 1 liter beaker containing 0.5 liter of a 3.1 wt% NaClO aqueous solution (pH 10) and stirred with a glass rod, the nickel ions became black oxides. It was. After the treatment for 1 hour, the ratio of Ni to the dry weight of the fluorinated organic polymer cation exchange membrane of the composite was 2.2%.
[0042]
Next, 88 g (in terms of dry weight) of the above composite was put into a reaction vessel of a 1.5 liter separable flask with an overflow tube, the stirring speed was 300 rpm,
A 6.2 wt% NaClO aqueous solution (pH 11) was continuously supplied at a flow rate of 0.4 liter / hr, and at the same time, the treatment liquid was discharged from the overflow pipe. It was observed that NaClO decomposed in the reaction tank and oxygen gas was generated. Three days after starting the reaction, the NaClO concentration at the outlet of the reaction vessel was 1.3 wt%, and the decomposition rate was 79.0%. When the reaction was further continued, the NaClO concentration at the outlet of the reaction vessel after 17 days was 1.4 wt%, the decomposition rate was 77.4%, and almost no change in the performance of the composite was observed. Further, there was almost no change such as peeling of nickel oxide from the composite.
[0043]
Example 3
H-type ZSM-5 (manufactured by Tosoh Corporation, SiO 2 / Al 2 O Three (Molar ratio) = 70) 20 grams of powder and 2 grams of Ni powder similar to those used in Example 1 were suspended in an aqueous solution and subjected to ion exchange treatment at a temperature of 50 ° C. for 5 hours. As a result, about 0.01 gram of nickel could be ion-exchanged with respect to 1 gram of ZSM-5. This Ni-type ZSM-5 was suspended in a 3 wt% NaClO aqueous solution having a pH of 10 and subjected to an oxidation treatment for 30 minutes. As a result, the zeolite turned black and a composite of zeolite and nickel oxide could be prepared.
[0044]
Comparative Example 1
1-liter separable flask with 880 ml of pure water, reagent grade NiCl manufactured by Kishida Chemical Co., Ltd. 2 ・ 6H 2 12.8 g of O was dissolved, and the temperature was adjusted to 50 ° C. in a constant temperature water bath. After thoroughly washing 100 g of the H-type Nafion membrane piece with water, NiCl 2 Was put into a 1 liter separable flask, and ion exchange into Ni-type was started at a stirring speed of 300 rpm. The whole amount of Nafion membrane piece was taken out in one day of the ion exchange treatment, and the Ni exchange amount was measured for a part of the Nafion membrane piece. 2+ Ions were not exchanged (hereinafter referred to as Ni-type Nafion membrane pieces).
[0045]
Next, when the entire amount of the Ni-type Nafion membrane piece was placed in a 1 liter beaker containing 0.5 liter of a 3.0 wt% NaClO aqueous solution (pH 10) and stirred with a glass rod, nickel ions became black oxide. The ratio of Ni to the dry weight of the fluorinated organic polymer cation exchanger of the obtained composite was as low as 0.9%.
[0046]
Next, 90 g of the above composite (in terms of dry weight) was placed in a reaction vessel of a 1.5-liter separable flask with an overflow tube, and the stirring speed was 300 rpm. Ca (ClO) 2 An aqueous solution of pH 9.5 containing 10.2 wt%, NaCl 19.8 wt% and 900 mg / liter SS is continuously supplied at a flow rate of 0.35 liter / hr, and at the same time, the processing solution flows out from the overflow pipe. I let you. Ca (ClO) in the reaction vessel 2 Was decomposed and oxygen gas was generated. Three days after starting the reaction, Ca (ClO) at the outlet of the reaction vessel 2 The concentration was 4.03 wt% and the decomposition rate was 60.5%, which was considerably lower than the decomposition rate (= 78.7%) in the example, for example, Example 1.
[0047]
When the reaction was further continued, Ca (ClO) at the outlet of the reaction vessel after 17 days was obtained. 2 The concentration was 4.18 wt%, and the decomposition rate was 59.0%, further decreasing.
[0048]
【The invention's effect】
According to the method of the present invention, an oxide such as Mn can be effectively, efficiently and industrially supported on a cation exchanger, and a metal oxide-supported composite can be produced.
[0049]
The effects of the present invention are listed below.
[0050]
(1) The material of the metal oxide to be supported is a metal, is easily available, has high handleability, is inexpensive and economical.
[0051]
(2) When a metal is used and the counter ion of the cation exchanger is a metal ion, a solution containing metal ions, which is an environmentally and economically problematic matter, is not substantially derived, which is extremely useful for environmental measures.
[0052]
(3) Even if a metal equivalent to the counter ion of the cation exchanger is used, the ion exchange can be performed almost completely, and the utilization rate can be greatly increased.
[0053]
(4) Even if the metal is used excessively, after completion of the ion exchange, the liquid and the metal can be easily separated by operations such as decantation and filtration, and the recovered metal can be reused as efficiently as before.
[0054]
(5) The support strength of the obtained metal oxide-supported composite is extremely high, exhibits high resistance to mechanical action such as stirring, has high durability, and can be used as a catalyst for a long time.
[0055]
(6) The action of the metal oxide-supported complex as a catalyst is large and can be suitably used for decomposing oxidizable substances and reducible substances.

Claims (3)

H型陽イオン交換体と金属を、水を介して接触させることにより、該陽イオン交換体の対イオンを該金属イオンとした後、酸化剤及び/又はアルカリと接触させることを特徴とする金属酸化物担持複合体の製造方法。A metal characterized in that an H-type cation exchanger and a metal are brought into contact with each other through water, whereby the counter ion of the cation exchanger is converted into the metal ion and then brought into contact with an oxidizing agent and / or an alkali. A method for producing an oxide-supported composite. 陽イオン交換体がフッ素系有機高分子陽イオン交換体である請求項1に記載の金属酸化物担持複合体の製造方法。The method for producing a metal oxide-supported composite according to claim 1, wherein the cation exchanger is a fluorine-based organic polymer cation exchanger. 金属が、Mn,周期表1B族元素及び周期表8族元素から選ばれた少なくとも1種の金属である請求項1又は2に記載の金属酸化物担持複合体の製造方法。The method for producing a metal oxide-supported composite according to claim 1 or 2, wherein the metal is at least one metal selected from Mn, Group 1B elements of the periodic table and Group 8 elements of the periodic table.
JP09374797A 1997-04-11 1997-04-11 Method for producing metal oxide-supported composite Expired - Fee Related JP3653926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09374797A JP3653926B2 (en) 1997-04-11 1997-04-11 Method for producing metal oxide-supported composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09374797A JP3653926B2 (en) 1997-04-11 1997-04-11 Method for producing metal oxide-supported composite

Publications (2)

Publication Number Publication Date
JPH10286579A JPH10286579A (en) 1998-10-27
JP3653926B2 true JP3653926B2 (en) 2005-06-02

Family

ID=14091026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09374797A Expired - Fee Related JP3653926B2 (en) 1997-04-11 1997-04-11 Method for producing metal oxide-supported composite

Country Status (1)

Country Link
JP (1) JP3653926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047880B2 (en) * 2011-12-28 2016-12-21 東ソー株式会社 Ion exchange membrane filling method

Also Published As

Publication number Publication date
JPH10286579A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
KR970006464B1 (en) Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof
Chen et al. Recent advances in electrocatalysts for halogenated organic pollutant degradation
AU686234B2 (en) Electrolytic process and apparatus for the controlled oxidation or reduction of inorganic and organic species in aqueous solutions
US4405418A (en) Process for the production of sodium chlorate
CN105712466B (en) A kind of ozone catalytic wet oxidation method of phenol wastewater
CN101298049B (en) Method for preparing Pd/foamed metal catalyst for hydrogenolysis dechlorination
CN103028423A (en) Inactivation and regeneration method of formaldehyde room-temperature oxidation catalyst
CN101130169A (en) Production of complexing iron catalyzer and application of polyphase photocatalysis hydrogen phosphide
CN111472016A (en) Method for preparing hydrogen peroxide by electrolyzing and recovering sodium sulfate waste liquid
JP2803518B2 (en) Method for removing oxidizable substance or reducible substance, metal oxide-supported composite, and method for producing same
CN111825168A (en) Copper-modified carbon fiber electrode and preparation method and application thereof
JP3653926B2 (en) Method for producing metal oxide-supported composite
Park Solar remediation of wastewater and saline water with concurrent production of value-added chemicals
US20080031805A1 (en) Method For The Production Of Chlorine Dioxide
JPH10286578A (en) Manufacture of metallic oxide-bearing composite w
JP4619758B2 (en) Zeolite catalyst for water treatment
JPH04357105A (en) Production of hydrogen peroxide
JPH1147616A (en) Composite body carrying metal oxide and its production
KR101618507B1 (en) Catalyst for Direct Synthesis of Hydrogen Peroxide, Manufacturing Method for The Same, and Method for Synthesizing Hydrogen Peroxide
JP2014117647A (en) Method for decomposing 1,4-dioxane
JP4165199B2 (en) Chromaticity treatment catalyst and chromaticity treatment method
AU724917B2 (en) Electrolytic process and apparatus for the controlled oxidation or reduction of inorganic and organic species in aqueous solutions
GB2315270A (en) Ion exchange material with semiconductor junctions
CN115745133A (en) Method for online in-situ persulfate activation treatment of organic wastewater by copper oxide loaded carbon millimeter balls
CN114105098A (en) Preparation method and system of bionic high-purity hypochlorous acid disinfectant fluid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees