JP4619758B2 - Zeolite catalyst for water treatment - Google Patents

Zeolite catalyst for water treatment Download PDF

Info

Publication number
JP4619758B2
JP4619758B2 JP2004352064A JP2004352064A JP4619758B2 JP 4619758 B2 JP4619758 B2 JP 4619758B2 JP 2004352064 A JP2004352064 A JP 2004352064A JP 2004352064 A JP2004352064 A JP 2004352064A JP 4619758 B2 JP4619758 B2 JP 4619758B2
Authority
JP
Japan
Prior art keywords
metal
zeolite catalyst
zeolite
catalyst
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004352064A
Other languages
Japanese (ja)
Other versions
JP2006159044A (en
Inventor
貴志 児玉
悠策 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
JGC Catalysts and Chemicals Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, JGC Catalysts and Chemicals Ltd filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2004352064A priority Critical patent/JP4619758B2/en
Publication of JP2006159044A publication Critical patent/JP2006159044A/en
Application granted granted Critical
Publication of JP4619758B2 publication Critical patent/JP4619758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、硝酸性窒素含有水の処理に用いられるゼオライト触媒であって、希土類交換率の高い金属担持ゼオライト触媒に関する。   The present invention relates to a zeolite-supported zeolite catalyst used for treating nitrate-containing water and having a high rare earth exchange rate.

従来、排水等の中に含まれる硝酸性窒素を除去する処理方法としては、微生物による生物学的処理方法、吸着法、イオン交換法、逆浸透膜法、電気透析法などの物理化学的処理方法および水素などの還元剤の存在下に硝酸性窒素を触媒と接触させて還元分解する化学的処理方法などが知られている。特に、硝酸性窒素を還元剤の存在下に触媒と接触させて還元分解する化学的処理方法は低濃度の硝酸性窒素を含む飲料水の原水や高濃度の硝酸性窒素を含む工業排水など、大量の硝酸性窒素含有水から硝酸性窒素を除去するのに適しており、種々の処理方法が提案されている。   Conventional treatment methods for removing nitrate nitrogen contained in wastewater, etc. include biological treatment methods using microorganisms, adsorption methods, ion exchange methods, reverse osmosis membrane methods, electrodialysis methods, and other physicochemical treatment methods. Also known is a chemical treatment method in which nitrate nitrogen is brought into contact with a catalyst in the presence of a reducing agent such as hydrogen to perform reductive decomposition. In particular, chemical treatment methods in which nitrate nitrogen is brought into contact with a catalyst in the presence of a reducing agent for reductive decomposition include raw water for drinking water containing low concentrations of nitrate nitrogen and industrial wastewater containing high concentrations of nitrate nitrogen, etc. It is suitable for removing nitrate nitrogen from a large amount of nitrate nitrogen-containing water, and various treatment methods have been proposed.

本願発明者らは特開2004−97893号公報(特許文献1)において、無機酸化物担体および/またはカーボン担体に、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Feから選ばれる1種または2種以上の金属微粒子および/または合金微粒子が担持されてなる、平均粒子径が5nm〜20μmの範囲にある硝酸性窒素含有水処理用触媒を開示し、更に、硝酸性窒素含有水処理方法として、
(a)前述の水処理用触媒と硝酸性窒素含有水とを、還元剤の存在下で接触させる工程、
(b)前記接触済の硝酸性窒素含有水から水処理用触媒を分離する工程、および
(c)必要に応じて前記分離した水処理用触媒を再生し、工程(a)に戻す工程、
からなる硝酸性窒素含有水処理方法を開示している。
In Japanese Patent Application Laid-Open No. 2004-97893 (Patent Document 1), the inventors of the present invention include Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, and inorganic oxide carrier and / or carbon carrier. Disclosed is a nitrate nitrogen-containing water treatment catalyst having an average particle size in the range of 5 nm to 20 μm, on which one or more metal fine particles and / or alloy fine particles selected from Fe are supported, As a treatment method for water containing nitrogen,
(A) a step of bringing the water treatment catalyst and nitrate nitrogen-containing water into contact with each other in the presence of a reducing agent;
(B) a step of separating the water treatment catalyst from the contacted nitrate nitrogen-containing water, and (c) a step of regenerating the separated water treatment catalyst as necessary and returning to the step (a).
A nitrate nitrogen-containing water treatment method is disclosed.

また、本願発明者らは、特願2003−370871号(本願の出願時に未公開)において、高活性でアンモニアの生成を抑制するために、金属イオン交換したゼオライトを高温で焼成して用いることを提案している。しかしながら、これらの触媒は触媒使用量または触媒寿命の点において未だ改善の余地が残されている。
特開2004−97893号公報
In addition, in the Japanese Patent Application No. 2003-370871 (unpublished at the time of filing of the present application), the inventors of the present application use a metal ion-exchanged zeolite calcined at a high temperature in order to suppress generation of ammonia with high activity. is suggesting. However, these catalysts still have room for improvement in terms of catalyst usage or catalyst life.
JP 2004-97893 A

本発明は、担持金属成分量が少なくても高い活性を発現すると共に、触媒寿命の長い硝酸性窒素含有水処理用のゼオライト触媒を提供することを発明が解決しようとする課題とする。   An object of the present invention is to provide a zeolite catalyst for treating nitrate-containing water with a long catalyst life while exhibiting high activity even if the amount of the supported metal component is small.

本発明の硝酸性窒素含有水処理用ゼオライト触媒は、金属担持希土類交換ゼオライトであって、希土類交換率が50〜95%の範囲にあり、前記金属がPt、Pd、Au、Ru、Cu、Ag、Sn、Ni、Fe から選ばれる1種または2種以上の金属であることを特徴とするものである。
前記金属の含有量は、ゼオライト触媒中に、金属に換算して0.3〜10重量%の範囲にあることが好ましい。
前記金属は、少なくともPtまたはPdのいずれかとCu、Sn、Agから選ばれる1種以上の金属とからなることが好ましい。
前記ゼオライトはフォージャサイト型ゼオライトあることが好ましい。
The zeolite catalyst for water treatment with nitrate nitrogen according to the present invention is a metal-supported rare earth exchange zeolite having a rare earth exchange rate in the range of 50 to 95%, and the metal is Pt, Pd, Au, Ru, Cu, Ag. One, two or more metals selected from Sn, Ni, Fe are used.
The metal content is preferably in the range of 0.3 to 10% by weight in terms of metal in the zeolite catalyst.
The metal is preferably composed of at least one of Pt and Pd and one or more metals selected from Cu, Sn, and Ag.
The zeolite is preferably a faujasite type zeolite.

本発明の水処理用ゼオライト触媒は、希土類交換率の高いゼオライトに金属が担持されているために、被処理水中の硝酸性窒素に対し高い還元活性を有し、金属の含有量が低い場合においても高い活性を示す。更に、本発明の水処理用ゼオライト触媒はこのような高い活性を長期にわたって維持することができる。   The zeolite catalyst for water treatment of the present invention has a high reducing activity for nitrate nitrogen in the water to be treated because the metal is supported on the zeolite having a high rare earth exchange rate, and the metal content is low. Also show high activity. Furthermore, the zeolite catalyst for water treatment of the present invention can maintain such high activity over a long period of time.

水処理用ゼオライト触媒
本発明のゼオライト触媒に用いるゼオライトとしては、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、L型ゼオライト、ZSM型ゼオライト、β型ゼオライトのいずれか1種または2種以上が用いられる。このようなゼオライトは比表面積が高く、後述する金属イオンを効率的にイオン交換することができ、この金属イオンを還元により金属微粒子に転換でき、この結果、金属微粒子が高分散した状態で担持されたゼオライト触媒を得ることができ、硝酸性窒素含有水の処理に好適に用いることができる。
なかでもフォージャサイト型ゼオライトは、後述する希土類金属イオンの交換容量が高く、これに金属微粒子を担持した触媒は金属成分の含有量が少なくても硝酸性窒素の還元活性が高く、特に触媒寿命の長いゼオライト触媒が得られる。
Zeolite Catalyst for Water Treatment As the zeolite used in the zeolite catalyst of the present invention, one or more of mordenite type zeolite, faujasite type zeolite, L type zeolite, ZSM type zeolite and β type zeolite are used. Such a zeolite has a high specific surface area and can efficiently exchange the metal ions described later, and the metal ions can be converted into metal fine particles by reduction. As a result, the metal fine particles are supported in a highly dispersed state. Zeolite catalyst can be obtained and can be suitably used for the treatment of nitrate-containing water.
Among them, faujasite-type zeolite has a high exchange capacity for rare earth metal ions, which will be described later, and a catalyst supporting metal fine particles has a high nitrate nitrogen reduction activity even if the content of metal components is small, especially the catalyst life. A long zeolite catalyst is obtained.

このようなゼオライト触媒は、希土類金属イオンの交換率が50〜95%、好ましくは60〜90%の範囲にある。交換率が50%未満の場合は、希土類をイオン交換した効果が不充分となり、金属成分の含有量を増加させる必要が生じたり、触媒寿命を長くする効果が得られない場合がある。交換率が95%を超える場合は、多量の希土類塩を用い、且つ、イオン交換を繰りし行う必要があり、経済性が問題となる。また、後続する金属イオンのイオン交換が不十分となり、所定の金属成分を担持することができない場合があり、硝酸性窒素の還元分解活性が不十分となることがある。   Such a zeolite catalyst has a rare earth metal ion exchange rate of 50 to 95%, preferably 60 to 90%. If the exchange rate is less than 50%, the effect of ion exchange of rare earths becomes insufficient, and it may be necessary to increase the content of the metal component, or the effect of extending the catalyst life may not be obtained. When the exchange rate exceeds 95%, it is necessary to use a large amount of rare earth salt and carry out ion exchange repeatedly, which is economically problematic. Further, ion exchange of subsequent metal ions becomes insufficient, and a predetermined metal component may not be supported, and the reductive decomposition activity of nitrate nitrogen may be insufficient.

なお、本発明でいう希土類のイオン交換率とは下記式(1)のとおり、ゼオライト結晶構造を構成するAl23とSiO2のうち、Al231モルに対して希土類酸化物がRE2/3OとしてXモルイオン交換されて含まれる場合のXを百分率で表したもの、即ち、希土類イオン交換率=100×X(%)をいう。
X(RE2/3O)・(1−X)(M2/nO)・Al23・YSiO2 ・・・(1)
(X:Al23を1モルとしたときのRE2/3Oのモル数、0.5≦X≦0.95、M:希土類以外の金属イオン、n:金属イオンの価数、Y:Al23を1モルとしたときのSiO2のモル数)
The rare earth ion exchange rate in the present invention is expressed by the following formula (1): among Al 2 O 3 and SiO 2 constituting the zeolite crystal structure, the rare earth oxide is contained in 1 mol of Al 2 O 3. When RE 2/3 O is contained by X mol ion exchange, X is expressed as a percentage, that is, rare earth ion exchange rate = 100 × X (%).
X (RE 2/3 O) · (1-X) (M 2 / n O) · Al 2 O 3 · YSiO 2 (1)
(X: number of moles of RE 2/3 O with 1 mole of Al 2 O 3 , 0.5 ≦ X ≦ 0.95, M: metal ion other than rare earth, n: valence of metal ion, Y : The number of moles of SiO 2 when Al 2 O 3 is 1 mole)

本発明に用いる金属としては、Pt、Pd、Au、Ru、Cu、Ag、Sn、Ni、Feから選ばれる1種または2種以上の金属が好ましい。これらの金属は、硝酸性窒素の還元活性が高く、好適に用いることができるが、なかでも、金属が少なくとも、PtまたはPdのいずれかと、Cu、Sn、Agから選ばれる1種以上の金属であることが好ましい。
このような、2種以上の金属の組み合わせとしては、Pd-Cu、Pd-Sn、Pd-Ag、Pd-Cu-Sn、Pd-Cu-Ag、Pd-Sn-Ag、Pt-Cu、Pt-Sn、Pt-Ag、Pt-Cu-Sn、Pt-Cu-Ag、Pt-Sn-Ag、Pd-Pt-Cu、Pd-Pt-Sn、Pd-Pt-Ag等が挙げられる。
このとき、Cu、Ag、Snの金属イオンを用いると硝酸性イオンに対し高い還元活性を示し、Pt、Pdの金属イオンを用いた場合はN2への還元選択制が高く、NH3の生成が抑制される。従って、硝酸性窒素の還元分解活性に優れるとともに、過還元によるNH3の生成が抑制されたゼオライト触媒を得ることができる。
The metal used in the present invention is preferably one or more metals selected from Pt, Pd, Au, Ru, Cu, Ag, Sn, Ni, and Fe. These metals have high reduction activity of nitrate nitrogen and can be suitably used. Among these metals, at least one of Pt and Pd and one or more metals selected from Cu, Sn, and Ag are used. Preferably there is.
Such combinations of two or more metals include Pd-Cu, Pd-Sn, Pd-Ag, Pd-Cu-Sn, Pd-Cu-Ag, Pd-Sn-Ag, Pt-Cu, Pt- Sn, Pt-Ag, Pt-Cu-Sn, Pt-Cu-Ag, Pt-Sn-Ag, Pd-Pt-Cu, Pd-Pt-Sn, Pd-Pt-Ag and the like.
In this case, Cu, Ag, the use of metal ions of Sn exhibited high reduction activity to nitrate ion, Pt, in the case of using a metal ion of Pd high reduction selection system to N 2, the generation of NH 3 Is suppressed. Therefore, it is possible to obtain a zeolite catalyst that is excellent in the reductive decomposition activity of nitrate nitrogen and in which the production of NH 3 by overreduction is suppressed.

このような金属の含有量は、ゼオライト触媒中に金属に換算して0.3〜10重量%、さらには0.5〜8重量%の範囲にあることが好ましい。金属の含有量が0.3重量%未満の場合は活性が不十分であり、10重量%を超える場合には、前記範囲で希土類金属イオン交換した後は多量の金属成分をイオン交換により担持することが困難であり、還元活性が不充分となることがある。
なお、金属が少なくともPtまたはPdのいずれかとCu、Sn、Agから選ばれる1種以上の金属とからなる場合、合計の金属の含有量が前記範囲にあり、Cu、Sn、Agから選ばれる1種以上の金属の含有量が0.05〜6重量%、好ましくは0.07〜4重量%の範囲にあることが好ましい。
The content of such a metal is preferably in the range of 0.3 to 10% by weight, more preferably 0.5 to 8% by weight in terms of metal in the zeolite catalyst. When the metal content is less than 0.3% by weight, the activity is insufficient, and when it exceeds 10% by weight, a large amount of metal components are supported by ion exchange after rare earth metal ion exchange in the above range. The reduction activity may be insufficient.
When the metal is composed of at least one of Pt and Pd and one or more metals selected from Cu, Sn, and Ag, the total metal content is in the above range, and 1 selected from Cu, Sn, and Ag. It is preferable that the content of the metal of the seed or more is in the range of 0.05 to 6% by weight, preferably 0.07 to 4% by weight.

水処理用ゼオライト触媒の製造
本発明に係る水処理用ゼオライト触媒には、前記した金属担持希土類交換ゼオライト触媒が得られれば特に制限はないが、以下に例示する製造方法が好適である。
先ず、NaY型ゼオライト等の合成して得られたゼオライトを公知の方法で希土類イオンとイオン交換する。交換する希土類としては、周期律表ランタノイド族元素から、例えば、La、Ce、Pr、Nd、Pm等およびこれらの混合物が挙げられる。特にLa、Ceを主成分とする混合希土類は入手し易く、安価であるので好適である。
Production of zeolite catalyst for water treatment The zeolite catalyst for water treatment according to the present invention is not particularly limited as long as the above-described metal-supported rare earth exchange zeolite catalyst can be obtained, but the production method exemplified below is suitable.
First, zeolite obtained by synthesizing NaY-type zeolite or the like is ion-exchanged with rare earth ions by a known method. Examples of the rare earth to be exchanged include lanthanoid group elements of the periodic table, for example, La, Ce, Pr, Nd, Pm, and the like, and mixtures thereof. In particular, mixed rare earths mainly composed of La and Ce are suitable because they are easily available and inexpensive.

具体的には、NaY型ゼオライトの水分散液を調製し、これに希土類塩を加え、必要に応じてpHを約4〜8の範囲に調整し、通常、室温〜150℃の温度範囲で10分〜3時間程度処理する。NaY型ゼオライトの水分散液の濃度は固形分として、通常2〜20重量%の範囲である。
希土類塩としては、La、Ce、Pr、Nd、Pm等および混合希土類の硝酸塩、塩酸塩、硫酸塩、有機酸塩等が用いられる。このときの、希土類塩の使用量は、NaY型ゼオライトのAl231モルに対して希土類塩をRE2/3Oに換算して0.5〜5モル、好ましくは0.7〜2モルの範囲である。希土類塩の使用量が0.5モル未満の場合は、希土類イオンの交換率が50%未満となり、最終的に得られる金属担持希土類交換ゼオライト触媒の硝酸性窒素の還元分解活性が不十分となる。希土類塩の使用量が5モルを超えても、希土類イオンの交換率をさらに高める効果は無く、希土類の利用率が低下するので好ましくない。
NaY型ゼオライトを前記イオン交換処理した後、濾過し、洗浄した後、前記と同様のイオン交換を所望の希土類交換率になるまで繰り返し行うことができる。別の方法としては、洗浄した後、乾燥し、約400〜700℃の範囲で焼成し、前記と同様にイオン交換を行ってもよい。
Specifically, an aqueous dispersion of NaY-type zeolite is prepared, a rare earth salt is added thereto, and the pH is adjusted to a range of about 4 to 8 as necessary. Process for about 3 to 3 hours. The concentration of the aqueous dispersion of NaY-type zeolite is usually in the range of 2 to 20% by weight as the solid content.
Examples of rare earth salts include La, Ce, Pr, Nd, Pm, and mixed rare earth nitrates, hydrochlorides, sulfates, organic acid salts, and the like. The amount of rare earth salt used at this time is 0.5 to 5 mol, preferably 0.7 to 2 in terms of the rare earth salt converted to RE 2/3 O with respect to 1 mol of Al 2 O 3 of the NaY zeolite. The range of moles. When the amount of rare earth salt used is less than 0.5 mol, the exchange rate of rare earth ions is less than 50%, and the finally obtained metal-supported rare earth exchanged zeolite catalyst has insufficient nitrate nitrogen reductive decomposition activity. . Even if the amount of rare earth salt used exceeds 5 mol, there is no effect of further increasing the exchange rate of the rare earth ions, and the utilization rate of the rare earth is lowered, which is not preferable.
After the NaY-type zeolite is subjected to the ion exchange treatment, filtered and washed, the same ion exchange as described above can be repeatedly performed until a desired rare earth exchange rate is obtained. As another method, after washing, it may be dried, fired in the range of about 400 to 700 ° C., and ion exchange may be performed as described above.

上記希土類交換した後、金属イオン交換を行う。
即ち、希土類交換したゼオライトの水分散液に所望の金属イオンを含む金属塩を所望量添加し、必要に応じてpH調製し、さらに必要に応じて加温し、撹拌することによって金属イオンでイオン交換したゼオライトを得ることができる。なお、金属イオンは1種であってもよく、2種以上を混合して用いてもよい。また、金属イオン交換を繰り返し行ってもよい。
金属塩としては、硝酸パラジウム、塩化パラジウム、酢酸パラジウム、テトラアンミン塩化パラジウム、塩化白金、硝酸銀、塩化銅、硝酸ニッケル、塩化スズ、酢酸ルテニウムなど前記した金属の塩で水に可溶な塩を用いることができる。
After the rare earth exchange, metal ion exchange is performed.
That is, a desired amount of a metal salt containing a desired metal ion is added to an aqueous dispersion of rare earth-exchanged zeolite, the pH is adjusted as necessary, and further heated and stirred as necessary to ionize with metal ions. An exchanged zeolite can be obtained. In addition, 1 type may be sufficient as a metal ion, and 2 or more types may be mixed and used for it. Moreover, you may perform metal ion exchange repeatedly.
Use metal salts such as palladium nitrate, palladium chloride, palladium acetate, tetraammine palladium chloride, platinum chloride, silver nitrate, copper chloride, nickel nitrate, tin chloride, and ruthenium that are soluble in water. Can do.

このときの金属塩の使用量は、金属の種類によっても異なるが、最終的に得られる金属担持希土類交換ゼオライト触媒中の金属の含有量が0.3〜10重量%、さらには0.5〜8重量%の範囲となるように用いる。
なお、金属が少なくともPtまたはPdのいずれかとCu、Sn、Agから選ばれる1種以上の金属とからなる金属担持ゼオライト触媒を調製する場合、金属塩の使用量は、合計の金属の含有量が前記範囲にあり、Cu、Sn、Agから選ばれる1種以上の金属の含有量が0.05〜6重量%、好ましくは0.07〜4重量%の範囲となるように用いることが好ましい。
前記金属塩を加え、必要に応じてpHを約4〜8の範囲に調整し、通常室温〜150℃の温度範囲で10分〜3時間程度処理する。このときの希土類交換ゼオライトの水分散液の濃度は固形分として、通常2〜20重量%の範囲である。
金属イオン交換した後、常法によって濾過、洗浄し、ついで、乾燥、焼成を行う。
The amount of the metal salt used at this time varies depending on the type of metal, but the metal content in the finally obtained metal-supported rare earth exchange zeolite catalyst is 0.3 to 10% by weight, and further 0.5 to It uses so that it may become the range of 8 weight%.
When preparing a metal-supported zeolite catalyst comprising at least one of Pt or Pd and one or more metals selected from Cu, Sn, and Ag, the amount of metal salt used is the total metal content. It is preferable to use it so that the content of one or more metals selected from Cu, Sn, and Ag is in the range of 0.05 to 6% by weight, preferably 0.07 to 4% by weight.
The said metal salt is added, pH is adjusted to the range of about 4-8 as needed, and it processes about 10 minutes-3 hours normally at the temperature range of room temperature-150 degreeC. At this time, the concentration of the aqueous dispersion of rare earth exchanged zeolite is usually in the range of 2 to 20% by weight as the solid content.
After exchanging metal ions, filtration and washing are performed by a conventional method, followed by drying and firing.

金属が少なくともPtまたはPdのいずれかとCu、Sn、Agから選ばれる1種以上の金属とからなる金属担持ゼオライト触媒を調製する場合は、先ず、少なくともパラジウム塩または白金塩でイオン交換した後、濾過、洗浄し、ついで、空気中、300〜800℃、好ましくは400〜750℃の温度範囲で焼成することが好ましい。焼成温度が300℃未満の場合は、過還元によるNH3の副生を抑制する効果が不充分となり、800℃を越えると硝酸イオンの還元活性が低下する傾向がある。
なお、金属イオン交換したゼオライトの焼成温度が前記範囲にあると硝酸イオンの還元活性が高く、かつNH3の副生(N2の過還元)を抑制でき、かつ触媒寿命の長い金属担持ゼオライト触媒を得ることができる。
この理由については明らかではないが、N2の過還元を支配する活性金属成分の粒子径が好適範囲に調整されるために、活性が高く、NH3の副生を抑制でき、また、ゼオライト担体と金属成分の相互作用が調整されるために、金属成分の溶解が抑制され、触媒寿命が長くなるものと考えられる。
When preparing a metal-supported zeolite catalyst comprising at least one of Pt or Pd and one or more metals selected from Cu, Sn, and Ag, first, ion exchange is performed with at least a palladium salt or a platinum salt, followed by filtration. It is preferable to wash, and then calcinate in air at a temperature of 300 to 800 ° C., preferably 400 to 750 ° C. When the calcination temperature is less than 300 ° C, the effect of suppressing by-reduction of NH 3 due to overreduction becomes insufficient, and when it exceeds 800 ° C, the reduction activity of nitrate ions tends to decrease.
If the calcination temperature of the metal ion-exchanged zeolite is within the above range, the reduction activity of nitrate ions is high, NH 3 by-product (N 2 overreduction) can be suppressed, and the metal supported zeolite catalyst has a long catalyst life. Can be obtained.
Although the reason for this is not clear, since the particle diameter of the active metal component that governs the N 2 overreduction is adjusted to a suitable range, the activity is high and NH 3 by-product can be suppressed. It is considered that the interaction between the metal component and the metal component is adjusted, so that the dissolution of the metal component is suppressed and the catalyst life is prolonged.

ついで、焼成したゼオライトの水分散液を調製し、Cu、Sn、Agから選ばれる1種以上の金属の塩を添加し、必要に応じてpHを約4〜8の範囲に調整し、通常室温〜150℃の温度範囲で10分〜3時間程度イオン交換処理する。このときの焼成したゼオライトの水分散液の濃度は固形分として、通常2〜20重量%の範囲である。イオン交換処理した後、濾過、洗浄し、概ね60〜200℃で乾燥し、ついで焼成する。焼成温度は250℃〜600℃、特に300〜550℃の範囲にあることが好ましい。焼成時間は概ね0.5〜10時間が好ましい。   Next, an aqueous dispersion of the calcined zeolite is prepared, and one or more metal salts selected from Cu, Sn, and Ag are added, and the pH is adjusted to a range of about 4 to 8 as necessary. Ion exchange treatment is performed at a temperature range of ˜150 ° C. for about 10 minutes to 3 hours. At this time, the concentration of the aqueous dispersion of the calcined zeolite is usually in the range of 2 to 20% by weight as the solid content. After the ion exchange treatment, it is filtered and washed, dried at about 60 to 200 ° C., and then fired. The firing temperature is preferably in the range of 250 to 600 ° C, particularly 300 to 550 ° C. The firing time is preferably about 0.5 to 10 hours.

前記金属担持希土類交換ゼオライト触媒は、最後の乾燥、焼成した後、そのまま触媒として用いることができる。また、焼成した後、さらに還元処理して用いることもできる。具体的には、前記焼成後、概ね200〜600℃、好ましくは300〜500℃の温度で、還元ガス、例えばH2、NH3等の雰囲気下で通常0.5〜6時間程度還元処理する。 The metal-supported rare earth-exchanged zeolite catalyst can be used as it is after the final drying and calcination. Moreover, after baking, it can also be reduced and used. Specifically, after the calcination, reduction treatment is usually performed at a temperature of about 200 to 600 ° C., preferably 300 to 500 ° C. in an atmosphere of a reducing gas such as H 2 or NH 3 for about 0.5 to 6 hours. .

上記のようにして得られた金属担持希土類交換ゼオライト触媒は、常法によってペレット、ビード等に成形して用いることが可能である。また、希土類イオン交換前あるいは、金属イオン交換前のゼオライトを常法によってペレット、ビード等に成形した後希土類イオン交換、金属イオン交換した後、前記した焼成、還元処理等をして用いることも可能である。   The metal-supported rare earth-exchanged zeolite catalyst obtained as described above can be used after being formed into pellets, beads or the like by a conventional method. It is also possible to use the zeolite before the rare earth ion exchange or before the metal ion exchange is formed into pellets, beads, etc., after the rare earth ion exchange, after performing the rare earth ion exchange, the metal ion exchange, and the above-described firing, reduction treatment, etc. It is.

硝酸性窒素含有水の処理
上記のようにして得られた金属担持希土類交換ゼオライト触媒を用いた硝酸性窒素を含む水の処理方法は、処理する硝酸性窒素の濃度、処理量等によって異なるが、触媒として本発明に係る金属担持希土類交換ゼオライト触媒を用いる以外は従来公知の方法を採用することができる。
例えば、前記した特許文献1に開示した硝酸性窒素を含む水の処理方法に準じて、下記の工程(a)〜(c)からなる方法を採用しても良い。
(a)還元剤の存在下、金属担持希土類交換ゼオライト触媒と硝酸性窒素を含む水とを接触させる工程、
(b)金属担持希土類交換ゼオライト触媒および処理水を抜き出しながら硝酸性窒素含有水処理用ゼオライト触媒を分離・濃縮する工程、および
(c)必要に応じて分離・濃縮した硝酸性窒素含有水処理用ゼオライト触媒を再生し、工程(a)に戻す工程
Treatment of nitrate nitrogen-containing water The treatment method of nitrate-containing water using the metal-supported rare earth exchanged zeolite catalyst obtained as described above varies depending on the concentration of nitrate nitrogen to be treated, the amount of treatment, etc. A conventionally known method can be adopted except that the metal-supported rare earth exchange zeolite catalyst according to the present invention is used as the catalyst.
For example, a method comprising the following steps (a) to (c) may be employed in accordance with the method for treating water containing nitrate nitrogen disclosed in Patent Document 1 described above.
(A) contacting the metal-supported rare earth exchange zeolite catalyst with water containing nitrate nitrogen in the presence of a reducing agent;
(B) A step of separating and concentrating the zeolite catalyst for water treatment with nitrate nitrogen while extracting the metal-supported rare earth-exchanged zeolite catalyst and the treated water, and (c) for treatment of nitrate nitrogen-containing water separated and concentrated as necessary. Regenerating the zeolite catalyst and returning to step (a)

当該水処理方法において、用いられる処理設備の方式には特に制限はなく、工程(a)では完全混合槽型、流通型、多段型、バッチ型等、固定床以外の種々の方式が採用可能である。
硝酸性窒素を含む水中の硝酸性窒素化合物の濃度は、Nとして50〜10,000ppm、さらには、100〜5000ppmの範囲にあることが好ましい。濃度がNとして50ppm未満の場合は、還元分解処理することは可能であるが経済性が問題となることがある。一方、濃度がNとして10,000ppmを越えると、還元剤の種類によっては必要量を共存させることができないために硝酸性窒素の還元分解が不充分となることがあり、処理時間を長くするか、触媒の濃度を高める必要があり、ゼオライト触媒濃度を高めるとゼオライト触媒の分散安定性が低下して凝集することがあり、濾過分離が困難となったり、水中硝酸性窒素との接触効率が低下する問題がある。
In the water treatment method, there is no particular limitation on the method of the treatment equipment used, and various methods other than the fixed bed, such as a complete mixing tank type, a distribution type, a multistage type, and a batch type, can be adopted in the step (a). is there.
The concentration of the nitrate nitrogen compound in the water containing nitrate nitrogen is preferably in the range of 50 to 10,000 ppm, more preferably 100 to 5000 ppm as N. When the concentration is less than 50 ppm as N, reductive decomposition treatment is possible, but economic efficiency may be a problem. On the other hand, if the concentration exceeds 10,000 ppm as N, depending on the type of the reducing agent, the necessary amount cannot coexist, so that the reductive decomposition of nitrate nitrogen may be insufficient, and may the treatment time be lengthened? It is necessary to increase the concentration of the catalyst. If the concentration of the zeolite catalyst is increased, the dispersion stability of the zeolite catalyst may be reduced and agglomeration may occur, which makes filtration separation difficult and decreases the contact efficiency with nitrate nitrogen in water. There is a problem to do.

硝酸性窒素含有水中の硝酸性窒素Nの量をWNとし、金属担持希土類交換ゼオライト触媒中の金属の量をWMで表した場合、硝酸性窒素含有水とゼオライト触媒との混合比(WN/WM)は、0.1〜50、さらには0.2〜10の範囲にあることが好ましい。前記比WN/WMが0.1未満の場合は、触媒の使用比率が高すぎて経済性が悪く、WN/WMが50を越えると、還元分解速度が不充分で、硝酸性窒素を所望の濃度以下に低減することが困難となる。 The amount of nitrate nitrogen in water containing nitrate nitrogen N and W N, if the amount of the metal of the metal-supported rare earth exchanged zeolite catalyst, expressed in W M, mixing ratio of the nitrate nitrogen containing water and a zeolite catalyst (W N / W M ) is preferably in the range of 0.1 to 50, more preferably 0.2 to 10. When the ratio W N / W M is less than 0.1, the use ratio of the catalyst is too high, resulting in poor economic efficiency. When W N / W M exceeds 50, the reductive decomposition rate is insufficient, and the nitric acid It becomes difficult to reduce nitrogen below a desired concentration.

ゼオライト触媒と共に供給される還元剤としては、水素、ヒドラジン、水素化硼素ナトリウム、次亜リン酸ナトリウム、キノン、ヒドロキノン等を挙げることができ、特に、水素は電気分解等により容易に製造することができ、必要に応じて回収したり、再利用できるので好適である。
水素を用いる場合、ゼオライト触媒を分散させた硝酸性窒素含有水に水素ガスを供給する形で用いるが、水素の溶解速度を速める方法が好ましく、例えば、多数の細管を使用したり、先端または側面部に微細孔を多数有する管を使用することが好ましい。また、触媒を分散させた硝酸性窒素含有水は系内が均一になるように、定法によって撹拌および/または循環を行うことが望ましい。
Examples of the reducing agent supplied together with the zeolite catalyst include hydrogen, hydrazine, sodium borohydride, sodium hypophosphite, quinone, hydroquinone, etc. In particular, hydrogen can be easily produced by electrolysis or the like. It can be recovered as needed and can be reused.
When hydrogen is used, it is used in the form of supplying hydrogen gas to nitrate nitrogen-containing water in which a zeolite catalyst is dispersed. However, a method of increasing the dissolution rate of hydrogen is preferable. For example, a large number of capillaries are used, or the tip or side surface is used. It is preferable to use a tube having a large number of fine holes in the part. The nitrate nitrogen-containing water in which the catalyst is dispersed is desirably stirred and / or circulated by a conventional method so that the system is uniform.

ゼオライト触媒(Z1)の調製
フォージャサイト型ゼオライト(触媒化成工業(株)製:Na-Y、SiO2/Al23=5.0、平均粒子径1.9μm)を固形分として100g、純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH5.0に調整した。別に塩化レアアース水溶液(RECl3としての濃度30.27%)61.0gを計量し、Na-Y分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで空気中で400℃で4時間焼成してRE−Na−Y(Z1-1)を調製した。このゼオライトの分析値およびイオン交換率を表1に示す。
このRE−Na−Y(Z1-1)100gをとり、純水1000gに分散させ、攪拌しながら60℃まで加温し、1%苛性ソーダによりpH7.5に調整した。別にテトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)52.3gをPdとしての濃度が1重量%になるよう純水500gにより希釈してテトラアンミンパラジウムジクロライド水溶液を調製した。
Preparation of zeolite catalyst (Z1) Faujasite type zeolite (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Na-Y, SiO 2 / Al 2 O 3 = 5.0, average particle size 1.9 μm) as a solid content of 100 g, The mixture was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 5.0 with dilute hydrochloric acid. Separately, 61.0 g of a rare earth chloride aqueous solution (concentration 30.27% as RECl 3 ) was weighed and gradually added to the Na—Y dispersion, then stirred for 1 hour, filtered, washed thoroughly, and then at 130 ° C. It was dried for 24 hours and then calcined in air at 400 ° C. for 4 hours to prepare RE-Na-Y (Z1-1). The analytical value and ion exchange rate of this zeolite are shown in Table 1.
100 g of this RE-Na-Y (Z1-1) was taken, dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 7.5 with 1% caustic soda. Separately, tetraammine palladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: Pd concentration of 8.95 wt%) was diluted with 500 g of pure water so that the concentration as Pd would be 1 wt% to prepare a tetraammine palladium dichloride aqueous solution. did.

このテトラアンミンパラジウムジクロライド水溶解液をRE−Na−Y(Z1-1)分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで、空気中で400℃4時間焼成してPd−RE−Na−Y(Z1-2)を調製した。
ついで、Pd−RE−Na−Y(Z1-2)を純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH4.5に調整した。別に硝酸銅3水和物(関東化学(株)製:特級)2.04gをCuとしての濃度が1重量%になるよう純水180gにより希釈して硝酸銅水溶液を調製した。この硝酸銅水溶解液をPd−RE−Na−Y(Z1-2)分散液に徐々に添加した後、1時間攪拌し、濾過し、充分洗浄した後、130℃で24時間乾燥してPd−Cu−RE−Y(Z1-3)を調製した。
ついで、水素−窒素混合ガス(H2:4VOL%)雰囲気下、300℃で2時間還元処理し、ゼオライト触媒(Z1)を調製した。ゼオライト触媒(Z1)中の金属の含有量を表2に示した。
This tetraamminepalladium dichloride aqueous solution was gradually added to the RE-Na-Y (Z1-1) dispersion, stirred for 1 hour, filtered, thoroughly washed, dried at 130 ° C. for 24 hours, Pd-RE-Na-Y (Z1-2) was prepared by baking in air at 400 ° C. for 4 hours.
Subsequently, Pd-RE-Na-Y (Z1-2) was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 4.5 with dilute hydrochloric acid. Separately, 2.04 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was diluted with 180 g of pure water so that the concentration as Cu was 1% by weight to prepare a copper nitrate aqueous solution. After this copper nitrate aqueous solution was gradually added to the Pd-RE-Na-Y (Z1-2) dispersion, the mixture was stirred for 1 hour, filtered, washed thoroughly, and dried at 130 ° C. for 24 hours. -Cu-RE-Y (Z1-3) was prepared.
Subsequently, reduction treatment was performed at 300 ° C. for 2 hours in a hydrogen-nitrogen mixed gas (H 2 : 4 VOL%) atmosphere to prepare a zeolite catalyst (Z1). Table 2 shows the metal content in the zeolite catalyst (Z1).

硝酸性窒素含有水の処理
硝酸性窒素含有水としての硝酸ナトリウム水溶液(N濃度400ppm)500mlにゼオライト触媒(Z1)15gを分散させ、640rpmで攪拌しながら希塩酸でpH7〜8に調整すると同時に、容器の底部より水素ガスを20ml/minの流量で供給しながら、常温(約25℃)で硝酸性窒素含有水の処理を行った。このときの混合比(WN/WM)は表2に示す。この処理を5時間行った後に処理を停止した。この間15分に1回の頻度で処理水中のNO3濃度およびNH3濃度を測定した。その結果210分でNO3が0ppmとなった。結果を表2に示した。なお、NO3濃度は窒素分析計(ブラン・ルーベ社製:AAS-III)を用いて測定した。
Treatment of nitrate nitrogen-containing water Disperse 15 g of zeolite catalyst (Z1) in 500 ml of sodium nitrate aqueous solution (N concentration 400 ppm) as nitrate nitrogen-containing water, and adjust to pH 7-8 with dilute hydrochloric acid while stirring at 640 rpm. While supplying hydrogen gas at a flow rate of 20 ml / min from the bottom of the sample, water containing nitrate nitrogen was treated at room temperature (about 25 ° C.). The mixing ratio (W N / W M ) at this time is shown in Table 2. The treatment was stopped after 5 hours of this treatment. During this period, the NO 3 concentration and the NH 3 concentration in the treated water were measured once every 15 minutes. As a result, NO 3 became 0 ppm in 210 minutes. The results are shown in Table 2. The NO 3 concentration was measured using a nitrogen analyzer (Blanc Roubaix: AAS-III).

ゼオライト触媒(Z2)の調製
フォージャサイト型ゼオライト(触媒化成工業(株)製:Na-Y、SiO2/Al23=5.0、平均粒子径1.9μm)を固形分として100g、純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH5.0に調整した。別に塩化レアアース水溶液(RECl3としての濃度30.27%)117.1gを計量し、Na-Y分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで空気中で400℃で4時間焼成してRE−Na−Y(Z2-1)を調製した。RE−Na−Y(Z2-1)を純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH5.0に調整した。別に塩化レアアース水溶液117.1gを計量し、RE−Na−Y分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した。このゼオライトの分析値を表1に示す。
このRE−Na−Y(Z2-1)100gをとり、純水1000gに分散させ、攪拌しながら60℃まで加温し、1%苛性ソーダによりpH7.5に調整した。別にテトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)54.9gをPdとしての濃度が1重量%になるよう純水500gにより希釈してテトラアンミンパラジウムジクロライド水溶液を調製した。
Preparation of zeolite catalyst (Z2) 100 g of faujasite type zeolite (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Na-Y, SiO 2 / Al 2 O 3 = 5.0, average particle size 1.9 μm) as a solid content, The mixture was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 5.0 with dilute hydrochloric acid. Separately, 117.1 g of a rare earth chloride aqueous solution (concentration 30.27% as RECl 3 ) was weighed and gradually added to the Na—Y dispersion, then stirred for 1 hour, filtered, washed thoroughly, and then washed at 130 ° C. It was dried for 24 hours and then calcined in air at 400 ° C. for 4 hours to prepare RE-Na-Y (Z2-1). RE-Na-Y (Z2-1) was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 5.0 with dilute hydrochloric acid. Separately, 117.1 g of a rare earth chloride aqueous solution was weighed and gradually added to the RE-Na-Y dispersion, and then stirred for 1 hour, filtered and thoroughly washed. The analytical values of this zeolite are shown in Table 1.
100 g of this RE-Na-Y (Z2-1) was taken, dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 7.5 with 1% caustic soda. Separately, tetraamminepalladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: Pd concentration of 8.95 wt%) was diluted with 500 g of pure water so that the concentration of Pd was 1 wt% to prepare a tetraammine palladium dichloride aqueous solution. did.

このテトラアンミンパラジウムジクロライド水溶解液をRE−Na−Y(Z2-1)分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで、空気中で400℃4時間焼成してPd−RE−Na−Y(Z2-1)を調製した。
ついで、Pd−RE−Na−Y(Z2-2)を純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH4.5に調整した。別に硝酸銅3水和物(関東化学(株)製:特級)2.16gをCuとしての濃度が1重量%になるよう純水180gにより希釈して硝酸銅水溶液を調製した。この硝酸銅水溶解液をPd−RE−Na−Y(Z2-2)分散液に徐々に添加した後、1時間攪拌し、濾過し、充分洗浄した後、130℃で24時間乾燥してPd−Cu−RE−Na−Y(Z2-3)を調製した。
ついで、水素−窒素混合ガス(H2:4VOL%)雰囲気下、300℃で2時間還元処理し、ゼオライト触媒(Z2)を調製した。ゼオライト触媒(Z2)中の金属の含有量を表2に示した。
This tetraamminepalladium dichloride aqueous solution was gradually added to the RE-Na-Y (Z2-1) dispersion, stirred for 1 hour, filtered, thoroughly washed, dried at 130 ° C. for 24 hours, Pd-RE-Na-Y (Z2-1) was prepared by baking in air at 400 ° C. for 4 hours.
Subsequently, Pd-RE-Na-Y (Z2-2) was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 4.5 with dilute hydrochloric acid. Separately, copper nitrate aqueous solution was prepared by diluting 2.16 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) with 180 g of pure water so that the concentration as Cu was 1% by weight. This copper nitrate aqueous solution was gradually added to the Pd-RE-Na-Y (Z2-2) dispersion, stirred for 1 hour, filtered, thoroughly washed, dried at 130 ° C. for 24 hours, and dried. -Cu-RE-Na-Y (Z2-3) was prepared.
Subsequently, reduction treatment was performed at 300 ° C. for 2 hours in a hydrogen-nitrogen mixed gas (H 2 : 4 VOL%) atmosphere to prepare a zeolite catalyst (Z2). Table 2 shows the metal content in the zeolite catalyst (Z2).

硝酸性窒素含有水の処理
ゼオライト触媒(Z2)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z2) was used. The results are shown in Table 2.

ゼオライト触媒(Z3)の調製
フォージャサイト型ゼオライト(触媒化成工業(株)製:Na-Y、SiO2/Al23=5.0、平均粒子径1.9μm)を固形分として400g、純水4000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH5.0に調整した。別に塩化レアアース水溶液(RECl3としての濃度30.27%)468gを計量し、Na-Y分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで空気中で400℃で4時間焼成してRE−Na−Y(Z3-1)を調製した。RE−Na−Y(Z3-1)を純水4000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH5.0に調整した。別に塩化レアアース水溶液468gを計量し、RE−Na−Y分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄してRE−Y(Z3-2)を調整した。このRE−Y(Z3-2)の分析値は表1に示す。このRE−Y(Z3-2)100gをとり、純水1000gに分散させ、攪拌しながら60℃まで加温し、1%苛性ソーダによりpH7.5に調整した。別にテトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)166.6gをPdとしての濃度が1重量%になるよう純水約500gにより希釈してテトラアンミンパラジウムジクロライド水溶液を調製した。
Preparation of zeolite catalyst (Z3) 400 g as a solid content of faujasite type zeolite (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Na-Y, SiO 2 / Al 2 O 3 = 5.0, average particle size 1.9 μm), The mixture was dispersed in 4000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 5.0 with dilute hydrochloric acid. Separately, 468 g of a rare earth chloride aqueous solution (concentration of 30.27% as RECl 3 ) was weighed and gradually added to the Na—Y dispersion, stirred for 1 hour, filtered, washed thoroughly, and then washed at 130 ° C. for 24 hours. It was dried and then calcined in air at 400 ° C. for 4 hours to prepare RE-Na-Y (Z3-1). RE-Na-Y (Z3-1) was dispersed in 4000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 5.0 with dilute hydrochloric acid. Separately, 468 g of a rare earth chloride aqueous solution was weighed and gradually added to the RE-Na-Y dispersion, and then stirred for 1 hour, filtered, and thoroughly washed to prepare RE-Y (Z3-2). The analytical value of this RE-Y (Z3-2) is shown in Table 1. 100 g of this RE-Y (Z3-2) was taken, dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 7.5 with 1% caustic soda. Separately, tetraammine palladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: concentration 8.95 wt% as Pd) was diluted with about 500 g of pure water so that the concentration as Pd was 1 wt%, and an aqueous tetraammine palladium dichloride solution was obtained. Prepared.

このテトラアンミンパラジウムジクロライド水溶解液をRE−Y(Z3-2)分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで、空気中で400℃4時間焼成してPd−RE−Y(Z3-3)を調製した。
ついで、Pd−RE−Y(Z3-3)を純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH4.5に調整した。別に硝酸銅3水和物(関東化学(株)製:特級)5.17gをCuとしての濃度が1重量%になるよう純水180gにより希釈して硝酸銅水溶液を調製した。この硝酸銅水溶解液をPd−RE−Y(Z3-3)分散液に徐々に添加した後、1時間攪拌し、濾過し、充分洗浄した後、130℃で24時間乾燥してPd−Cu−RE−Y(Z3-4)を調製した。
ついで、水素−窒素混合ガス(H2:4VOL%)雰囲気下、300℃で2時間還元処理し、ゼオライト触媒(Z3)を調製した。ゼオライト触媒(Z3)中の金属の含有量を表2に示した。
This tetraamminepalladium dichloride aqueous solution is gradually added to the RE-Y (Z3-2) dispersion, stirred for 1 hour, filtered, thoroughly washed, dried at 130 ° C. for 24 hours, and then in the air. Was calcined at 400 ° C. for 4 hours to prepare Pd-RE-Y (Z3-3).
Subsequently, Pd-RE-Y (Z3-3) was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 4.5 with dilute hydrochloric acid. Separately, 5.17 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was diluted with 180 g of pure water so that the concentration as Cu was 1% by weight to prepare an aqueous copper nitrate solution. After this copper nitrate aqueous solution was gradually added to the Pd-RE-Y (Z3-3) dispersion, the mixture was stirred for 1 hour, filtered, washed thoroughly, and dried at 130 ° C. for 24 hours to obtain Pd—Cu. -RE-Y (Z3-4) was prepared.
Subsequently, reduction treatment was performed at 300 ° C. for 2 hours in a hydrogen-nitrogen mixed gas (H 2 : 4 VOL%) atmosphere to prepare a zeolite catalyst (Z3). The metal content in the zeolite catalyst (Z3) is shown in Table 2.

硝酸性窒素含有水の処理
ゼオライト触媒(Z3)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z3) was used. The results are shown in Table 2.

ゼオライト触媒(Z4)の調製
実施例3と同様にして調製したRE−Y(Z3-2)を100gとり、実施例3において、テトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)を78.0gを用い、硝酸銅3水和物2.90gを用いた以外は同様にしてゼオライト触媒(Z4)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(Z4)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Preparation of zeolite catalyst (Z4) 100 g of RE-Y (Z3-2) prepared in the same manner as in Example 3 was used. In Example 3, tetraamminepalladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: concentration as Pd: 8. A zeolite catalyst (Z4) was prepared in the same manner except that 78.0 g of 95 wt%) and 2.90 g of copper nitrate trihydrate were used. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z4) was used. The results are shown in Table 2.

ゼオライト触媒(Z5)の調製
実施例3と同様にして調製したRE−Y(Z3-2)を100gとり、実施例3において、テトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)を25.3g用い、硝酸銅3水和物0.88gを用いた以外は同様にしてゼオライト触媒(Z5)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(Z5)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Preparation of zeolite catalyst (Z5) 100 g of RE-Y (Z3-2) prepared in the same manner as in Example 3 was used. In Example 3, tetraamminepalladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: concentration as Pd: 8. A zeolite catalyst (Z5) was prepared in the same manner except that 25.3 g of 95 wt%) and 0.88 g of copper nitrate trihydrate were used. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z5) was used. The results are shown in Table 2.

ゼオライト触媒(Z6)の調製
実施例3において、フォージャサイト型ゼオライト(触媒化成工業(株)製:Na-Y、SiO2/Al23=8.8、平均粒子径1.9μm)を用いた以外は同様にしてゼオライト触媒(Z6)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(Z6)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Preparation of Zeolite Catalyst (Z6) In Example 3, a faujasite type zeolite (catalyst chemical industry Co., Ltd .: Na-Y, SiO 2 / Al 2 O 3 = 8.8, average particle diameter 1.9 μm) A zeolite catalyst (Z6) was prepared in the same manner except that it was used. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z6) was used. The results are shown in Table 2.

ゼオライト触媒(Z7)の調製
実施例3において、モルデナイト型ゼオライト(東ソー(株)製:NaM、SiO2/Al23=13、平均粒子径3μm)を用いた以外は同様にしてゼオライト触媒(Z7)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(Z7)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Preparation of zeolite catalyst (Z7) Zeolite catalyst (Z7) was prepared in the same manner as in Example 3 except that mordenite-type zeolite (manufactured by Tosoh Corporation: NaM, SiO 2 / Al 2 O 3 = 13, average particle size 3 μm) was used. Z7) was prepared. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z7) was used. The results are shown in Table 2.

ゼオライト触媒(Z8)の調製
実施例3と同様にしてPd−Cu−RE−Y(Z3-4)を調製した。ついで、空気中、300℃で2時間焼成してゼオライト触媒(Z8)を調製した。
硝酸性窒素含有水の処理
ゼオライト触媒(Z8)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Preparation of zeolite catalyst (Z8) Pd-Cu-RE-Y (Z3-4) was prepared in the same manner as in Example 3. Subsequently, the zeolite catalyst (Z8) was prepared by calcination in air at 300 ° C. for 2 hours.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (Z8) was used. The results are shown in Table 2.

比較例1Comparative Example 1

ゼオライト触媒(HZ1)の調製
フォージャサイト型ゼオライト(触媒化成工業(株)製:Na-Y、SiO2/Al23=5.0、平均粒子径1.9μm)を固形分として100gをとり、純水1000gに分散させ、攪拌しながら60℃まで加温し、1%苛性ソーダによりpH7.5に調整した。別にテトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)146.8gをPdとしての濃度が1重量%になるよう純水500gにより希釈してテトラアンミンパラジウムジクロライド水溶液を調製した。
このテトラアンミンパラジウムジクロライド水溶解液をNa−Y(HZ1-1)分散液に徐々に添加した後、1時間攪拌し、濾過し、十分洗浄した後、130℃で24時間乾燥し、ついで、空気中で400℃4時間焼成してPd−Na−Y(HZ1-2)を調製した。
Preparation of zeolite catalyst (HZ1) Faujasite type zeolite (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Na-Y, SiO 2 / Al 2 O 3 = 5.0, average particle size 1.9 μm) as a solid content of 100 g It was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 7.5 with 1% caustic soda. Separately, tetraammine palladium dichloride (manufactured by Tanaka Kikinzoku Co., Ltd .: Pd concentration of 8.95 wt%) was diluted with 500 g of pure water so that the concentration as Pd would be 1 wt% to prepare a tetraammine palladium dichloride aqueous solution. did.
The tetraamminepalladium dichloride aqueous solution was gradually added to the Na-Y (HZ1-1) dispersion, stirred for 1 hour, filtered, thoroughly washed, dried at 130 ° C. for 24 hours, and then in the air. Was calcined at 400 ° C. for 4 hours to prepare Pd—Na—Y (HZ1-2).

ついで、Pd−Na−Y(HZ1-2)を純水1000gに分散させ、攪拌しながら60℃まで加温し、希塩酸によりpH4.5に調整した。別に硝酸銅3水和物(関東化学(株)製:特級)5.4gをCuとしての濃度が1重量%になるよう純水180gにより希釈して硝酸銅水溶液を調製した。この硝酸銅水溶解液をPd−Na−Y(HZ1-2)分散液に徐々に添加した後、1時間攪拌し、濾過し、充分洗浄した後、130℃で24時間乾燥してPd−Cu−Na−Y(HZ1-3)を調製した。
これを水素−窒素混合ガス(H2:4VOL%)雰囲気下、300℃で2時間還元処理し、ゼオライト触媒(HZ1)を調製した。ゼオライト触媒(HZ1)中の金属の含有量を表2に示した。
硝酸性窒素含有水の処理
ゼオライト触媒(HZ1)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Next, Pd—Na—Y (HZ1-2) was dispersed in 1000 g of pure water, heated to 60 ° C. with stirring, and adjusted to pH 4.5 with dilute hydrochloric acid. Separately, 5.4 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was diluted with 180 g of pure water so that the concentration as Cu was 1 wt% to prepare a copper nitrate aqueous solution. After this copper nitrate aqueous solution was gradually added to the Pd—Na—Y (HZ1-2) dispersion, the mixture was stirred for 1 hour, filtered, washed thoroughly, and then dried at 130 ° C. for 24 hours to obtain Pd—Cu. -Na-Y (HZ1-3) was prepared.
This was subjected to reduction treatment at 300 ° C. for 2 hours in a hydrogen-nitrogen mixed gas (H 2 : 4 VOL%) atmosphere to prepare a zeolite catalyst (HZ1). Table 2 shows the metal content in the zeolite catalyst (HZ1).
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (HZ1) was used. The results are shown in Table 2.

比較例2Comparative Example 2

ゼオライト触媒(HZ2)の調製
比較例1において、テトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)85.0gを用い、硝酸銅3水和物を3.1g用いた以外は同様にしてゼオライト触媒(HZ2)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(HZ2)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。その結果、300分後も23ppmの硝酸性窒素が残っていた。
Preparation of zeolite catalyst (HZ2) In Comparative Example 1, 85.0 g of tetraamminepalladium dichloride (Tanaka Kikinzoku Co., Ltd .: concentration 8.95 wt% as Pd) was used for 3.1 g of copper nitrate trihydrate. A zeolite catalyst (HZ2) was prepared in the same manner except that. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (HZ2) was used. The results are shown in Table 2. As a result, 23 ppm of nitrate nitrogen remained even after 300 minutes.

比較例3Comparative Example 3

ゼオライト触媒(HZ3)の調製
比較例1において、テトラアンミンパラジウムジクロライド(田中貴金属(株)製:Pdとしての濃度8.95重量%)28.3gを用い、硝酸銅3水和物を1.1g用いた以外は同様にしてゼオライト触媒(HZ3)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(HZ3)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。その結果、420分後も硝酸性窒素の濃度低下が認められなかった。
Preparation of zeolite catalyst (HZ3) In Comparative Example 1, 28.3 g of tetraamminepalladium dichloride (Tanaka Kikinzoku Co., Ltd .: concentration 8.95 wt% as Pd) was used for 1.1 g of copper nitrate trihydrate. A zeolite catalyst (HZ3) was prepared in the same manner except that. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (HZ3) was used. The results are shown in Table 2. As a result, no decrease in nitrate nitrogen concentration was observed after 420 minutes.

比較例4Comparative Example 4

ゼオライト触媒(HZ4)の調製
実施例1において、塩化レアアース水溶液(RECl3としての濃度30.27%)48.2gを用いた以外は同様にしてゼオライト触媒(HZ4)を調製した。この触媒の金属の含有量を表2に示す。
硝酸性窒素含有水の処理
ゼオライト触媒(HZ4)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
In example 1 zeolite catalyst (Hz4), except for using (concentration 30.27% as RECL 3) 48.2 g chloride rare earth solution was prepared zeolite catalyst (Hz4) in a similar manner. The metal content of this catalyst is shown in Table 2.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the zeolite catalyst (HZ4) was used. The results are shown in Table 2.

比較例5Comparative Example 5

活性炭触媒(C1)の調製
活性炭(日本エンバイロケミカルズ(株)製:白鷺P、平均粒径50μm、平均表面積1200m3/g)を固形分100.0g計量し、純水1000.0gに分散させ、1時間攪拌した。別に35%塩酸38.5g、純水961.5gを混合して希塩酸を調製し、さらに塩化パラジウム(田中貴金属(株)製)19.2g、硝酸銅3水和物(関東化学(株)製:特級)14.6gを添加し、完全に溶解するまで攪拌した。活性炭を分散させた水溶液に、塩化パラジウム水溶液を30分間かけて添加し、さらに1時間攪拌し、水酸化ナトリウム(関東化学(株)製:特級)の5%水溶液を調製し、30分かけpH9.0となるまで添加し、1時間攪拌した。その後、濾過し、十分洗浄して、60℃で24時間乾燥させPd−Cu−C(C1-1)を得た。
ついで、水素-窒素混合ガス(H2:4VOL%)雰囲気下、300℃で2時間還元処理し、活性炭触媒(C1)を調製した。活性炭触媒(C1)中の金属の含有量を表2に示した。
Preparation of activated carbon catalyst (C1) Activated carbon (manufactured by Nippon Enviro Chemicals Co., Ltd .: Shirasagi P, average particle size 50 μm, average surface area 1200 m 3 / g) was weighed 100.0 g of solid content and dispersed in 1000.0 g of pure water. Stir for 1 hour. Separately, 38.5 g of 35% hydrochloric acid and 961.5 g of pure water were mixed to prepare dilute hydrochloric acid. Further, 19.2 g of palladium chloride (Tanaka Kikinzoku Co., Ltd.), copper nitrate trihydrate (Kanto Chemical Co., Ltd.) : Special grade) 14.6 g was added and stirred until completely dissolved. An aqueous palladium chloride solution was added to the aqueous solution in which the activated carbon was dispersed over 30 minutes, and the mixture was further stirred for 1 hour to prepare a 5% aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd .: special grade), and pH 9 over 30 minutes. The mixture was added to 0.0 and stirred for 1 hour. Then, it filtered, wash | cleaned sufficiently, and it dried at 60 degreeC for 24 hours, and obtained Pd-Cu-C (C1-1).
Subsequently, reduction treatment was performed at 300 ° C. for 2 hours in an atmosphere of a hydrogen-nitrogen mixed gas (H 2 : 4 VOL%) to prepare an activated carbon catalyst (C1). Table 2 shows the metal content in the activated carbon catalyst (C1).

硝酸性窒素含有水の処理
活性炭触媒(C1)15gを用いた以外は実施例1と同様にして硝酸性窒素含有水の処理を行った。結果を表2に示した。
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated in the same manner as in Example 1 except that 15 g of the activated carbon catalyst (C1) was used. The results are shown in Table 2.

寿命テスト
ゼオライト触媒(HZ3)を除き、全触媒について以下の通り寿命テストを行った。1000ccのフラスコ中に触媒1.5gと水500ccを懸濁し、これを600rpmの速度で撹拌しながら、硝酸ナトリウム水溶液(N濃度400ppm)を20cc/minの速度で添加した。フラスコには底部より水素を供給できる細管を設け、これより供給した。また上部より濃度5重量%の硫酸を添加し、pHを6〜8に維持した。また、液面を一定に保つために反応液の流出口を設けた。
流出液をとり、窒素分析計(ブラン・ルーベ社製:AAS-III)を用いてNO3濃度を測定した。還元活性が60%に低下するまでの日数を測定し、結果を表2に示した。
Life test Except for the zeolite catalyst (HZ3), the life test was conducted for all the catalysts as follows. 1.5 g of catalyst and 500 cc of water were suspended in a 1000 cc flask, and an aqueous sodium nitrate solution (N concentration 400 ppm) was added at a rate of 20 cc / min while stirring the suspension at a rate of 600 rpm. The flask was provided with a thin tube capable of supplying hydrogen from the bottom, and supplied from this. Further, sulfuric acid having a concentration of 5% by weight was added from the top to maintain the pH at 6-8. In addition, a reaction solution outlet was provided to keep the liquid level constant.
The effluent was taken and the NO 3 concentration was measured using a nitrogen analyzer (Blanc Roube Co., Ltd .: AAS-III). The number of days until the reduction activity decreased to 60% was measured, and the results are shown in Table 2.

Figure 0004619758
Figure 0004619758

Figure 0004619758
Figure 0004619758

Claims (4)

金属担持希土類交換ゼオライトであって、希土類交換率が50〜95%の範囲にあり、前記金属がPt、Pd、Au、Ru、Cu、Ag、Sn、Ni、Fe から選ばれる1種または2種以上の金属であることを特徴とする硝酸性窒素含有水処理用ゼオライト触媒。   A metal-supported rare earth-exchanged zeolite having a rare earth exchange rate in the range of 50 to 95%, wherein the metal is selected from one or two selected from Pt, Pd, Au, Ru, Cu, Ag, Sn, Ni, and Fe. A zeolite catalyst for treating nitrate-containing water, characterized by being the above metal. 前記金属の含有量がゼオライト触媒中に、金属に換算して0.3〜10重量%の範囲にあることを特徴とする請求項1に記載の硝酸性窒素含有水処理用ゼオライト触媒。   2. The zeolite catalyst for nitrate-containing water treatment according to claim 1, wherein the content of the metal is in the range of 0.3 to 10% by weight in terms of metal in the zeolite catalyst. 前記金属が少なくともPtまたはPdのいずれかとCu、Sn、Agから選ばれる1種以上の金属とからなることを特徴とする請求項1または2に記載の硝酸性窒素含有水処理用ゼオライト触媒。   3. The zeolite catalyst for water treatment with nitrate nitrogen according to claim 1, wherein the metal comprises at least one of Pt and Pd and one or more metals selected from Cu, Sn, and Ag. 前記ゼオライトがフォージャサイト型ゼオライトあることを特徴とする請求項1〜3のいずれかに記載の硝酸性窒素含有水処理用ゼオライト触媒。

The zeolite catalyst for nitrate-containing water treatment according to any one of claims 1 to 3, wherein the zeolite is a faujasite type zeolite.

JP2004352064A 2004-12-03 2004-12-03 Zeolite catalyst for water treatment Expired - Fee Related JP4619758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352064A JP4619758B2 (en) 2004-12-03 2004-12-03 Zeolite catalyst for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352064A JP4619758B2 (en) 2004-12-03 2004-12-03 Zeolite catalyst for water treatment

Publications (2)

Publication Number Publication Date
JP2006159044A JP2006159044A (en) 2006-06-22
JP4619758B2 true JP4619758B2 (en) 2011-01-26

Family

ID=36661629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352064A Expired - Fee Related JP4619758B2 (en) 2004-12-03 2004-12-03 Zeolite catalyst for water treatment

Country Status (1)

Country Link
JP (1) JP4619758B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978222B2 (en) * 2007-02-07 2012-07-18 信越化学工業株式会社 Method for treating wastewater containing nitrate nitrogen
JP5137083B2 (en) * 2009-07-27 2013-02-06 独立行政法人日本原子力研究開発機構 Catalyst for reductive decomposition of nitrate ion
JP6346188B2 (en) * 2012-10-26 2018-06-20 中国石油化工股▲ふん▼有限公司 Method and apparatus for making zeolite
CN110681411B (en) * 2018-07-05 2023-07-25 中国石油天然气股份有限公司 Bimetallic catalytic reforming catalyst containing FAU type molecular sieve
KR102313138B1 (en) * 2019-10-01 2021-10-15 (주)원익머트리얼즈 Catalyst for silane synthesis and its preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332490A (en) * 1995-06-06 1996-12-17 Hitachi Ltd Waste water treatment
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method
JP2004313971A (en) * 2003-04-17 2004-11-11 Ict:Kk Exhaust gas cleaning catalyst and method for cleaning exhaust gas using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332490A (en) * 1995-06-06 1996-12-17 Hitachi Ltd Waste water treatment
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method
JP2004313971A (en) * 2003-04-17 2004-11-11 Ict:Kk Exhaust gas cleaning catalyst and method for cleaning exhaust gas using it

Also Published As

Publication number Publication date
JP2006159044A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4649281B2 (en) Treatment method for nitrate-containing water
CN112642468B (en) Catalyst for catalyzing and oxidizing ethylene and preparation method thereof
CN104888839A (en) Mesoporous molecular sieve-based catalyst used for ammonia removing, and preparation method and applications thereof
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP2011167633A (en) Water treatment method and apparatus
WO2021212936A1 (en) Method for recovering precious metal from precious metal-containing waste catalyst
CN102179245B (en) Application of palladium/active carbon catalyst in synthesizing N,N'-dibenzylethylenediamine
JP4619758B2 (en) Zeolite catalyst for water treatment
JP2007007541A (en) Method for treating nitrate nitrogen-containing water
JP4439872B2 (en) Method for producing zeolite catalyst for water treatment
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
WO2018123156A1 (en) Hydrogen peroxide removal method and apparatus
JP4403758B2 (en) Pollutant remover and method for producing the same
JP2004097893A (en) Catalyst for water treatment and water treatment method
JP2011514252A (en) Regeneration of hydrogenation catalysts based on platinum group metals
CN114602464A (en) Hydrocatalyst for C-V petroleum resin and its preparing process
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP2001000866A (en) Water treating catalyst composition and water treatment using the catalyst
CN108236950A (en) A kind of preparation method of the Pd-B/C powder as formaldehyde remover
JP3083463B2 (en) Regeneration method of catalyst for wet oxidation treatment
JP3420697B2 (en) Method for treating ethanolamine-containing water
CN112547113B (en) Preparation method of noble metal @ ZSM core-shell structure catalyst
CN114289071B (en) Waterproof deoxidizing catalyst and preparation method and application thereof
JPH07504356A (en) Catalytic fluidized bed method for the treatment of aqueous liquids
JP2004149361A (en) Method of manufacturing ion-exchange zeolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4619758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees