JP2007021289A - Method for treating nitrate nitrogen-containing water - Google Patents

Method for treating nitrate nitrogen-containing water Download PDF

Info

Publication number
JP2007021289A
JP2007021289A JP2005203125A JP2005203125A JP2007021289A JP 2007021289 A JP2007021289 A JP 2007021289A JP 2005203125 A JP2005203125 A JP 2005203125A JP 2005203125 A JP2005203125 A JP 2005203125A JP 2007021289 A JP2007021289 A JP 2007021289A
Authority
JP
Japan
Prior art keywords
containing water
nitrate nitrogen
catalyst
nitrate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005203125A
Other languages
Japanese (ja)
Other versions
JP4649281B2 (en
Inventor
Yoichi Ishihara
庸一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2005203125A priority Critical patent/JP4649281B2/en
Publication of JP2007021289A publication Critical patent/JP2007021289A/en
Application granted granted Critical
Publication of JP4649281B2 publication Critical patent/JP4649281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the reduction rate of nitrate nitrogen, and to improve the utilization ratio of reducing gas. <P>SOLUTION: In the method for treating nitrate nitrogen-containing water, a water treatment catalyst for nitrate nitrogen-containing water composed of particulates with the average particle diameter in the range of 5 nm to 1 μm in which metal particulates are carried on crystalline carbon particles, and the carrying amount of the metal particulates in the catalyst particulates lies in the range of 1 to 50 wt.% as metal is used. As the crystalline carbon particles, a crystalline carbon compound having a graphite crystal structure, and in which the distance between crystallites lies in the range of 1 to 30 nm such as carbon black, acetylene black, a carbon nanotube, a carbon nanohorn, a carbon fiber and graphite is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、硝酸性窒素含有水の処理方法に関し、さらに詳しくは、硝酸性窒素含有水を還元剤の存在下に触媒と接触させて硝酸性窒素を還元分解する硝酸性窒素含有水の処理方法に関する。   The present invention relates to a method for treating nitrate nitrogen-containing water, and more specifically, a method for treating nitrate nitrogen-containing water by reductively decomposing nitrate nitrogen by bringing nitrate nitrogen-containing water into contact with a catalyst in the presence of a reducing agent. About.

従来、排水等の中に含まれる硝酸性窒素を除去する処理方法としては、微生物による生物学的処理方法、吸着法、イオン交換法、逆浸透膜法、電気透析法などの物理化学的処理方法および水素などの還元剤の存在下に硝酸性窒素を触媒と接触させて還元分解する化学的処理方法などが知られている。特に、硝酸性窒素を還元剤の存在下に触媒と接触させて還元分解する化学的処理方法は低濃度の硝酸性窒素を含む飲料水の原水や高濃度の硝酸性窒素を含む工業排水など、大量の硝酸性窒素含有水から硝酸性窒素を除去するのに適しており、種々の処理方法が提案されている。   Conventional treatment methods for removing nitrate nitrogen contained in wastewater, etc. include biological treatment methods using microorganisms, adsorption methods, ion exchange methods, reverse osmosis membrane methods, electrodialysis methods, and other physicochemical treatment methods. Also known is a chemical treatment method in which nitrate nitrogen is brought into contact with a catalyst in the presence of a reducing agent such as hydrogen to perform reductive decomposition. In particular, chemical treatment methods in which nitrate nitrogen is brought into contact with a catalyst in the presence of a reducing agent for reductive decomposition include raw water for drinking water containing low concentrations of nitrate nitrogen and industrial wastewater containing high concentrations of nitrate nitrogen, etc. It is suitable for removing nitrate nitrogen from a large amount of nitrate nitrogen-containing water, and various treatment methods have been proposed.

例えば、本願出願人にかかる特開2004−97893号公報(特許文献1)には、無機酸化物担体および/またはカーボン担体に、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Feから選ばれる1種または2種以上の金属微粒子および/または合金微粒子が担持されてなる、平均粒子径が5nm〜20μmの範囲にある硝酸性窒素含有水処理用触媒が記載されており、更に、硝酸性窒素含有水処理方法として、
(a)前述の水処理用触媒と硝酸性窒素含有水とを、還元剤の存在下で接触させる工程
(b)前記接触済の硝酸性窒素含有水から水処理用触媒を分離する工程
(c)必要に応じて前記分離した水処理用触媒を再生し、工程(a)に戻す工程
からなる硝酸性窒素含有水処理方法が開示されている。
For example, in Japanese Patent Application Laid-Open No. 2004-97893 (Patent Document 1) according to the present applicant, Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V are added to the inorganic oxide support and / or the carbon support. A nitrate nitrogen-containing water treatment catalyst having an average particle diameter in the range of 5 nm to 20 μm, on which one or more metal fine particles and / or alloy fine particles selected from Mo, Fe, are supported is described. In addition, as a method for treating nitrate nitrogen-containing water,
(A) a step of bringing the water treatment catalyst and nitrate nitrogen-containing water into contact with each other in the presence of a reducing agent (b) a step of separating the water treatment catalyst from the contacted nitrate nitrogen-containing water (c) ) A nitrate nitrogen-containing water treatment method comprising a step of regenerating the separated water treatment catalyst as necessary and returning to the step (a) is disclosed.

また、本願出願人は特開2004−57954号公報(特許文献2)として、Au、Ag、Pt、Pd、Rh、Cu、Fe、Ni、Co、Sn、In、Ti、Al、Ta、Sb、Ruから選ばれる1種または2種以上の金属からなる金属微粒子であって、平均粒子径が1〜200nmの範囲にある硝酸性窒素含有水処理用触媒を開示している。   In addition, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 2004-57954 (Patent Document 2), Au, Ag, Pt, Pd, Rh, Cu, Fe, Ni, Co, Sn, In, Ti, Al, Ta, Sb, A nitrate nitrogen-containing water treatment catalyst is disclosed which is a metal fine particle composed of one or more metals selected from Ru and having an average particle diameter in the range of 1 to 200 nm.

特開2001−866号公報(特許文献3)には、原水中の硝酸性窒素および亜硝酸性窒素を、触媒を用いて水素で還元分解するにあたり、金属パラジウムと、元素比がCu≧Pdである銅−パラジウム合金との混合物を触媒とする水処理方法が記載されている。
特開平8−192169号公報(特許文献4)には、硝酸性窒素とアンモニア性窒素を含む排水中の硝酸性窒素を、水中で水素を発生する金属と接触させることにより、亜硝酸性窒素または窒素ガスまで還元し、溶出した金属を軟化処理によって除去した後、生成した亜硝酸性窒素およびアンモニア性窒素を触媒存在下で反応させ、窒素に転換する硝酸性窒素およびアンモニア性窒素を含む排水の処理方法が記載されている。
In Japanese Patent Laid-Open No. 2001-866 (Patent Document 3), when reducing and decomposing nitrate nitrogen and nitrite nitrogen in raw water with hydrogen using a catalyst, the elemental ratio is Cu ≧ Pd. A water treatment method using a mixture with a certain copper-palladium alloy as a catalyst is described.
In JP-A-8-192169 (Patent Document 4), nitrate nitrogen in waste water containing nitrate nitrogen and ammonia nitrogen is brought into contact with a metal that generates hydrogen in water, thereby producing nitrite nitrogen or After reducing to nitrogen gas and removing the eluted metal by softening treatment, the generated nitrite nitrogen and ammonia nitrogen are reacted in the presence of a catalyst to convert the waste water containing nitrate nitrogen and ammonia nitrogen into nitrogen. A processing method is described.

このような状況下、さらに高活性な硝酸性窒素含有水処理用触媒の開発とともに、効率的なプロセスの開発が望まれている。
特開2004−97893号公報 特開2004−57954号公報 特開2001−866号公報 特開平8−192169号公報
Under such circumstances, development of an efficient process is desired along with development of a highly active catalyst for treating nitrate-nitrogen-containing water.
JP 2004-97893 A JP 2004-57954 A Japanese Patent Laid-Open No. 2001-866 JP-A-8-192169

本発明の目的は、低濃度の硝酸性窒素を含む飲料水の原水や、高濃度の硝酸性窒素を含む工業排水など大量の硝酸性窒素含有水から硝酸性窒素を除去する硝酸性窒素含有水の処理方法において、硝酸性窒素の還元速度を高めると共に還元ガスの利用率を向上させることのできる硝酸性窒素含有水の処理方法を提供することにある。   An object of the present invention is to remove nitrate nitrogen from a large amount of nitrate nitrogen-containing water such as raw water of drinking water containing low-concentration nitrate nitrogen or industrial wastewater containing high-concentration nitrate nitrogen. It is an object of the present invention to provide a method for treating nitrate-containing water that can increase the reduction rate of nitrate nitrogen and improve the utilization rate of reducing gas.

本発明は、硝酸性窒素含有水と水処理触媒とを還元ガスの存在下で接触させる硝酸性窒素含有水の処理方法において、前記水処理触媒が結晶性炭素粒子に金属微粒子が担持された平均粒子径が5nm〜1μmの範囲の微粒子からなり、触媒微粒子中の金属微粒子の担持量が金属として1〜50重量%の範囲にあることを特徴とするものである。   The present invention provides a method for treating nitrate nitrogen-containing water in which nitrate nitrogen-containing water and a water treatment catalyst are contacted in the presence of a reducing gas, wherein the water treatment catalyst is an average in which metal fine particles are supported on crystalline carbon particles. It consists of fine particles having a particle diameter in the range of 5 nm to 1 μm, and the supported amount of metal fine particles in the catalyst fine particles is in the range of 1 to 50% by weight as metal.

前記金属は、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、Yから選ばれる1種または2種以上の金属または合金であることが好ましく、特に、少なくともPdとCuとを含む金属または合金であることが好ましい。
前記金属微粒子の平均粒子径は1〜50nmの範囲にあることが好ましい。
前記結晶性炭素粒子の平均粒子径(一次粒子径)は5〜500nmの範囲にあることが好ましく、前記結晶性炭素粒子の比表面積は20〜3000m2/gの範囲にあることが好ましい。
The metal is preferably one or more metals or alloys selected from Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, and Y, in particular at least Pd. It is preferably a metal or alloy containing Cu and Cu.
The average particle size of the metal fine particles is preferably in the range of 1 to 50 nm.
The average particle diameter (primary particle diameter) of the crystalline carbon particles is preferably in the range of 5 to 500 nm, and the specific surface area of the crystalline carbon particles is preferably in the range of 20 to 3000 m 2 / g.

前記結晶性炭素粒子の結晶構造はグラファイト構造であり、結晶子径が2〜100nmの範囲であり、かつ結晶子間距離が0.340〜0.362nmの範囲にあることが好ましく、前記結晶性炭素粒子は、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛から選ばれる1種または2種以上の結晶性炭素化合物からなることが好ましい。
前記還元ガスは、平均直径0.1mm以下の超微細気泡水素ガスであることが好ましい。
The crystal structure of the crystalline carbon particles is a graphite structure, the crystallite diameter is preferably in the range of 2 to 100 nm, and the crystallite distance is preferably in the range of 0.340 to 0.362 nm. The carbon particles are preferably composed of one or more crystalline carbon compounds selected from carbon black, acetylene black, carbon nanotube, carbon nanohorn, carbon fiber, and graphite.
The reducing gas is preferably ultrafine bubble hydrogen gas having an average diameter of 0.1 mm or less.

本発明の硝酸性窒素含有水の処理方法では、比表面積の高い結晶性炭素粒子に平均粒子径の小さい金属微粒子を担持した水処理触媒を用いるので、硝酸性窒素還元活性が高い。また、結晶性炭素粒子が疎水性を有しているので処理水と容易に分離することができ、このため効率的に硝酸性窒素を還元分解することができる。   In the method for treating nitrate nitrogen-containing water of the present invention, since a water treatment catalyst in which metal fine particles having a small average particle diameter are supported on crystalline carbon particles having a high specific surface area is used, nitrate nitrogen reduction activity is high. Further, since the crystalline carbon particles have hydrophobicity, they can be easily separated from the treated water, and therefore nitrate nitrogen can be efficiently reduced and decomposed.

以下、本発明の硝酸性窒素含有水の処理方法について具体的に説明する。
硝酸性窒素含有水
本発明に用いる硝酸性窒素含有水としては、水中の硝酸性窒素化合物の濃度がNとして50〜10,000ppm、さらには、100〜5000ppmの範囲にあることが好ましい。ここで、硝酸性窒素化合物とはNO3、NO2、NO、N2Oを含む化合物の総称である。
処理水中の硝酸性窒素化合物の濃度がNとして50ppm未満の場合は、還元分解処理することは可能であるが経済性が問題となることがある。濃度がNとして10,000ppmを越えると、やはり、還元分解処理することは可能であるが還元剤(還元ガス)の使用量が多くなり経済性が問題となることがある。
このため、本発明の方法は他の吸着法、イオン交換法、逆浸透膜法、電気透析法、あるいは生物脱窒法等と併用することが好ましい場合がある。
Hereinafter, the method for treating nitrate nitrogen-containing water of the present invention will be described in detail.
The nitrate nitrogen-containing water to be used for nitrate nitrogen-containing water present invention, 50~10,000Ppm as the concentration of nitrate nitrogen compound in water is N, further preferably in the range of 100 to 5000 ppm. Here, the nitrate nitrogen compound is a general term for compounds containing NO 3 , NO 2 , NO, and N 2 O.
When the concentration of the nitrate nitrogen compound in the treated water is less than 50 ppm as N, reductive decomposition treatment is possible, but economic efficiency may be a problem. If the concentration exceeds 10,000 ppm as N, it is still possible to carry out reductive decomposition treatment, but the amount of reducing agent (reducing gas) used increases, which may cause a problem of economy.
For this reason, the method of the present invention may be preferably used in combination with other adsorption methods, ion exchange methods, reverse osmosis membrane methods, electrodialysis methods, biological denitrification methods, and the like.

硝酸性窒素含有水処理用触媒
本発明において硝酸性窒素含有水処理用触媒は、金属微粒子が結晶性炭素粒子に担持されてなり、平均粒子径が5nm〜1μmの範囲にある。
前記金属微粒子としては、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、またはYから選ばれる1種または2種以上の金属または合金が好ましい。好ましい2成分以上の組み合わせとしては、Pd-Cu、Pd-Au、Pd-W、Pd-V、Pd-Mo、Pd-Fe、Pd-Cu/Pd、Pd-Cu-Ru、Pd-Cu-Fe、Pd-Cu-Au、Pt-Cu、Pt-Au、Pt-W、Pt-V、Pt-Mo、Pt-Fe、Pt-Cu/Pd、Pt-Cu-Ru、Pt-Cu-Fe、Pt-Cu-Au等が挙げられる。このような金属微粒子は、硝酸性窒素を還元して分解する活性が高く、且つ活性劣化が小さく、また再生によって容易に活性が復元し、長期にわたって活性を維持することができる。
Nitrate nitrogen-containing water treatment catalyst In the present invention, the nitrate nitrogen-containing water treatment catalyst has metal fine particles supported on crystalline carbon particles, and has an average particle diameter in the range of 5 nm to 1 μm.
The metal fine particles are preferably one or more metals or alloys selected from Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, or Y. Preferred combinations of two or more components include Pd-Cu, Pd-Au, Pd-W, Pd-V, Pd-Mo, Pd-Fe, Pd-Cu / Pd, Pd-Cu-Ru, Pd-Cu-Fe , Pd-Cu-Au, Pt-Cu, Pt-Au, Pt-W, Pt-V, Pt-Mo, Pt-Fe, Pt-Cu / Pd, Pt-Cu-Ru, Pt-Cu-Fe, Pt -Cu-Au and the like. Such metal fine particles have a high activity for reducing and decomposing nitrate nitrogen, have a small activity deterioration, can be easily restored by regeneration, and can maintain the activity over a long period of time.

なお、ここで合金とは、2種以上の金属成分が均一に混合しているもの(上記において例えば「Pd-Cu」と表記)に限らず、混合物であるもの(上記において「Cu/Pd」と表記)も含んで意味している。また、これらの金属成分は結晶性であっても非晶質であってもよい。
このなかでもCuとPdおよび/またはPtからなる合金微粒子は、還元剤である水素の吸着能が高くかつ常温で硝酸性窒素をN2とH2Oに選択的に還元分解するので、特に好ましい。
Here, the alloy is not limited to an alloy in which two or more kinds of metal components are uniformly mixed (for example, expressed as “Pd—Cu” in the above), but an alloy (in the above, “Cu / Pd”). This also includes These metal components may be crystalline or amorphous.
Of these, alloy fine particles comprising Cu and Pd and / or Pt are particularly preferred because they have a high ability to adsorb hydrogen as a reducing agent and selectively reduce and decompose nitrate nitrogen to N 2 and H 2 O at room temperature. .

金属微粒子の平均粒子径は1〜50nm、さらには1〜10nmの範囲にあることが好ましい。平均粒子径が1nm未満の場合は、初期性能は高いが、再生等を繰り返すことによって移動して他の金属微粒子と凝集する傾向があり、長期にわたって初期性能を維持することが困難である。平均粒子径が50nmを越えると、還元剤の吸着量が低下するとともに水素の活性化能も低下し、硝酸性窒素の還元分解活性が低下する。
金属微粒子の粒子径は、例えば、FE-TEM(STEM-HAADF法)により測定することができる。
The average particle diameter of the metal fine particles is preferably in the range of 1 to 50 nm, more preferably 1 to 10 nm. When the average particle size is less than 1 nm, the initial performance is high, but it tends to move and aggregate with other metal fine particles by repeating regeneration and the like, and it is difficult to maintain the initial performance over a long period of time. If the average particle diameter exceeds 50 nm, the amount of reducing agent adsorbed decreases, the hydrogen activation ability also decreases, and the reductive decomposition activity of nitrate nitrogen decreases.
The particle diameter of the metal fine particles can be measured by, for example, FE-TEM (STEM-HAADF method).

前記結晶性炭素粒子としては、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛などが挙げられる。このような結晶性炭素粒子は金属微粒子との結合力が強く、処理中の金属の処理液への溶出を抑制することができ、また担体から容易に脱離することがなく、このため長期処理が可能である。
一方、活性炭のような無定形炭素粒子(非結晶性炭素粒子)は、化学的安定性、機械的強度(安定性)が低い上に、粒子径が大きく親水性が高い場合があり、本発明の水処理用触媒の担体としては、不適当である。
Examples of the crystalline carbon particles include carbon black, acetylene black, carbon nanotube, carbon nanohorn, carbon fiber, and graphite. Such crystalline carbon particles have a strong binding force with the metal fine particles, can suppress elution of the metal being processed into the processing solution, and do not easily desorb from the carrier, and thus can be treated for a long time. Is possible.
On the other hand, amorphous carbon particles (non-crystalline carbon particles) such as activated carbon have low chemical stability and mechanical strength (stability) and may have a large particle size and high hydrophilicity. It is unsuitable as a carrier for water treatment catalysts.

結晶性炭素粒子の平均粒子径(一次粒子径)は5〜500nm、さらには10〜100nmの範囲にあることが好ましい。平均粒子径(一次粒子径)が5nm未満の場合は、結晶性が低いためか、前記結晶性炭素粒子を用いる効果が不充分となる傾向がある。平均粒子径(一次粒子径)が500nmを超えると、比表面積が低く、金属微粒子を高分散した状態に担持することができないために、即ち、担体表面で金属微粒子が凝集した状態となるため充分な活性が得られないことがある。
なお、ここで結晶性炭素粒子の平均粒子径を一次粒子径と規定したのは、水処理用触媒の担体として用いる結晶性炭素粒子は、概ね触媒の粒子径と同じく平均粒子径が5nm〜1μmの範囲にあれば凝集体であっても非凝集体であってもよく、このときの非凝集体を一次粒子として意味したものである。
The average particle diameter (primary particle diameter) of the crystalline carbon particles is preferably in the range of 5 to 500 nm, more preferably 10 to 100 nm. When the average particle size (primary particle size) is less than 5 nm, the effect of using the crystalline carbon particles tends to be insufficient because of low crystallinity. When the average particle diameter (primary particle diameter) exceeds 500 nm, the specific surface area is low, and the metal fine particles cannot be supported in a highly dispersed state, that is, the metal fine particles are aggregated on the support surface. Activity may not be obtained.
Here, the average particle diameter of the crystalline carbon particles is defined as the primary particle diameter because the average particle diameter of the crystalline carbon particles used as the carrier of the catalyst for water treatment is approximately 5 nm to 1 μm, similar to the particle diameter of the catalyst. In this range, it may be an aggregate or a non-aggregate, and the non-aggregate at this time is meant as a primary particle.

結晶性炭素粒子の比表面積は20〜3000m2/g、さらには500〜2000m2/gの範囲にあることが好ましい。比表面積が20m2/g未満の場合は、所定量の金属微粒子を担持した場合、金属微粒子が結晶性炭素粒子の表面で凝集した状態となるため充分な活性が得られないことがある。比表面積が3000m2/gを超えるものは、微粒子の集合体であり、結晶性が低く、硝酸性窒素の酸化還元活性や後述する疎水性等の結晶性炭素粒子を用いる効果が不充分となる傾向がある。 The specific surface area of crystalline carbon particles 20~3000m 2 / g, more preferably in the range of 500~2000m 2 / g. When the specific surface area is less than 20 m 2 / g, when a predetermined amount of metal fine particles is supported, the metal fine particles are aggregated on the surface of the crystalline carbon particles, so that sufficient activity may not be obtained. Those having a specific surface area exceeding 3000 m 2 / g are aggregates of fine particles, have low crystallinity, and the effect of using crystalline carbon particles such as redox activity of nitrate nitrogen and hydrophobicity described later is insufficient. Tend.

前記結晶性炭素粒子は充分な疎水性を有していることが好ましい。担体として用いる結晶性炭素粒子が疎水性であると、反応終了後あるいは必要に応じて反応を停止した後、処理水表面に触媒が分離して浮遊し、触媒を特別の装置(例えばセラミックスフィルター等)を用いることなく分離することが可能である。特に微細な粒子では、通常の方法で分離が困難であっても、容易に分離することができる。先に列挙したものは、疎水性の結晶性炭素粒子である。
なお、結晶性炭素粒子の粒子径が大きく、通常の方法で容易に分離できる場合には、結晶性炭素粒子を硝酸などの酸で処理して親水性にして用いることも可能である。
It is preferable that the crystalline carbon particles have sufficient hydrophobicity. If the crystalline carbon particles used as a support are hydrophobic, the catalyst is separated and floated on the surface of the treated water after the reaction is completed or stopped as necessary. ) Can be used for separation. In particular, fine particles can be easily separated even if separation by a normal method is difficult. Listed above are hydrophobic crystalline carbon particles.
In addition, when the particle diameter of the crystalline carbon particles is large and can be easily separated by a usual method, the crystalline carbon particles can be treated with an acid such as nitric acid to be made hydrophilic.

本発明に用いる結晶性炭素粒子はX線回折によりグラファイト構造を有し、結晶子径が2〜100nm、さらには2〜40nmの範囲にあり、結晶子間距離が0.340〜0.362nm、さらには0.342〜0.360nmの範囲にあることが好ましい。
結晶子径が2nm未満の場合は、結晶性炭素粒子の結晶性が低すぎて化学的或いは機械的安定性が劣り、所望の撥水性が得られ難い。結晶子径が100nmを超えると、結晶性炭素粒子の結晶性が高すぎて比表面積が低下し、この結果、担持する金属微粒子の量および分散性が低下して、所望の活性が得られ難い。
結晶子間距離が0.340nm未満になると結晶性が高すぎるために比表面積が低下して担持する金属微粒子が凝集し易くなる。結晶子間距離が0.362nmを超えたものは結晶性が不充分で、硝酸性窒素の還元活性や後述する疎水性等の結晶性炭素粒子を用いる効果が不充分となる傾向がある。
The crystalline carbon particles used in the present invention have a graphite structure by X-ray diffraction, have a crystallite diameter of 2 to 100 nm, more preferably 2 to 40 nm, and a distance between crystallites of 0.340 to 0.362 nm, Furthermore, it is preferable that it exists in the range of 0.342-0.360 nm.
When the crystallite diameter is less than 2 nm, the crystallinity of the crystalline carbon particles is too low, the chemical or mechanical stability is inferior, and the desired water repellency is difficult to obtain. When the crystallite diameter exceeds 100 nm, the crystallinity of the crystalline carbon particles is too high and the specific surface area is lowered. As a result, the amount and dispersibility of the supported metal fine particles are lowered, and it is difficult to obtain a desired activity. .
When the distance between crystallites is less than 0.340 nm, the crystallinity is too high, so that the specific surface area is reduced and the supported metal fine particles are easily aggregated. When the distance between crystallites exceeds 0.362 nm, the crystallinity is insufficient, and the reducing activity of nitrate nitrogen and the effect of using crystalline carbon particles such as hydrophobicity described later tend to be insufficient.

前記結晶子間距離の測定法では、X線回折により、グラファイト構造に基づく[0,0,2]面の垂直方向であるC軸方向の格子定数Cを求め、このCの1/2を層間距離として表す。
また、本発明の結晶子径の測定法は、X線回折により、メインピーク[0.0.2]面(格子定数d=3.3756、ミラー指数h=0、k=0、l=2)の半価幅(β)より、Scherrerの式D=λ/βcosθ(D:結晶子径、λ=X線波長(Å)、θ=反射角)により求めることができる。
In the method for measuring the distance between crystallites, the lattice constant C in the C-axis direction, which is the vertical direction of the [0, 0, 2] plane based on the graphite structure, is obtained by X-ray diffraction, and ½ of this C is calculated as an interlayer. Expressed as distance.
The crystallite diameter measurement method of the present invention is performed by X-ray diffraction using a main peak [0.0.2] plane (lattice constant d = 3.3756, Miller index h = 0, k = 0, l = 2. ) At half-value width (β), Scherrer's equation D = λ / βcos θ (D: crystallite diameter, λ = X-ray wavelength (Å), θ = reflection angle).

本発明に係る硝酸性窒素含有水処理用触媒は、平均粒子径が5nm〜1μm、さらには10nm〜0.5μmの範囲にあることが好ましい。
触媒微粒子の平均粒子径が5nm未満のものは、凝集する傾向が強く、触媒の調製が困難であったり、得られたとしても凝集して分散性が低下し、硝酸性窒素含有水の処理効率が低下することがある。平均粒子径が1μmを越えると、硝酸性窒素含有水の循環あるいは撹拌が弱くなると沈降することがあり、また硝酸性窒素との接触効率が低下して充分な還元分解活性が得られず、硝酸性窒素の低減が不充分となる。
The nitrate nitrogen-containing water treatment catalyst according to the present invention preferably has an average particle size in the range of 5 nm to 1 μm, more preferably 10 nm to 0.5 μm.
When the average particle size of the catalyst fine particles is less than 5 nm, the tendency to agglomerate is strong, and it is difficult to prepare the catalyst. May decrease. If the average particle diameter exceeds 1 μm, precipitation may occur if the circulation or stirring of nitrate-nitrogen-containing water is weak, and contact efficiency with nitrate-nitrogen will decrease, resulting in insufficient reductive decomposition activity. The reduction of reactive nitrogen is insufficient.

硝酸性窒素含有水処理用触媒中の金属微粒子の担持量は、金属として1〜50重量%、さらには2〜20重量%の範囲にあることが好ましい。担持量が1重量%未満の場合は、還元分解活性が不充分となる。担持量が50重量%を越えると、担持することが困難であるとともに、仮に担持できても還元分解活性がさらに向上することもないので、経済性が低下する。また、担持した金属微粒子同士が互いに合体して粒子成長することがあり、活性が低下することがある。   The supported amount of the metal fine particles in the nitrate nitrogen-containing water treatment catalyst is preferably in the range of 1 to 50% by weight, more preferably 2 to 20% by weight as the metal. When the loading is less than 1% by weight, the reductive decomposition activity is insufficient. When the loading amount exceeds 50% by weight, it is difficult to carry, and even if it can be carried, the reductive decomposition activity is not further improved, so the economic efficiency is lowered. In addition, the supported metal fine particles may coalesce with each other to grow particles, which may reduce the activity.

硝酸性窒素含有水処理用触媒の製造方法
このような硝酸性窒素含有水処理用触媒微粒子は、前記した粒子径範囲にあり、水に分散し、沈降等することなく硝酸性窒素と効率的に接触し、充分な還元分解活性が得られれば特に制限はなく、従来公知の方法を用いて製造することができる。
以下、本発明に用いることのできる硝酸性窒素含有水処理用触媒の製造方法を3つ例示的に説明する。
Method for Producing Nitrate Nitrogen-Containing Water Treatment Catalyst Such fine particles of nitrate nitrogen-containing water treatment are in the above-mentioned particle size range, and are efficiently dispersed with nitrate nitrogen without being dispersed, settled, etc. in water. If it contacts and sufficient reductive decomposition activity is obtained, there will be no restriction | limiting in particular, It can manufacture using a conventionally well-known method.
Hereinafter, three methods for producing a nitrate nitrogen-containing water treatment catalyst that can be used in the present invention will be described.

(第1の製造方法)
前記した結晶性炭素粒子の分散液を調製する。これに、所定量の1種または2種以上の金属塩水溶液を加え、結晶性炭素粒子に金属塩水溶液を吸収させ、次いで乾燥し、その後200〜800℃の温度で、還元ガス例えばH2、NH3雰囲気下で通常0.5〜6時間程度還元処理することによって硝酸性窒素含有水処理用触媒微粒子を得ることができる。
金属塩としては、硝酸パラジウム、塩化パラジウム、酢酸パラジウム、テトラアンミンパラジウム、塩化白金、硝酸銀、塩化銅、硝酸ニッケル、酢酸ルテニウムなど、前記した金属の塩で水に可溶な塩を用いることができる。
(First manufacturing method)
A dispersion of the crystalline carbon particles described above is prepared. A predetermined amount of one or more metal salt aqueous solutions are added thereto, the crystalline carbon particles absorb the metal salt aqueous solution, and then dried, and then at a temperature of 200 to 800 ° C., a reducing gas such as H 2 , By carrying out reduction treatment for about 0.5 to 6 hours under NH 3 atmosphere, nitrate nitrogen-containing catalyst fine particles for water treatment can be obtained.
As the metal salt, water-soluble salts such as palladium nitrate, palladium chloride, palladium acetate, tetraammine palladium, platinum chloride, silver nitrate, copper chloride, nickel nitrate, and ruthenium acetate can be used.

乾燥方法としては、凍結乾燥、噴霧乾燥、静置乾燥、ロータリーエバポレーター等、従来公知の方法を採用することができる。
上記において、還元温度が200℃未満の時は、金属塩の還元が不充分となり、金属微粒子の生成が不充分となる。還元温度が800℃を越えると、金属微粒子が粒子成長しすぎたり、触媒粒子が強く凝集して分散性が低下することがあり、本発明に係る粒子径の小さな触媒粒子を用いた硝酸性窒素含有水の安定的な処理が困難となる。好ましい還元温度は250〜600℃の範囲である。
As a drying method, conventionally known methods such as freeze drying, spray drying, stationary drying, and rotary evaporator can be employed.
In the above, when the reduction temperature is less than 200 ° C., the reduction of the metal salt is insufficient and the generation of metal fine particles is insufficient. If the reduction temperature exceeds 800 ° C., the metal fine particles may grow too much, or the catalyst particles may be strongly aggregated and the dispersibility may be reduced. Nitrate nitrogen using catalyst particles having a small particle diameter according to the present invention Stable treatment of the contained water becomes difficult. A preferable reduction temperature is in the range of 250 to 600 ° C.

(第2の製造方法)
前記した結晶性炭素粒子の分散液を調製する。これに、所定量の1種または2種以上の金属塩水溶液を加え、ついで還元剤(水素化硼素ナトリウム(NaBH4)、次亜リン酸ソーダ、ヒドラジン等)を加え、結晶性炭素粒子上に金属を析出させる。ついで、必要に応じてオートクレーブ処理(100〜300℃で水熱処理)する。オートクレーブ処理により、溶液中に析出した金属微粒子を結晶性炭素粒子上に析出させることができる。
最後に金属微粒子が担持された結晶性炭素粒子を濾過分離し、第1の方法と同様にして乾燥した後、加熱処理(好ましくは不活性ガスまたは還元ガス雰囲気下で加熱処理)することによって硝酸性窒素含有水処理用触媒を得ることができる。
(Second manufacturing method)
A dispersion of the crystalline carbon particles described above is prepared. A predetermined amount of one or more metal salt aqueous solutions are added, and then a reducing agent (sodium borohydride (NaBH 4 ), sodium hypophosphite, hydrazine, etc.) is added to the crystalline carbon particles. Deposit metal. Then, autoclaving (hydrothermal treatment at 100 to 300 ° C.) is performed as necessary. By the autoclave treatment, the metal fine particles deposited in the solution can be deposited on the crystalline carbon particles.
Finally, the crystalline carbon particles carrying the metal fine particles are separated by filtration, dried in the same manner as in the first method, and then heat-treated (preferably heat-treated in an inert gas or reducing gas atmosphere) to form nitric acid. A catalyst for treatment of water containing nitrogen can be obtained.

(第3の製造方法)
例えば、パラジウム−銅合金の微粒子であれば、硝酸パラジウムと硝酸銅との混合水溶液に、クエン酸の水溶液に還元剤として硫酸第一鉄を溶解した溶液を添加して、Pd-Cu合金微粒子分散液を調製する。このPd-Cu合金微粒子分散液に結晶性炭素粒子の分散液を混合してPd-Cu合金微粒子を結晶性炭素粒子担体に担持した触媒微粒子分散液を調製する。なお、このときの担持は、互いの粒子のゼータ電位の差あるいは積により、結晶性炭素粒子の表面にPd-Cu合金微粒子が担持されるものであって、金属微粒子のゼータ電位は負、結晶性炭素粒子のゼータ電位は正または負である。
(Third production method)
For example, in the case of fine particles of palladium-copper alloy, a solution in which ferrous sulfate is dissolved as a reducing agent in an aqueous solution of citric acid is added to a mixed aqueous solution of palladium nitrate and copper nitrate to disperse the fine particles of Pd—Cu alloy. Prepare the solution. A dispersion of crystalline carbon particles is mixed with the Pd—Cu alloy fine particle dispersion to prepare a catalyst fine particle dispersion in which the Pd—Cu alloy fine particles are supported on a crystalline carbon particle carrier. In this case, the loading is such that the Pd—Cu alloy fine particles are supported on the surface of the crystalline carbon particles by the difference or product of the zeta potentials of the particles, and the zeta potential of the metal fine particles is negative, The zeta potential of the conductive carbon particles is positive or negative.

さらに具体的に説明すると、異種粒子間のヘテロ凝集は、2つのゼータ電位値が異符号であるか、その差が大きい場合は当然凝集作用が起こる。即ち、本発明の場合は結晶性炭素粒子担体に合金微粒子が担持される。また、2つのゼータ電位値が同符号であっても、ゼータ電位の積が臨界表面電位より小さい場合は凝集作用が起こる。即ち、本発明の場合は結晶性炭素粒子担体に合金微粒子が担持される。
最後に金属微粒子が担持された結晶性炭素粒子を濾過分離し、第1の方法と同様にして乾燥し、ついで加熱処理(好ましくは不活性ガスまたは還元ガス雰囲気下で加熱処理)することによって硝酸性窒素含有水処理用触媒を得る。
More specifically, heteroaggregation between different kinds of particles naturally causes an aggregating action when the two zeta potential values have different signs or the difference between them is large. That is, in the case of the present invention, alloy fine particles are supported on the crystalline carbon particle carrier. Even if the two zeta potential values have the same sign, an aggregating action occurs when the product of the zeta potential is smaller than the critical surface potential. That is, in the case of the present invention, alloy fine particles are supported on the crystalline carbon particle carrier.
Finally, the crystalline carbon particles carrying the metal fine particles are separated by filtration, dried in the same manner as in the first method, and then heat-treated (preferably heat-treated in an inert gas or reducing gas atmosphere) to form nitric acid. A catalyst for treatment of water containing nitrogen is obtained.

上記各製造方法によって、平均粒子径が5nm〜1μm、さらには10nm〜0.5μmの範囲にある硝酸性窒素含有水処理用触媒が得られる。
また、触媒微粒子中の金属微粒子の含有量は1〜50重量%、さらには2〜20重量%の範囲とすることができる。
By each of the above production methods, a nitrate nitrogen-containing water treatment catalyst having an average particle size in the range of 5 nm to 1 μm, and further 10 nm to 0.5 μm is obtained.
Further, the content of the metal fine particles in the catalyst fine particles can be in the range of 1 to 50% by weight, and further 2 to 20% by weight.

硝酸性窒素含有水の処理
本発明の硝酸性窒素含有水の処理方法は、前記したように、硝酸性窒素含有水と前記水処理触媒とを超微細気泡還元ガスの存在下で接触させることが好ましい。
そこで、この超微細気泡還元ガスについて説明する。
Treatment of Nitrate Nitrogen-Containing Water As described above, the method for treating nitrate-nitrogen-containing water according to the present invention comprises contacting nitrate-nitrogen-containing water and the water treatment catalyst in the presence of ultrafine bubble reducing gas. preferable.
Therefore, the ultrafine bubble reducing gas will be described.

本発明に用いる還元ガスとしては、電気分解で容易に製造することができ、必要に応じて回収することができる等の点から水素ガスが好適に採用される。
超微細気泡還元ガスは、大きさが平均値で0.1mm以下、概ね0.05〜100μm、さらには50μm以下、特に30μm以下であることが好ましい。超微細気泡還元ガスの大きさが0.1mmを超えると還元ガスの硝酸性窒素含有水への溶解速度が遅くなるためか、硝酸性窒素の還元速度(処理速度)が遅くなるとともに還元ガスの利用率が低下し、処理効率が低下するとともに経済性が低下する。ここで、還元ガスの利用率とは供給した還元ガスの内、硝酸性窒素の還元に用いられた還元ガスの割合をいう。
また、超微細気泡還元ガスの大きさが平均値で0.05μm未満のものは現在のところ得ることが困難である。
As the reducing gas used in the present invention, hydrogen gas is preferably employed from the viewpoint that it can be easily produced by electrolysis and can be recovered as required.
The ultrafine bubble reducing gas has an average value of 0.1 mm or less, generally 0.05 to 100 μm, more preferably 50 μm or less, and particularly preferably 30 μm or less. If the size of the ultrafine bubble reducing gas exceeds 0.1 mm, the rate of dissolution of the reducing gas in the nitrate nitrogen-containing water slows, or the rate of reduction of nitrate nitrogen (treatment rate) slows and the reducing gas The utilization rate decreases, the processing efficiency decreases, and the economic efficiency decreases. Here, the utilization rate of the reducing gas refers to the ratio of the reducing gas used for reducing nitrate nitrogen in the supplied reducing gas.
Also, it is difficult to obtain an ultrafine bubble reducing gas having an average value of less than 0.05 μm on average.

このような水中における気泡の大きさの測定方法は、例えば、水中パーティクルカウンター(リオン(株)製:KR−32またはKR−60)等によって測定することができる。
なお、本発明では前記水素ガス以外に必要に応じて、別途ヒドラジン、水素化硼素ナトリウム、次亜リン酸ナトリウム、キノン、ヒドロキノン等の還元剤を硝酸性窒素含有水に添加して用いることもできる。
Such a method for measuring the size of bubbles in water can be measured by, for example, an underwater particle counter (manufactured by Lion Co., Ltd .: KR-32 or KR-60).
In the present invention, a reducing agent such as hydrazine, sodium borohydride, sodium hypophosphite, quinone, hydroquinone and the like can be separately added to the nitrate nitrogen-containing water as necessary in addition to the hydrogen gas. .

本発明の硝酸性窒素含有水の処理方法に用いる処理設備の方式には特に制限はなく、前記した超微細気泡還元ガスを発生させ供給できる設備を備えていれば従来公知の方式を採用することができ、例えば、完全混合槽型や、流通型、多段型、バッチ型等の種々の方式がある。これらは、通常の撹拌装置、循環装置等を備えている。   There is no particular limitation on the method of treatment equipment used in the method for treating nitrate nitrogen-containing water of the present invention, and a conventionally known method should be adopted as long as it has equipment capable of generating and supplying the ultrafine bubble reducing gas described above. For example, there are various methods such as a complete mixing tank type, a distribution type, a multistage type, and a batch type. These are equipped with a normal stirring device, a circulation device and the like.

超微細気泡還元ガス発生・供給装置としては前記した大きさの気泡を供給できれば特に制限はなく、例えば(1)多孔質板に圧力をかけて微細気泡を発生させる方法、(2)微小径ノズルから気体を噴出し微細気泡を発生させる方法、(3)単管の壁面に突起を設けて気体を衝突させて微細気泡を発生させる方法、(4)気体、液体の噴流間の不安定性を利用する方法、(5)流体で旋回流を作り、気体と共に放出させて微細気泡を発生させる方法などがある。
中でも(1)または(2)の方法は好適である。具体的には、例えば、スキルキット(株)製の超微細気泡発生装置、資源開発(株)製のAWAWAなどが好適に使用できる。
The ultrafine bubble reducing gas generating / supplying device is not particularly limited as long as it can supply bubbles of the above-described size. For example, (1) a method of generating fine bubbles by applying pressure to a porous plate, (2) a fine diameter nozzle A method of generating fine bubbles by ejecting gas from a gas, (3) A method of generating protrusions on the wall of a single tube and causing gas to collide, and (4) Instability between gas and liquid jets And (5) creating a swirl flow with a fluid and releasing it with a gas to generate fine bubbles.
Of these, the method (1) or (2) is preferred. Specifically, for example, an ultrafine bubble generating device manufactured by Skill Kit Co., Ltd., AWAWA manufactured by Resource Development Co., Ltd. and the like can be suitably used.

硝酸性窒素含有水中の硝酸性窒素含有水処理用触媒の濃度は0.05〜20重量%、さらには0.1〜10重量%の範囲にあることが好ましい。触媒濃度が0.05重量%未満の場合は、処理温度が常温以下の場合に還元分解速度が不充分で、硝酸性窒素を所望の濃度以下に低減することが困難となる。触媒濃度が20重量%を超えると、濃度が高過ぎて処理還元ガスの分散性が低下して処理効率が低下したり、触媒の使用量が多過ぎて経済性が問題となることがある。   The concentration of the nitrate nitrogen-containing water treatment catalyst in the nitrate nitrogen-containing water is preferably 0.05 to 20% by weight, more preferably 0.1 to 10% by weight. When the catalyst concentration is less than 0.05% by weight, the reductive decomposition rate is insufficient when the treatment temperature is room temperature or lower, and it is difficult to reduce nitrate nitrogen below the desired concentration. If the catalyst concentration exceeds 20% by weight, the concentration may be too high and the dispersibility of the treatment reducing gas may be lowered to lower the treatment efficiency, or the amount of catalyst used may be too high, resulting in a problem of economy.

本発明の処理方法において、硝酸性窒素含有水と水処理用触媒との接触時間(滞留時間)は、処理を必要とする水の量および水中の硝酸性窒素の濃度、要求される処理水(清浄水)中のN濃度レベル、処理温度、触媒中の金属微粒子の量、粒子径、処理水のpHや不純物の他処理方法・装置等によって異なるが、概ね100時間以下、通常10分間〜25時間の範囲にあることが好ましい。   In the treatment method of the present invention, the contact time (retention time) between the nitrate nitrogen-containing water and the water treatment catalyst is the amount of water that requires treatment, the concentration of nitrate nitrogen in the water, the required treated water ( N concentration level in clean water), treatment temperature, amount of metal fine particles in catalyst, particle diameter, pH of treated water and other treatment methods / devices of impurities, etc., but generally 100 hours or less, usually 10 minutes to 25 It is preferably in the time range.

また、還元剤(還元ガス)の供給量は、要求される処理後の残存窒素濃度によっても異なるが、下記化学反応式(1)に示されるように、概ね水硝酸性窒素と還元剤との量論量以上であればよく、例えば硝酸性窒素がNO3の場合、本発明の処理方法では、還元剤のモル数(MR)と硝酸性窒素(NO3)のモル数(MN)と比(MR/MN)が3〜15、さらには3〜6の範囲にあることが好ましい。
2NO3 + 6H2 → N2 + 6H2O ・・・(1)
前記モル比が3未満の場合は還元剤が少ないために、得られる処理後の水(清浄水)中の硝酸性窒素濃度が高く、所期の目的を達成できないことがあり、モル比が15を越えると、NH3の生成が増加したり還元剤の利用率が低下し、さらに、還元剤を回収する場合でも回収量が多くなり経済性が低下する。
In addition, although the supply amount of the reducing agent (reducing gas) varies depending on the required residual nitrogen concentration after the treatment, as shown in the following chemical reaction formula (1), the amount of water nitrate nitrogen and the reducing agent is roughly For example, when nitrate nitrogen is NO 3 , in the treatment method of the present invention, the number of moles of reducing agent (M R ) and the number of moles of nitrate nitrogen (NO 3 ) (M N ). And the ratio (M R / M N ) is preferably in the range of 3 to 15, more preferably 3 to 6.
2NO 3 + 6H 2 → N 2 + 6H 2 O (1)
When the molar ratio is less than 3, since there are few reducing agents, the concentration of nitrate nitrogen in the resulting treated water (clean water) is high, and the intended purpose may not be achieved. If it exceeds 1, the production of NH 3 will increase or the utilization rate of the reducing agent will decrease, and even when the reducing agent is recovered, the recovered amount will increase and the economic efficiency will decrease.

なお、還元処理する際は、必要に応じて酸またはアルカリを添加してpH調整し、pH3〜10、さらには4〜9の範囲とすることが好ましい。
硝酸性窒素含有水のpHが3未満の場合は、触媒中の金属微粒子の金属が溶出し、活性が低下したり、処理水中に金属が含まれたり、酸性であるためにそのまま排水とすることができない等の問題が生じることがある。硝酸性窒素含有水のpHが10を越えると、硝酸性窒素の還元速度が遅くなるとともにNH3の副生が増加する傾向がある。
In addition, when carrying out a reduction process, it is preferable to add an acid or an alkali as needed, and to adjust pH to pH 3-10, Furthermore, it is preferable to be the range of 4-9.
If the pH of the nitrate nitrogen-containing water is less than 3, the metal particles in the catalyst elute and the activity decreases, the metal is contained in the treated water, or it is acidic, so it should be used as wastewater. Problems such as inability to do so may occur. When the pH of the nitrate nitrogen-containing water exceeds 10, the reduction rate of nitrate nitrogen tends to be slow and NH 3 by-product tends to increase.

本発明の硝酸性窒素含有水の処理方法では、前記還元ガスの利用率が30〜100%、さらには50〜100%の範囲にあることが好ましい。還元ガスの利用率が30%未満の場合は、処理後の水(清浄水)中の硝酸性窒素の残存濃度が高く、所期の目的を達成できない場合や、経済性が問題となる。未利用の還元ガスは回収して再度利用することができる。   In the method for treating nitrate-nitrogen-containing water of the present invention, it is preferable that the utilization rate of the reducing gas is in the range of 30 to 100%, more preferably 50 to 100%. When the utilization rate of the reducing gas is less than 30%, the residual concentration of nitrate nitrogen in the treated water (clean water) is high, and the intended purpose cannot be achieved, or the economy becomes a problem. Unused reducing gas can be recovered and reused.

所望の濃度に処理した処理水は、処理水と触媒を分離し、触媒はそのまま繰り返し使用することができるが、必要に応じて再生して用いることもできる。
処理水と触媒とを分離する方法としては限外濾過膜、セラミックフィルター等を用いた方法を採用することができる。特に流通式セラミックフィルターは口径を触媒粒子径に応じて選択することができるので効率的に分離することができ、またフィルターの圧密化などによる口径の変化がなく、耐久性に優れているので好ましい。
The treated water treated to a desired concentration separates the treated water and the catalyst, and the catalyst can be used repeatedly as it is, but can be regenerated and used as necessary.
As a method for separating the treated water and the catalyst, a method using an ultrafiltration membrane, a ceramic filter or the like can be employed. In particular, a flow-through ceramic filter is preferable because it can be separated efficiently because the diameter can be selected according to the catalyst particle diameter, and there is no change in the diameter due to the consolidation of the filter, etc., and it is excellent in durability. .

このようにして処理された処理水中のN濃度(硝酸性Nおよび副生することのあるアンモニア性Nの合計)は100ppm以下、好ましくは10ppm以下であることが好ましい。
なお、下記化学反応式(2)に示されるように、硝酸性窒素含有水の処理によって副生することのあるNH3ガスは、必要に応じてアンモニアストリッピング等、従来公知の方法によって除去することができる。
2NO3 + 9H2 → 2NH3 + 6H2O ・・・(2)

以下に示す実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
The N concentration in the treated water thus treated (the total of nitrate N and ammoniacal N which may be by-produced) is 100 ppm or less, preferably 10 ppm or less.
In addition, as shown in the following chemical reaction formula (2), NH 3 gas that may be by-produced by the treatment of nitrate nitrogen-containing water is removed by a conventionally known method such as ammonia stripping as necessary. be able to.
2NO 3 + 9H 2 → 2NH 3 + 6H 2 O (2)

The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.

触媒(1)の調製
純水100gに、合金微粒子を構成するパラジウムと銅の重量比が70/30となるように硝酸パラジウム2水和塩7.4g及び硝酸銅3水和塩4.9gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液129g(硝酸パラジウムと硝酸銅の合計モル数の2倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は4nmであった。
Preparation of catalyst (1) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate and 4.9 g of copper nitrate trihydrate are dissolved so that the weight ratio of palladium and copper constituting the alloy fine particles is 70/30. 265 g of a 30 wt% trisodium citrate aqueous solution as a stabilizer and 129 g of a 25 wt% ferrous sulfate aqueous solution as a reducing agent (twice the total number of moles of palladium nitrate and copper nitrate) The mixture was stirred for 20 hours under a nitrogen atmosphere to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 4 nm.

得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(1)の分散液とし、これに結晶性炭素化合物としてカーボンブラック(キャボット(株)製:Vulcan XC-72R、平均粒子径31nm、比表面積230m2/g、結晶子径3.3nm)5gを純水495gに均一に混合した分散液を添加し、この混合液のpHを6に調整して1時間撹拌した。ついで、この混合液を100℃で乾燥させ触媒(1)を調製した。触媒(1)の金属担持量は20重量であった。 The obtained dispersion was washed with water by a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (1) having a concentration of 10% by weight, and carbon black (cabot) as a crystalline carbon compound. Co., Ltd .: Vulcan XC-72R, average particle size of 31 nm, specific surface area of 230 m 2 / g, crystallite size of 3.3 nm) was added to a dispersion in which 5 g of pure water was uniformly mixed with 495 g of pure water. Was adjusted to 6 and stirred for 1 hour. Next, this mixed solution was dried at 100 ° C. to prepare catalyst (1). The metal loading of catalyst (1) was 20 weight.

撥水浮遊性の評価
得られた触媒(1)5gを100mlの水に分散させ、200rpmで5分間撹拌した後、撹拌を停止し、触媒(1)の浮遊状態を観察し、以下の基準により評価した。結果を触媒の性状と共に表1に示す。
触媒(1)が全量水面上に浮遊していた。:◎
触媒(1)の80%以上が水面上に浮遊し、他は水中に分散していた。:○
触媒(1)の50%〜80%未満が水面上に浮遊し、他は水中に分散していた。:△
触媒(1)の50未満が水面上に浮遊し、他は水中に分散あるいは沈降していた。:×
Evaluation of water repellency floatability 5 g of the obtained catalyst (1) was dispersed in 100 ml of water, stirred at 200 rpm for 5 minutes, then the stirring was stopped, and the floating state of the catalyst (1) was observed. evaluated. The results are shown in Table 1 together with the properties of the catalyst.
The entire amount of catalyst (1) was floating on the water surface. : ◎
More than 80% of the catalyst (1) floated on the water surface and the others were dispersed in water. : ○
50% to less than 80% of the catalyst (1) floated on the water surface, and the others were dispersed in water. : △
Less than 50 of catalyst (1) floated on the surface of the water, and the others were dispersed or settled in water. : ×

硝酸性窒素含有水の処理
硝酸ナトリウム(関東化学(株)製:特級)61.3gを純水に溶解して硝酸性窒素含有水25kgを調製した。このときの硝酸性窒素の含有量はNとして400ppmであった。
超微細気泡還元ガス発生装置(スキルキット(株)製:マイクロバブル発生装置)の水槽に硝酸性窒素含有水を投入し、硝酸性窒素含有水を循環させながらこれに触媒(1)1000gを分散させた。このときの硝酸性窒素含有水中の触媒(1)の分散濃度は3.8重量%である。
Treatment of nitrate nitrogen-containing water 61.3 g of sodium nitrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved in pure water to prepare 25 kg of nitrate nitrogen-containing water. At this time, the content of nitrate nitrogen was 400 ppm as N.
Nitrogen-containing nitrogen-containing water is put into the water tank of an ultrafine bubble reducing gas generator (Skill Kit Co., Ltd .: Microbubble generator), and 1000 g of catalyst (1) is dispersed in this water while circulating nitrate-nitrogen-containing water. I let you. At this time, the dispersion concentration of the catalyst (1) in nitrate nitrogen-containing water is 3.8% by weight.

次いで、水素ガスの超微細気泡を水槽に吹き込み、硝酸性窒素含有水の処理を実施した。この時、液温を25℃に維持し、水槽は200rpmで攪拌した。マイクロバブル発生装置は、液循環量70L/min、液圧力0.45MPa、水素圧力0.45MPa とし、水素の流量を0.48NL/minの条件で注入し、硝酸性窒素の処理中は、硝酸性窒素含有水のpHを濃度1重量%の硫酸にて5〜6の範囲に調整した。このときに発生した水素の超微細気泡(マイクロバブル)の大きさをパーティクルカウンター(リオン(株)製:KR−32)により測定したところ、4〜20μm(平均値:13μm)であった。   Next, ultrafine bubbles of hydrogen gas were blown into the water tank to treat the nitrate-containing water. At this time, the liquid temperature was maintained at 25 ° C., and the water tank was stirred at 200 rpm. The microbubble generator has a liquid circulation rate of 70 L / min, a liquid pressure of 0.45 MPa, a hydrogen pressure of 0.45 MPa, a hydrogen flow rate of 0.48 NL / min, and during treatment with nitrate nitrogen, The pH of the basic nitrogen-containing water was adjusted to a range of 5 to 6 with sulfuric acid having a concentration of 1% by weight. The size of hydrogen ultrafine bubbles (microbubbles) generated at this time was measured with a particle counter (manufactured by Rion Co., Ltd .: KR-32), and it was 4 to 20 μm (average value: 13 μm).

水素の超微細気泡を供給開始後、5分毎に処理液を採取し、窒素分析装置(ブランルーベ(株)製:AAS−III)により硝酸性窒素(NO3+NO2)およびNH3の分析を行った。
硝酸性窒素の還元は85分(NO3+NO2が0ppmとなった時点)で終了し、このときの副生NH3濃度、水素の供給量、および水素利用率(N2生成、NH3副生)、水素未利用率を、処理条件と共に表2に示した。
After supplying the ultrafine bubbles of hydrogen, the processing solution is collected every 5 minutes and analyzed for nitrate nitrogen (NO 3 + NO 2 ) and NH 3 using a nitrogen analyzer (Blanlube Co., Ltd .: AAS-III). went.
The reduction of nitrate nitrogen was completed in 85 minutes (when NO 3 + NO 2 became 0 ppm). At this time, the concentration of by-product NH 3 , the supply amount of hydrogen, and the hydrogen utilization rate (N 2 production, NH 3 Table 2 shows the hydrogen unused rate together with the treatment conditions.

触媒(2)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC、平均粒子径30nm、比表面積820m2/g、結晶子径3.0nm)を用いた以外は同様にして、触媒(2)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(2)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (2) In Example 1, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC, average particle size 30 nm, specific surface area 820 m 2 / g, crystallite size 3. Catalyst (2) was prepared in the same manner except that 0 nm) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (2) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(3)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC600JD、平均粒子径31nm、比表面積1280m2/g、結晶子径3.1nm)を用いた以外は同様にして触媒(3)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(3)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (3) In Example 1, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC600JD, average particle size 31 nm, specific surface area 1280 m 2 / g, crystallite size 3. Catalyst (3) was prepared in the same manner except that 1 nm) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (3) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(4)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(電気化学工業(株)製:デンカブラック FX−35、平均粒子径26nm、比表面積133m2/g、結晶子径4.3nm)を用いた以外は同様にして触媒(4)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(4)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of Catalyst (4) In Example 1, as a crystalline carbon compound, carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black FX-35, average particle size 26 nm, specific surface area 133 m 2 / g, crystallite size 4. Catalyst (4) was prepared in the same manner except that 3 nm) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (4) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(5)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(電気化学工業(株)製:デンカブラック OAB−100、平均粒子径37nm、比表面積88m2/g、結晶子径5.7nm)を用いた以外は同様にして触媒(5)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(5)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (5) In Example 1, carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black OAB-100, average particle size 37 nm, specific surface area 88 m 2 / g, crystallite size 5. Catalyst (5) was prepared in the same manner except that 7 nm) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (5) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(6)の調製
実施例3において、合金微粒子を構成するパラジウムと銅の重量比が90/10となるように硝酸パラジウムおよび硝酸銅を加えた以外は同様にして、濃度10重量%の合金微粒子(2)の分散液とした。合金微粒子の平均粒子径は3nmであった。
ついで、合金微粒子(2)の分散液を用いた以外は同様にして触媒(6)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(6)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (6) In Example 3, an alloy having a concentration of 10% by weight was prepared in the same manner as in Example 3 except that palladium nitrate and copper nitrate were added so that the weight ratio of palladium and copper constituting the alloy fine particles was 90/10. A dispersion of fine particles (2) was obtained. The average particle size of the alloy fine particles was 3 nm.
Next, a catalyst (6) was prepared in the same manner except that the dispersion of alloy fine particles (2) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (6) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(7)の調製
実施例3において、合金微粒子を構成するパラジウムと銅の重量比が50/50となるように硝酸パラジウムおよび硝酸銅を加えた以外は同様にして、濃度10重量%の合金微粒子(3)の分散液とした。合金微粒子の平均粒子径は5nmであった。
ついで、合金微粒子(3)の分散液を用いた以外は同様にして触媒(7)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(7)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (7) In Example 3, an alloy having a concentration of 10% by weight was prepared in the same manner as in Example 3 except that palladium nitrate and copper nitrate were added so that the weight ratio of palladium to copper constituting the alloy fine particles was 50/50. A dispersion of fine particles (3) was obtained. The average particle size of the alloy fine particles was 5 nm.
Next, a catalyst (7) was prepared in the same manner except that the dispersion of alloy fine particles (3) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (7) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(8)の調製
純水100gに、合金微粒子を構成するパラジウムと銅の重量比が70/30となるように硝酸パラジウム2水和塩7.4g及び硝酸銅3水和塩4.9gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液258g(硝酸パラジウムと硝酸銅の合計モル数の4倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は10nmであった。
得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(4)の分散液を得た。ついで、合金微粒子(4)の分散液を用いた以外は実施例3と同様にして触媒(8)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(8)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (8) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate and 4.9 g of copper nitrate trihydrate were added so that the weight ratio of palladium and copper constituting the alloy fine particles was 70/30. In a dissolved metal salt aqueous solution, 265 g of a trisodium citrate aqueous solution having a concentration of 30% by weight as a stabilizer and 258 g of a ferrous sulfate aqueous solution having a concentration of 25% by weight as a reducing agent (four times the total number of moles of palladium nitrate and copper nitrate) The resulting mixture was stirred under a nitrogen atmosphere for 20 hours to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 10 nm.
The obtained dispersion was washed with water using a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (4) having a concentration of 10% by weight. Next, a catalyst (8) was prepared in the same manner as in Example 3 except that the dispersion liquid of alloy fine particles (4) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (8) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(9)の調製
純水100gに、合金微粒子を構成するパラジウムと銅と銀の重量比が63/27/10となるように硝酸パラジウム2水和塩7.4g、硝酸銅3水和塩4.9g、硝酸銀1.8gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液129g(硝酸パラジウムと硝酸銅と硝酸銀の合計モル数の1.9倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は5nmであった。
得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(5)の分散液を得た。ついで、合金微粒子(5)の分散液を用いた以外は実施例3と同様にして触媒(9)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(9)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (9) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate and copper nitrate trihydrate so that the weight ratio of palladium, copper and silver constituting the fine alloy particles is 63/27/10 In a metal salt aqueous solution in which 4.9 g and silver nitrate 1.8 g are dissolved, 265 g of a trisodium citrate aqueous solution with a concentration of 30% by weight as a stabilizer and 129 g of an aqueous ferrous sulfate solution with a concentration of 25% by weight as a reducing agent (palladium nitrate and Equivalent to the number of moles of 1.9 times the total number of moles of copper nitrate and silver nitrate) and stirred for 20 hours in a nitrogen atmosphere to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 5 nm.
The obtained dispersion was washed with water using a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (5) having a concentration of 10% by weight. Next, a catalyst (9) was prepared in the same manner as in Example 3 except that the dispersion liquid of alloy fine particles (5) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (9) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

触媒(10)の調製
実施例3において、予めカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC600JD、平均粒子径31nm、比表面積1280m2/g、結晶子径3.1nm)を硝酸に分散させ60℃で12時間攪拌した後、遠心分離器により水洗し、乾燥して親水性化したカーボンブラック(平均粒子径31nm、比表面積1250m2/g、結晶子径3.0nm)を結晶性炭素化合物として用いた以外は同様にして触媒(10)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(10)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (10) In Example 3, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC600JD, average particle size 31 nm, specific surface area 1280 m 2 / g, crystallite size 3.1 nm) After stirring at 60 ° C. for 12 hours, the mixture was washed with water using a centrifugal separator and dried to make it hydrophilic (average particle size 31 nm, specific surface area 1250 m 2 / g, crystallite size 3.0 nm). A catalyst (10) was prepared in the same manner except that it was used as a functional carbon compound.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (10) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

硝酸性窒素含有水の処理
実施例3において、水槽にバブリング管(内径0.2mm)10本を導入して、水素の流量0.48L/minで吹き込んだ以外は同様にして硝酸性窒素含有水の処理を実施した。このときに発生した水素ガスの気泡の大きさは、0.2mm以上であった。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Treatment of nitrate nitrogen-containing water In the same manner as in Example 3, except that 10 bubbling tubes (inner diameter 0.2 mm) were introduced into the water tank and blown at a hydrogen flow rate of 0.48 L / min. The process of was carried out. The size of the hydrogen gas bubbles generated at this time was 0.2 mm or more. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

比較例1Comparative Example 1

触媒(R1)の調製
実施例1において、カーボンブラックの代わりに活性炭(和光純薬工業(株)製:活性炭素粉末、平均粒子径50μm、比表面積1155m2/g、結晶子径2nm未満)を用いた以外は同様にして触媒(R1)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(R1)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (R1) In Example 1, instead of carbon black, activated carbon (manufactured by Wako Pure Chemical Industries, Ltd .: activated carbon powder, average particle size 50 μm, specific surface area 1155 m 2 / g, crystallite size less than 2 nm) A catalyst (R1) was prepared in the same manner except that it was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (R1) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

比較例2Comparative Example 2

硝酸性窒素含有水の処理
実施例11において、比較例1と同様にして調製した触媒(R1)を用いた以外は同様にして硝酸性窒素含有水の処理を実施した。このときに発生した水素ガスの気泡の大きさは、0.2mm以上であった。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Treatment of nitrate nitrogen-containing water In Example 11, treatment of nitrate nitrogen-containing water was carried out in the same manner except that the catalyst (R1) prepared in the same manner as in Comparative Example 1 was used. The size of the hydrogen gas bubbles generated at this time was 0.2 mm or more. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

比較例3Comparative Example 3

触媒(R2)の調製
純水100gに、金属換算で濃度が10重量%となり、合金微粒子を構成する銅とパラジウムの重量比が70/30となるように硝酸銅および硝酸パラジウムを加え、これに、無定形炭素微粒子(御国色素(株)製:平均粒子径109nm)190gを加えて1時間撹拌した。次いで、凍結乾燥した後、H2−N2混合ガス雰囲気下、250℃で2時間加熱処理して触媒(R2)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(R2)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性の評価結果を表1と表2に示した。
Preparation of catalyst (R2) To 100 g of pure water, copper nitrate and palladium nitrate were added so that the concentration in terms of metal would be 10% by weight and the weight ratio of copper and palladium constituting the alloy fine particles would be 70/30. Then, 190 g of amorphous carbon fine particles (manufactured by Mikuni Dyeing Co., Ltd .: average particle size 109 nm) were added and stirred for 1 hour. Next, after lyophilization, a catalyst (R2) was prepared by heat treatment at 250 ° C. for 2 hours in an H 2 —N 2 mixed gas atmosphere.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (R2) was used. The results of these treatments and the evaluation results of water repellency floatability are shown in Tables 1 and 2.

Figure 2007021289
Figure 2007021289

Figure 2007021289
Figure 2007021289

Claims (9)

硝酸性窒素含有水と水処理触媒とを還元ガスの存在下で接触させる硝酸性窒素含有水の処理方法において、前記水処理触媒が結晶性炭素粒子に金属微粒子が担持された平均粒子径が5nm〜1μmの範囲の微粒子からなり、触媒微粒子中の金属微粒子の担持量が金属として1〜50重量%の範囲にあることを特徴とする硝酸性窒素含有水の処理方法。   In the method for treating nitrate-nitrogen-containing water in which nitrate-nitrogen-containing water and a water treatment catalyst are contacted in the presence of a reducing gas, the water-treatment catalyst has an average particle diameter in which metal fine particles are supported on crystalline carbon particles of 5 nm. A method for treating nitrate-nitrogen-containing water, comprising fine particles in the range of ˜1 μm, wherein the supported amount of metal fine particles in the catalyst fine particles is in the range of 1-50 wt% as metal. 前記金属がPt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、Yから選ばれる1種または2種以上の金属または合金であることを特徴とする請求項1に記載の硝酸性窒素含有水の処理方法。   2. The metal according to claim 1, wherein the metal is one or more metals or alloys selected from Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, and Y. The method for treating nitrate-containing water as described. 前記金属が少なくともPdとCuとを含む金属または合金であることを特徴とする請求項1または2に記載の硝酸性窒素含有水の処理方法。   The method for treating nitrate-containing water according to claim 1 or 2, wherein the metal is a metal or an alloy containing at least Pd and Cu. 前記金属微粒子の平均粒子径が1〜50nmの範囲にあることを特徴とする請求項1〜3のいずれかに記載の硝酸性窒素含有水の処理方法。   The average particle diameter of the said metal microparticle exists in the range of 1-50 nm, The processing method of nitrate nitrogen containing water in any one of Claims 1-3 characterized by the above-mentioned. 前記結晶性炭素粒子の平均粒子径(一次粒子径)が5〜500nmの範囲にあることを特徴とする請求項1〜4のいずれかに記載の硝酸性窒素含有水の処理方法。   The method for treating nitrate nitrogen-containing water according to any one of claims 1 to 4, wherein an average particle size (primary particle size) of the crystalline carbon particles is in the range of 5 to 500 nm. 前記結晶性炭素粒子の比表面積が20〜3000m2/gの範囲にあることを特徴とする請求項1〜5のいずれかに記載の硝酸性窒素含有水の処理方法。 6. The method for treating nitrate nitrogen-containing water according to claim 1, wherein the crystalline carbon particles have a specific surface area in the range of 20 to 3000 m < 2 > / g. 前記結晶性炭素粒子の結晶構造がグラファイト構造であり、結晶子径が2〜100nmの範囲であり、かつ結晶子間距離が0.340〜0.362nmの範囲にあることを特徴とする請求項1〜6のいずれかに記載の硝酸性窒素含有水の処理方法。   The crystal structure of the crystalline carbon particles is a graphite structure, a crystallite diameter is in a range of 2 to 100 nm, and a distance between crystallites is in a range of 0.340 to 0.362 nm. The processing method of the nitrate nitrogen containing water in any one of 1-6. 前記結晶性炭素粒子が、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛から選ばれる1種または2種以上の結晶性炭素化合物からなる請求項1〜7のいずれかに記載の硝酸性窒素含有水の処理方法。   The said crystalline carbon particle consists of 1 type, or 2 or more types of crystalline carbon compounds chosen from carbon black, acetylene black, a carbon nanotube, carbon nanohorn, a carbon fiber, and graphite. A method for treating nitrate-containing water. 前記還元ガスが平均直径0.1mm以下の超微細気泡水素ガスであることを特徴とする請求項1〜8のいずれかに記載の硝酸性窒素含有水の処理方法。
The method for treating nitrate-containing water according to any one of claims 1 to 8, wherein the reducing gas is ultrafine bubble hydrogen gas having an average diameter of 0.1 mm or less.
JP2005203125A 2005-07-12 2005-07-12 Treatment method for nitrate-containing water Active JP4649281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203125A JP4649281B2 (en) 2005-07-12 2005-07-12 Treatment method for nitrate-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203125A JP4649281B2 (en) 2005-07-12 2005-07-12 Treatment method for nitrate-containing water

Publications (2)

Publication Number Publication Date
JP2007021289A true JP2007021289A (en) 2007-02-01
JP4649281B2 JP4649281B2 (en) 2011-03-09

Family

ID=37782744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203125A Active JP4649281B2 (en) 2005-07-12 2005-07-12 Treatment method for nitrate-containing water

Country Status (1)

Country Link
JP (1) JP4649281B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025169A (en) * 2009-07-27 2011-02-10 Japan Atomic Energy Agency Catalyst for reductive decomposition of nitrate ion
WO2011027864A1 (en) * 2009-09-04 2011-03-10 国立大学法人北海道大学 Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
JP2011088077A (en) * 2009-10-22 2011-05-06 Jfe Mineral Co Ltd Clarifying material for organic halogen compound and clarification method using clarifying material, recycling method of the clarifying material
CN102458652A (en) * 2009-05-05 2012-05-16 技术研究及发展基金有限公司 Activated carbon cloth-supported bimetallic pd-cu catalysts for nitrate removal from water
JP2015192935A (en) * 2014-03-31 2015-11-05 日揮触媒化成株式会社 Metal fine particle-carried catalyst, production method thereof and method of treating water containing nitrate nitrogen using the same
CN108499567A (en) * 2018-04-04 2018-09-07 中国科学技术大学 The restoring method of nitrate under a kind of normal temperature and pressure
JP2019178386A (en) * 2018-03-30 2019-10-17 日揮触媒化成株式会社 Alloy particle dispersion liquid and method for producing the same
WO2023238495A1 (en) * 2022-06-08 2023-12-14 デンカ株式会社 Slurry, method for producing electrodes, and method for producing batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993491B (en) * 2018-08-16 2021-04-06 南京工业大学 Activated persulfate catalyst prepared from modified carbon nano tube, and preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111495A (en) * 1988-09-10 1990-04-24 Gutec G Zur Entwickl Von Umweltschutztechnol Mbh Method for continuously removing or reducing nitrite and/or nitrate from water containing nitrite and/or nitrate
JP2001000866A (en) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd Water treating catalyst composition and water treatment using the catalyst
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111495A (en) * 1988-09-10 1990-04-24 Gutec G Zur Entwickl Von Umweltschutztechnol Mbh Method for continuously removing or reducing nitrite and/or nitrate from water containing nitrite and/or nitrate
JP2001000866A (en) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd Water treating catalyst composition and water treatment using the catalyst
JP2004097893A (en) * 2002-09-06 2004-04-02 Catalysts & Chem Ind Co Ltd Catalyst for water treatment and water treatment method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458652A (en) * 2009-05-05 2012-05-16 技术研究及发展基金有限公司 Activated carbon cloth-supported bimetallic pd-cu catalysts for nitrate removal from water
JP2011025169A (en) * 2009-07-27 2011-02-10 Japan Atomic Energy Agency Catalyst for reductive decomposition of nitrate ion
WO2011027864A1 (en) * 2009-09-04 2011-03-10 国立大学法人北海道大学 Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same
US8986514B2 (en) 2009-09-04 2015-03-24 National University Corporation Hokkaido University Photoreduction catalyst, and method for synthesizing ammonia and method for decreasing nitrogen oxides in water using the same
JP2011088077A (en) * 2009-10-22 2011-05-06 Jfe Mineral Co Ltd Clarifying material for organic halogen compound and clarification method using clarifying material, recycling method of the clarifying material
JP2015192935A (en) * 2014-03-31 2015-11-05 日揮触媒化成株式会社 Metal fine particle-carried catalyst, production method thereof and method of treating water containing nitrate nitrogen using the same
JP2019178386A (en) * 2018-03-30 2019-10-17 日揮触媒化成株式会社 Alloy particle dispersion liquid and method for producing the same
JP7014664B2 (en) 2018-03-30 2022-02-01 日揮触媒化成株式会社 Alloy particle dispersion and its manufacturing method
CN108499567A (en) * 2018-04-04 2018-09-07 中国科学技术大学 The restoring method of nitrate under a kind of normal temperature and pressure
WO2023238495A1 (en) * 2022-06-08 2023-12-14 デンカ株式会社 Slurry, method for producing electrodes, and method for producing batteries

Also Published As

Publication number Publication date
JP4649281B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4649281B2 (en) Treatment method for nitrate-containing water
Xu et al. Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle
US9259724B2 (en) Supported bimetallic nanocomposite catalyst and the preparation method thereof
JP5499753B2 (en) Water treatment method and apparatus
JPS6111130A (en) Novel minute aggregate of metal being not noble metal and its production
WO1986006418A1 (en) Method of dissolving and recovering noble metals
JP2007007541A (en) Method for treating nitrate nitrogen-containing water
Yang et al. Opportunities and challenges in aqueous nitrate and nitrite reduction beyond electrocatalysis
JP4111768B2 (en) Water treatment catalyst and water treatment method
KR101190283B1 (en) Cu-promoter and pd-noble metal doping nzvi bimetallic catalyst and method of manufacturing the same
CN114262034A (en) Method for separating rubidium from salt lake brine by using polyvinyl alcohol/chitosan/graphene/nickel copper hexacyanide complex
KR101404597B1 (en) Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2006289248A (en) Material for removing nitrogen oxide
JP2004097893A (en) Catalyst for water treatment and water treatment method
CN105642302A (en) Copper bismuth catalyst for synthesis of 1, 4-butynediol and preparation method thereof
JP4707382B2 (en) Nitrate nitrogen-containing water treatment catalyst and method for producing the same
CN114917930B (en) Copper-palladium metal loaded mesoporous carbon coated carbon nanotube one-dimensional nanofiber material and preparation method thereof
JP4439872B2 (en) Method for producing zeolite catalyst for water treatment
JP4619758B2 (en) Zeolite catalyst for water treatment
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP2012050952A (en) Method of regenerating denitration waste catalyst
JP2010058008A (en) Adsorbent
Sarno et al. Pt/Pd-Fe3O4 nanoparticles for removal of humic acids and Cr (VI)
JP2001000866A (en) Water treating catalyst composition and water treatment using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4649281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250